1
|
Aggarwal J, Ladha R, Liu WY, Liu H, Horner RL. Optical and pharmacological manipulation of hypoglossal motor nucleus identifies differential effects of taltirelin on sleeping tonic motor activity and responsiveness. Sci Rep 2023; 13:12299. [PMID: 37516800 PMCID: PMC10387086 DOI: 10.1038/s41598-023-39562-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 07/27/2023] [Indexed: 07/31/2023] Open
Abstract
Pharyngeal muscle activity and responsiveness are key pathophysiological traits in human obstructive sleep apnea (OSA) and strong contributors to improvements with pharmacotherapy. The thyrotropin-releasing hormone (TRH) analog taltirelin is of high pre-clinical interest given its neuronal-stimulant properties, minimal endocrine activity, tongue muscle activation following microperfusion into the hypoglossal motor nucleus (HMN) or systemic delivery, and high TRH receptor expression at the HMN compared to rest of the brain. Here we test the hypothesis that taltirelin increases HMN activity and/or responsivity to excitatory stimuli applied across sleep-wake states in-vivo. To target hypoglossal motoneurons with simultaneous pharmacological and optical stimuli we used customized "opto-dialysis" probes and chronically implanted them in mice expressing a light sensitive cation channel exclusively on cholinergic neurons (ChAT-ChR2, n = 12) and wild-type mice lacking the opsin (n = 10). Both optical stimuli applied across a range of powers (P < 0.001) and microperfusion of taltirelin into the HMN (P < 0.020) increased tongue motor activity in sleeping ChAT-ChR2 mice. Notably, taltirelin increased tonic background tongue motor activity (P < 0.001) but not responsivity to excitatory optical stimuli across sleep-wake states (P > 0.098). This differential effect on tonic motor activity versus responsivity informs human studies of the potential beneficial effects of taltirelin on pharyngeal motor control and OSA pharmacotherapy.
Collapse
Affiliation(s)
- Jasmin Aggarwal
- Department of Physiology, University of Toronto, 3206 Medical Sciences Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Raina Ladha
- Department of Physiology, University of Toronto, 3206 Medical Sciences Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Wen-Ying Liu
- Department of Physiology, University of Toronto, 3206 Medical Sciences Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Hattie Liu
- Department of Physiology, University of Toronto, 3206 Medical Sciences Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Richard L Horner
- Department of Physiology, University of Toronto, 3206 Medical Sciences Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
- Department of Medicine, University of Toronto, 3206 Medical Sciences Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
2
|
Doyle BM, Singer ML, Fleury-Curado T, Rana S, Benevides ES, Byrne BJ, Polotsky VY, Fuller DD. Gene delivery to the hypoglossal motor system: preclinical studies and translational potential. Gene Ther 2021; 28:402-412. [PMID: 33574581 PMCID: PMC8355248 DOI: 10.1038/s41434-021-00225-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/16/2020] [Accepted: 01/15/2021] [Indexed: 12/15/2022]
Abstract
Dysfunction and/or reduced activity in the tongue muscles contributes to conditions such as dysphagia, dysarthria, and sleep disordered breathing. Current treatments are often inadequate, and the tongue is a readily accessible target for therapeutic gene delivery. In this regard, gene therapy specifically targeting the tongue motor system offers two general strategies for treating lingual disorders. First, correcting tongue myofiber and/or hypoglossal (XII) motoneuron pathology in genetic neuromuscular disorders may be readily achieved by intralingual delivery of viral vectors. The retrograde movement of viral vectors such as adeno-associated virus (AAV) enables targeted distribution to XII motoneurons via intralingual viral delivery. Second, conditions with impaired or reduced tongue muscle activation can potentially be treated using viral-driven chemo- or optogenetic approaches to activate or inhibit XII motoneurons and/or tongue myofibers. Further considerations that are highly relevant to lingual gene therapy include (1) the diversity of the motoneurons which control the tongue, (2) the patterns of XII nerve branching, and (3) the complexity of tongue muscle anatomy and biomechanics. Preclinical studies show considerable promise for lingual directed gene therapy in neuromuscular disease, but the potential of such approaches is largely untapped.
Collapse
Affiliation(s)
- Brendan M Doyle
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Rehabilitation Science PhD Program, University of Florida, Gainesville, FL, USA
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA
| | - Michele L Singer
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Rehabilitation Science PhD Program, University of Florida, Gainesville, FL, USA
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA
| | - Thomaz Fleury-Curado
- Department of Pediatrics and Powell Gene Therapy Center, University of Florida, Gainesville, FL, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sabhya Rana
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA
| | - Ethan S Benevides
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Rehabilitation Science PhD Program, University of Florida, Gainesville, FL, USA
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA
| | - Barry J Byrne
- Department of Pediatrics and Powell Gene Therapy Center, University of Florida, Gainesville, FL, USA
| | - Vsevolod Y Polotsky
- Department of Pediatrics and Powell Gene Therapy Center, University of Florida, Gainesville, FL, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David D Fuller
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA.
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
3
|
Gurges P, Liu H, Horner RL. Modulation of TASK-1/3 channels at the hypoglossal motoneuron pool and effects on tongue motor output and responses to excitatory inputs in vivo: implications for strategies for obstructive sleep apnea pharmacotherapy. Sleep 2021; 44:5880005. [PMID: 32745213 PMCID: PMC7819847 DOI: 10.1093/sleep/zsaa144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/29/2020] [Indexed: 12/25/2022] Open
Abstract
Obstructive sleep apnea (OSA) occurs exclusively during sleep due to reduced tongue motor activity. Withdrawal of excitatory inputs to the hypoglossal motor nucleus (HMN) from wake to sleep contributes to this reduced activity. Several awake-active neurotransmitters with inputs to the HMN (e.g. serotonin [5-HT]) inhibit K+ leak mediated by TASK-1/3 channels on hypoglossal motoneurons, leading to increased neuronal activity in vitro. We hypothesize that TASK channel inhibition at the HMN will increase tongue muscle activity in vivo and modulate responses to 5-HT. We first microperfused the HMN of anesthetized rats with TASK channel inhibitors: doxapram (75 μM, n = 9), A1899 (25 μM, n = 9), ML365 (25 μM, n = 9), acidified artificial cerebrospinal fluid (ACSF, pH = 6.25, n = 9); and a TASK channel activator terbinafine (50 μM, n = 9); all with and without co-applied 5-HT (10 mM). 5-HT alone at the HMN increased tongue motor activity (202.8% ± 45.9%, p < 0.001). However, neither the TASK channel inhibitors, nor activator, at the HMN changed baseline tongue activity (p > 0.716) or responses to 5-HT (p > 0.127). Tonic tongue motor responses to 5-HT at the HMN were also not different (p > 0.05) between ChAT-Cre:TASKf/f mice (n = 8) lacking TASK-1/3 channels on cholinergic neurons versus controls (n = 10). In freely behaving rats (n = 9), microperfusion of A1899 into the HMN increased within-breath phasic tongue motor activity in wakefulness only (p = 0.005) but not sleep, with no effects on tonic activity across all sleep-wake states. Together, the findings suggest robust maintenance of tongue motor activity despite various strategies for TASK channel manipulation targeting the HMN in vivo, and thus currently do not support this target and direction for potential OSA pharmacotherapy.
Collapse
Affiliation(s)
- Patrick Gurges
- Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Hattie Liu
- Department of Medicine, University of Toronto, Toronto, Canada
| | - Richard L Horner
- Department of Medicine, University of Toronto, Toronto, Canada.,Department of Physiology, University of Toronto, Toronto, Canada
| |
Collapse
|
4
|
Fleury Curado T, Pho H, Freire C, Amorim MR, Bonaventura J, Kim LJ, Lee R, Cabassa ME, Streeter SR, Branco LG, Sennes LU, Fishbein K, Spencer RG, Schwartz AR, Brennick MJ, Michaelides M, Fuller DD, Polotsky VY. Designer Receptors Exclusively Activated by Designer Drugs Approach to Treatment of Sleep-disordered Breathing. Am J Respir Crit Care Med 2021; 203:102-110. [PMID: 32673075 DOI: 10.1164/rccm.202002-0321oc] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Rationale: Obstructive sleep apnea is recurrent upper airway obstruction caused by a loss of upper airway muscle tone during sleep. The main goal of our study was to determine if designer receptors exclusively activated by designer drugs (DREADD) could be used to activate the genioglossus muscle as a potential novel treatment strategy for sleep apnea. We have previously shown that the prototypical DREADD ligand clozapine-N-oxide increased pharyngeal diameter in mice expressing DREADD in the hypoglossal nucleus. However, the need for direct brainstem viral injections and clozapine-N-oxide toxicity diminished translational potential of this approach, and breathing during sleep was not examined.Objectives: Here, we took advantage of our model of sleep-disordered breathing in diet-induced obese mice, retrograde properties of the adeno-associated virus serotype 9 (AAV9) viral vector, and the novel DREADD ligand J60.Methods: We administered AAV9-hSyn-hM3(Gq)-mCherry or control AAV9 into the genioglossus muscle of diet-induced obese mice and examined the effect of J60 on genioglossus activity, pharyngeal patency, and breathing during sleep.Measurements and Main Results: Compared with control, J60 increased genioglossus tonic activity by greater than sixfold and tongue uptake of 2-deoxy-2-[18F]fluoro-d-glucose by 1.5-fold. J60 increased pharyngeal patency and relieved upper airway obstruction during non-REM sleep.Conclusions: We conclude that following intralingual administration of AAV9-DREADD, J60 can activate the genioglossus muscle and improve pharyngeal patency and breathing during sleep.
Collapse
Affiliation(s)
- Thomaz Fleury Curado
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Otolaryngology, University of São Paulo, São Paulo, Brazil
| | - Huy Pho
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Carla Freire
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Otolaryngology, University of São Paulo, São Paulo, Brazil
| | - Mateus R Amorim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Dental School of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil
| | - Jordi Bonaventura
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse, and
| | - Lenise J Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, Maryland
| | - Rachel Lee
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Meaghan E Cabassa
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Stone R Streeter
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Luiz G Branco
- Dental School of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil
| | - Luiz U Sennes
- Department of Otolaryngology, University of São Paulo, São Paulo, Brazil
| | - Kenneth Fishbein
- Departament of Psychobiology, Federal University of São Paulo, São Paulo, Brazil
| | - Richard G Spencer
- Departament of Psychobiology, Federal University of São Paulo, São Paulo, Brazil
| | - Alan R Schwartz
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Otorhinolaryngology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Michael J Brennick
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Michael Michaelides
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse, and
| | - David D Fuller
- Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, Florida
| | - Vsevolod Y Polotsky
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|