1
|
Chassereau T, Chapeland-Leclerc F, Herbert É. Full identification of a growing and branching network's spatio-temporal structures. Biophys J 2024:S0006-3495(24)04063-3. [PMID: 39644094 DOI: 10.1016/j.bpj.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/09/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024] Open
Abstract
Experimentally monitoring the kinematics of branching network growth is a tricky task, given the complexity of the structures generated in three dimensions. One option is to drive the network in such a way as to obtain two-dimensional growth, enabling a collection of independent images to be obtained. The density of the network generates ambiguous structures, such as overlaps and meetings, which hinder the reconstruction of the chronology of connections. In this paper, we propose a general method for global network reconstruction. Each network connection is defined by a unique label, enabling it to be tracked in time and space. In this work, we distinguish between lateral and apical branches on the one hand, and extremities on the other. Finally, we reconstruct the network after identifying and eliminating overlaps. This method is then applied to the model filamentous fungus Podospora anserina to reconstruct its growing thallus. We derive criteria for differentiating between apical and lateral branches. We find that the outer ring is favorably composed of apical branches, while densification within the network comes from lateral branches. From this, we derive the specific dynamics of each of the two types. Finally, in the absence of any latency phase during growth initiation, we can reconstruct a time based on the equality of apical and lateral branching collections. This makes it possible to directly compare the growth dynamics of different thalli.
Collapse
Affiliation(s)
| | | | - Éric Herbert
- Université Paris Cité, CNRS, UMR 8236-LIED, Paris, France.
| |
Collapse
|
2
|
Ledoux C, Bobée C, Cabet É, David P, Filaine F, Hachimi S, Lalanne C, Ruprich-Robert G, Herbert É, Chapeland-Leclerc F. Characterization of spatio-temporal dynamics of the constrained network of the filamentous fungus Podospora anserina using a geomatics-based approach. PLoS One 2024; 19:e0297816. [PMID: 38319941 PMCID: PMC10846696 DOI: 10.1371/journal.pone.0297816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 01/12/2024] [Indexed: 02/08/2024] Open
Abstract
In their natural environment, fungi are subjected to a wide variety of environmental stresses which they must cope with by constantly adapting the architecture of their growing network. In this work, our objective was to finely characterize the thallus development of the filamentous fungus Podospora anserina subjected to different constraints that are simple to implement in vitro and that can be considered as relevant environmental stresses, such as a nutrient-poor environment or non-optimal temperatures. At the Petri dish scale, the observations showed that the fungal thallus is differentially affected (thallus diameter, mycelium aspect) according to the stresses but these observations remain qualitative. At the hyphal scale, we showed that the extraction of the usual quantities (i.e. apex, node, length) does not allow to distinguish the different thallus under stress, these quantities being globally affected by the application of a stress in comparison with a thallus having grown under optimal conditions. Thanks to an original geomatics-based approach based on the use of automatized Geographic Information System (GIS) tools, we were able to produce maps and metrics characterizing the growth dynamics of the networks and then to highlight some very different dynamics of network densification according to the applied stresses. The fungal thallus is then considered as a map and we are no longer interested in the quantity of material (hyphae) produced but in the empty spaces between the hyphae, the intra-thallus surfaces. This study contributes to a better understanding of how filamentous fungi adapt the growth and densification of their network to potentially adverse environmental changes.
Collapse
Affiliation(s)
- Clara Ledoux
- CNRS, UMR 8236 – LIED, Université Paris Cité, Paris, France
| | - Cécilia Bobée
- CNRS, UMR 8236 – LIED, Université Paris Cité, Paris, France
| | - Éva Cabet
- CNRS, UMR 8236 – LIED, Université Paris Cité, Paris, France
| | - Pascal David
- CNRS, UMR 8236 – LIED, Université Paris Cité, Paris, France
| | | | | | | | | | - Éric Herbert
- CNRS, UMR 8236 – LIED, Université Paris Cité, Paris, France
| | | |
Collapse
|
3
|
Olivero E, Gawronska E, Manimuda P, Jivani D, Chaggan FZ, Corey Z, de Almeida TS, Kaplan-Bie J, McIntyre G, Wodo O, Nalam PC. Gradient porous structures of mycelium: a quantitative structure-mechanical property analysis. Sci Rep 2023; 13:19285. [PMID: 37935723 PMCID: PMC10630317 DOI: 10.1038/s41598-023-45842-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/24/2023] [Indexed: 11/09/2023] Open
Abstract
Gradient porous structures (GPS) are characterized by structural variations along a specific direction, leading to enhanced mechanical and functional properties compared to homogeneous structures. This study explores the potential of mycelium, the root part of a fungus, as a biomaterial for generating GPS. During the intentional growth of mycelium, the filamentous network undergoes structural changes as the hyphae grow away from the feed substrate. Through microstructural analysis of sections obtained from the mycelium tissue, systematic variations in fiber characteristics (such as fiber radii distribution, crosslink density, network density, segment length) and pore characteristics (including pore size, number, porosity) are observed. Furthermore, the mesoscale mechanical moduli of the mycelium networks exhibit a gradual variation in local elastic modulus, with a significant change of approximately 50% across a 30 mm thick mycelium tissue. The structure-property analysis reveals a direct correlation between the local mechanical moduli and the network crosslink density of the mycelium. This study presents the potential of controlling growth conditions to generate mycelium-based GPS with desired functional properties. This approach, which is both sustainable and economically viable, expands the applications of mycelium-based GPS to include filtration membranes, bio-scaffolds, tissue regeneration platforms, and more.
Collapse
Affiliation(s)
- Eric Olivero
- Department of Materials Design and Innovation, University at Buffalo, Buffalo, NY, 14226, USA
| | - Elzbieta Gawronska
- Faculty of Mechanical Engineering and Computer Science, Czestochowa University of Technology, 42201, Czestochowa, Poland
| | | | - Devyani Jivani
- Department of Materials Design and Innovation, University at Buffalo, Buffalo, NY, 14226, USA
| | | | - Zachary Corey
- Department of Materials Design and Innovation, University at Buffalo, Buffalo, NY, 14226, USA
| | | | | | - Gavin McIntyre
- Ecovative Design LLC, 60 Cohoes Ave, Green Island, NY, 12183, USA
| | - Olga Wodo
- Department of Materials Design and Innovation, University at Buffalo, Buffalo, NY, 14226, USA.
| | - Prathima C Nalam
- Department of Materials Design and Innovation, University at Buffalo, Buffalo, NY, 14226, USA.
| |
Collapse
|
4
|
Flores-Ortega AC, Nicolás-Carlock JR, Carrillo-Estrada JL. Network efficiency of spatial systems with fractal morphology: a geometric graphs approach. Sci Rep 2023; 13:18706. [PMID: 37907734 PMCID: PMC10618547 DOI: 10.1038/s41598-023-45962-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/26/2023] [Indexed: 11/02/2023] Open
Abstract
The functional features of spatial networks depend upon a non-trivial relationship between the topological and physical structure. Here, we explore that relationship for spatial networks with radial symmetry and disordered fractal morphology. Under a geometric graphs approach, we quantify the effectiveness of the exchange of information in the system from center to perimeter and over the entire network structure. We mainly consider two paradigmatic models of disordered fractal formation, the Ballistic Aggregation and Diffusion-Limited Aggregation models, and complementary, the Viscek and Hexaflake fractals, and Kagome and Hexagonal lattices. First, we show that complex tree morphologies provide important advantages over regular configurations, such as an invariant structural cost for different fractal dimensions. Furthermore, although these systems are known to be scale-free in space, they have bounded degree distributions for different values of an euclidean connectivity parameter and, therefore, do not represent ordinary scale-free networks. Finally, compared to regular structures, fractal trees are fragile and overall inefficient as expected, however, we show that this efficiency can become similar to that of a robust hexagonal lattice, at a similar cost, by just considering a very short euclidean connectivity beyond first neighbors.
Collapse
Affiliation(s)
- A C Flores-Ortega
- Instituto de Física "Luis Rivera Terrazas", Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - J R Nicolás-Carlock
- Instituto de Física, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| | - J L Carrillo-Estrada
- Instituto de Física "Luis Rivera Terrazas", Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| |
Collapse
|
5
|
Martínez-Galicia E, Fernanda Flores Enríquez A, Puga A, Gutiérrez-Medina B. Analysis of the emerging physical network in young mycelia. Fungal Genet Biol 2023; 168:103823. [PMID: 37453457 DOI: 10.1016/j.fgb.2023.103823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/21/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
Filamentous fungi develop intricate hyphal networks that support mycelial foraging and transport of resources. These networks have been analyzed recently using graph theory, enabling the development of models that seek to predict functional traits. However, attention has focused mainly on mature colonies. Here, we report the extraction and analysis of the graph corresponding to Trichoderma atroviride mycelia only a few hours after conidia germination. To extract the graph for a given mycelium, a mosaic conformed of multiple bright-field, optical microscopy images is digitally processed using freely available software. The resulting graphs are characterized in terms of number of nodes and edges, average edge length, total mycelium length, hyphal growth unit, maximum edge length and mycelium diameter, for colonies between 8 h and 14 h after conidium germination. Our results show that the emerging hyphal network grows first by hyphal elongation and branching, and then it transitions to a stage where hyphal-hyphal interactions become significant. As a tangled hyphal network develops with decreasing hyphal mean length, the mycelium maintains long (∼2 mm) hyphae-a behavior that suggests a combination of aggregated and dispersed architectures to support foraging. Lastly, analysis of early network development in Podospora anserina reveals striking similarity with T. atroviride, suggesting common mechanisms during initial colony formation in filamentous fungi.
Collapse
Affiliation(s)
- Edgar Martínez-Galicia
- Division of Advanced Materials, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José 2055, 78216 San Luis Potosí, Mexico
| | - Ana Fernanda Flores Enríquez
- Division of Advanced Materials, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José 2055, 78216 San Luis Potosí, Mexico
| | - Alejandro Puga
- Unidad Académica de Física, Universidad Autónoma de Zacatecas, Zacatecas, Mexico
| | - Braulio Gutiérrez-Medina
- Division of Advanced Materials, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José 2055, 78216 San Luis Potosí, Mexico.
| |
Collapse
|
6
|
Ledoux C, Chapeland-Leclerc F, Ruprich-Robert G, Bobée C, Lalanne C, Herbert É, David P. Prediction and experimental evidence of different growth phases of the Podospora anserina hyphal network. Sci Rep 2023; 13:8501. [PMID: 37231023 DOI: 10.1038/s41598-023-35327-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023] Open
Abstract
Under ideal conditions, the growth of the mycelial network of a filamentous fungus is monotonous, showing an ever increasing complexity with time. The components of the network growth are very simple and based on two mechanisms: the elongation of each hypha, and their multiplication by successive branching. These two mechanisms are sufficient to produce a complex network, and could be localized only at the tips of hyphae. However, branching can be of two types, apical or lateral, depending on its location on the hyphae, therefore imposing the redistribution of the necessary material in the whole mycelium. From an evolutionary point of view, maintaining different branching processes, with additional energy needs for structure and metabolism, is intriguing. We propose in this work to discuss the advantages of each branching type using a new observable for the network growth, allowing us to compare growth configurations. For this purpose, we build on experimental observations of the Podospora anserina mycelium growth, enabling us to feed and constrain a lattice-free modeling of this network based on a binary tree. First, we report the set of statistics related to the branches of P. anserina that we have implemented into the model. Then, we build the density observable, allowing us to discuss the succession of growth phases. We predict that density over time is not monotonic, but shows a decay growth phase, clearly separated from an other one by a stationary phase. The time of appearance of this stable region appears to be driven solely by the growth rate. Finally, we show that density is an appropriate observable to differentiate growth stress.
Collapse
Affiliation(s)
- Clara Ledoux
- Université Paris Cité, CNRS, UMR 8236 - LIED, 75013, Paris, France
| | | | | | - Cécilia Bobée
- Université Paris Cité, CNRS, UMR 8236 - LIED, 75013, Paris, France
| | | | - Éric Herbert
- Université Paris Cité, CNRS, UMR 8236 - LIED, 75013, Paris, France.
| | - Pascal David
- Université Paris Cité, CNRS, UMR 8236 - LIED, 75013, Paris, France
| |
Collapse
|
7
|
Ledoux C, Chapeland-Leclerc F, Ruprich-Robert G, Bobée C, Lalanne C, Herbert É, David P. Prediction and experimental evidence of the optimisation of the angular branching process in the thallus growth of Podospora anserina. Sci Rep 2022; 12:12351. [PMID: 35853921 PMCID: PMC9296542 DOI: 10.1038/s41598-022-16245-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 07/07/2022] [Indexed: 12/13/2022] Open
Abstract
Based upon apical growth and hyphal branching, the two main processes that drive the growth pattern of a fungal network, we propose here a two-dimensions simulation based on a binary-tree modelling allowing us to extract the main characteristics of a generic thallus growth. In particular, we showed that, in a homogeneous environment, the fungal growth can be optimized for exploration and exploitation of its surroundings with a specific angular distribution of apical branching. Two complementary methods of extracting angle values have been used to confront the result of the simulation with experimental data obtained from the thallus growth of the saprophytic filamentous fungus Podospora anserina. Finally, we propose here a validated model that, while being computationally low-cost, is powerful enough to test quickly multiple conditions and constraints. It will allow in future works to deepen the characterization of the growth dynamic of fungal network, in addition to laboratory experiments, that could be sometimes expensive, tedious or of limited scope.
Collapse
Affiliation(s)
- Clara Ledoux
- CNRS, UMR 8236-LIED, Université Paris Cité, 75013, Paris, France
| | | | | | - Cécilia Bobée
- CNRS, UMR 8236-LIED, Université Paris Cité, 75013, Paris, France
| | | | - Éric Herbert
- CNRS, UMR 8236-LIED, Université Paris Cité, 75013, Paris, France.
| | - Pascal David
- CNRS, UMR 8236-LIED, Université Paris Cité, 75013, Paris, France
| |
Collapse
|
8
|
Putra IP, Aimi T, Shimomura N. The impact of host plant ( Pinus thunbergii) on the mycelial features of the ectomycorrhizal fungus Rhizopogon roseolus. Mycologia 2022; 114:670-681. [PMID: 35679141 DOI: 10.1080/00275514.2022.2071119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The impact of host plant on the mycelial features of mycorrhizal symbiont and its characteristics has been poorly investigated. This study aimed to compare and quantify (statistically tested) some of the mycelial features of an ectomycorrhiza (ECM)-forming fungus with and without the ECM host. The ECM-forming fungus, Rhizopogon roseolus, inoculated with or without Pinus thunbergii on both rich and poor nutrient media, was observed under laboratory conditions. On rich medium, fungi with the host had the highest colony diameter and consistently produced the highest hyphal length relative to fungi on other media. Thus, the host had a significant impact on the mycelium production of R. roseolus in both rich and poor media. Further, fungi without the host had a higher number of hyphal anastomoses per hyphal length on both poor and rich media than fungi with the host in the same medium. Anastomosis, which refers to the fusion of two parallel hyphae, was evident in all experiments. However, there was no significant impact of the host on the number of hyphal anastomoses. In addition, fungi without the host had more frequent hyphal branching on both rich and poor media than fungi with the host. The occurrence of a host only had a significant impact on the formation of the hyphal branch on poor medium. Further, a chlamydospore-like structure was identified, which had a higher diameter when formed with the host on both rich and poor media. The present data provide new insights into the host plant's impact on the mycelial features of ECM-forming fungi.
Collapse
Affiliation(s)
- Ivan Permana Putra
- The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-cho Minami, Tottori 680-8553, Japan.,Department of Biology, Faculty of Mathematics and Natural Sciences, IPB University, Bogor 16680, Indonesia
| | - Tadanori Aimi
- Faculty of Agriculture, Tottori University, 4-101 Koyama-cho Minami, Tottori 680-8553, Japan
| | - Norihiro Shimomura
- Faculty of Agriculture, Tottori University, 4-101 Koyama-cho Minami, Tottori 680-8553, Japan
| |
Collapse
|
9
|
Day TC, Márquez-Zacarías P, Bravo P, Pokhrel AR, MacGillivray KA, Ratcliff WC, Yunker PJ. Varied solutions to multicellularity: The biophysical and evolutionary consequences of diverse intercellular bonds. BIOPHYSICS REVIEWS 2022; 3:021305. [PMID: 35673523 PMCID: PMC9164275 DOI: 10.1063/5.0080845] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/29/2022] [Indexed: 11/16/2022]
Abstract
The diversity of multicellular organisms is, in large part, due to the fact that multicellularity has independently evolved many times. Nonetheless, multicellular organisms all share a universal biophysical trait: cells are attached to each other. All mechanisms of cellular attachment belong to one of two broad classes; intercellular bonds are either reformable or they are not. Both classes of multicellular assembly are common in nature, having independently evolved dozens of times. In this review, we detail these varied mechanisms as they exist in multicellular organisms. We also discuss the evolutionary implications of different intercellular attachment mechanisms on nascent multicellular organisms. The type of intercellular bond present during early steps in the transition to multicellularity constrains future evolutionary and biophysical dynamics for the lineage, affecting the origin of multicellular life cycles, cell-cell communication, cellular differentiation, and multicellular morphogenesis. The types of intercellular bonds used by multicellular organisms may thus result in some of the most impactful historical constraints on the evolution of multicellularity.
Collapse
Affiliation(s)
- Thomas C. Day
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | | | | | - Aawaz R. Pokhrel
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | | | - William C. Ratcliff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Peter J. Yunker
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| |
Collapse
|
10
|
Morales DP, Robinson AJ, Pawlowski AC, Ark C, Kelliher JM, Junier P, Werner JH, Chain PSG. Advances and Challenges in Fluorescence in situ Hybridization for Visualizing Fungal Endobacteria. Front Microbiol 2022; 13:892227. [PMID: 35722318 PMCID: PMC9199388 DOI: 10.3389/fmicb.2022.892227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/04/2022] [Indexed: 11/18/2022] Open
Abstract
Several bacteria have long been known to interact intimately with fungi, but molecular approaches have only recently uncovered how cosmopolitan these interactions are in nature. Currently, bacterial–fungal interactions (BFI) are inferred based on patterns of co-occurrence in amplicon sequencing investigations. However, determining the nature of these interactions, whether the bacteria are internally or externally associated, remains a grand challenge in BFI research. Fluorescence in situ hybridization (FISH) is a robust method that targets unique sequences of interest which can be employed for visualizing intra-hyphal targets, such as mitochondrial organelles or, as in this study, bacteria. We evaluate the challenges and employable strategies to resolve intra-hyphal BFI to address pertinent criteria in BFI research, such as culturing media, spatial distribution of bacteria, and abundance of bacterial 16S rRNA copies for fluorescent labeling. While these experimental factors influence labeling and detection of endobacteria, we demonstrate how to overcome these challenges thorough permeabilization, appropriate media choice, and targeted amplification using hybridization chain reaction FISH. Such microscopy imaging approaches can now be utilized by the broader research community to complement sequence-based investigations and provide more conclusive evidence on the nature of specific bacterial–fungal relationships.
Collapse
Affiliation(s)
- Demosthenes P. Morales
- Center of Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, United States
- *Correspondence: Demosthenes P. Morales,
| | - Aaron J. Robinson
- Biosecurity and Public Health, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Andrew C. Pawlowski
- Department of Genetics, Harvard Medical School, Boston, MA, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States
| | - Caitlyn Ark
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States
| | - Julia M. Kelliher
- Biosecurity and Public Health, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Pilar Junier
- Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - James H. Werner
- Center of Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Patrick S. G. Chain
- Biosecurity and Public Health, Los Alamos National Laboratory, Los Alamos, NM, United States
| |
Collapse
|
11
|
Aguilar-Trigueros CA, Boddy L, Rillig MC, Fricker MD. Network traits predict ecological strategies in fungi. ISME COMMUNICATIONS 2022; 2:2. [PMID: 37938271 PMCID: PMC9723744 DOI: 10.1038/s43705-021-00085-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/12/2021] [Accepted: 12/16/2021] [Indexed: 05/11/2023]
Abstract
Colonization of terrestrial environments by filamentous fungi relies on their ability to form networks that can forage for and connect resource patches. Despite the importance of these networks, ecologists rarely consider network features as functional traits because their measurement and interpretation are conceptually and methodologically difficult. To address these challenges, we have developed a pipeline to translate images of fungal mycelia, from both micro- and macro-scales, to weighted network graphs that capture ecologically relevant fungal behaviour. We focus on four properties that we hypothesize determine how fungi forage for resources, specifically: connectivity; relative construction cost; transport efficiency; and robustness against attack by fungivores. Constrained ordination and Pareto front analysis of these traits revealed that foraging strategies can be distinguished predominantly along a gradient of connectivity for micro- and macro-scale mycelial networks that is reminiscent of the qualitative 'phalanx' and 'guerilla' descriptors previously proposed in the literature. At one extreme are species with many inter-connections that increase the paths for multidirectional transport and robustness to damage, but with a high construction cost; at the other extreme are species with an opposite phenotype. Thus, we propose this approach represents a significant advance in quantifying ecological strategies for fungi using network information.
Collapse
Affiliation(s)
- C A Aguilar-Trigueros
- Freie Universität Berlin, Institut für Biologie, Altensteinstraße 6, 14195, Berlin, Germany.
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195, Berlin, Germany.
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, FI-40014, Jyväskylä, Finland.
| | - L Boddy
- School of Biosciences, Sir Martin Evans Building, Cardiff University, CF10 3AX, Cardiff, UK
| | - M C Rillig
- Freie Universität Berlin, Institut für Biologie, Altensteinstraße 6, 14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195, Berlin, Germany
| | - M D Fricker
- Department of Plant Sciences, University of Oxford, South Parks Road, OX1 3RB, Oxford, UK
| |
Collapse
|
12
|
Khalil H, Legin E, Kurek B, Perre P, Taidi B. Morphological growth pattern of Phanerochaete chrysosporium cultivated on different Miscanthus x giganteus biomass fractions. BMC Microbiol 2021; 21:318. [PMID: 34784888 PMCID: PMC8597199 DOI: 10.1186/s12866-021-02350-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 07/13/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Solid-state fermentation is a fungal culture technique used to produce compounds and products of industrial interest. The growth behaviour of filamentous fungi on solid media is challenging to study due to the intermixity of the substrate and the growing organism. Several strategies are available to measure indirectly the fungal biomass during the fermentation such as following the biochemical production of mycelium-specific components or microscopic observation. The microscopic observation of the development of the mycelium, on lignocellulosic substrate, has not been reported. In this study, we set up an experimental protocol based on microscopy and image processing through which we investigated the growth pattern of Phanerochaete chrysosporium on different Miscanthus x giganteus biomass fractions. RESULTS Object coalescence, the occupied surface area, and radial expansion of the colony were measured in time. The substrate was sterilized by autoclaving, which could be considered a type of pre-treatment. The fastest growth rate was measured on the unfractionated biomass, followed by the soluble fraction of the biomass, then the residual solid fractions. The growth rate on the different fractions of the substrate was additive, suggesting that both the solid and soluble fractions were used by the fungus. Based on the FTIR analysis, there were differences in composition between the solid and soluble fractions of the substrate, but the main components for growth were always present. We propose using this novel method for measuring the very initial fungal growth by following the variation of the number of objects over time. Once growth is established, the growth can be followed by measurement of the occupied surface by the mycelium. CONCLUSION Our data showed that the growth was affected from the very beginning by the nature of the substrate. The most extensive colonization of the surface was observed with the unfractionated substrate containing both soluble and solid components. The methodology was practical and may be applied to investigate the growth of other fungi, including the influence of environmental parameters on the fungal growth.
Collapse
Affiliation(s)
- Hassan Khalil
- LGPM, CentraleSupélec, SFR Condorcet FR CNRS 3417, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), Université Paris-Saclay, 3 Rue des Rouges Terres, 51110, Pomacle, France
- Université de Reims Champagne-Ardenne, INRAE, FARE, UMR A 614, Chaire AFERE, 51097, Reims, France
| | - Estelle Legin
- Université de Reims Champagne-Ardenne, INRAE, FARE, UMR A 614, Chaire AFERE, 51097, Reims, France
| | - Bernard Kurek
- Université de Reims Champagne-Ardenne, INRAE, FARE, UMR A 614, Chaire AFERE, 51097, Reims, France
| | - Patrick Perre
- LGPM, CentraleSupélec, SFR Condorcet FR CNRS 3417, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), Université Paris-Saclay, 3 Rue des Rouges Terres, 51110, Pomacle, France
- LGPM, CentraleSupélec, Université Paris-Saclay, 8-10 Rue Joliot-Curie, 91190, Gif-sur-Yvette, France
| | - Behnam Taidi
- LGPM, CentraleSupélec, SFR Condorcet FR CNRS 3417, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), Université Paris-Saclay, 3 Rue des Rouges Terres, 51110, Pomacle, France.
- LGPM, CentraleSupélec, Université Paris-Saclay, 8-10 Rue Joliot-Curie, 91190, Gif-sur-Yvette, France.
| |
Collapse
|