1
|
Wei Z, Zhou C, Shen Y, Deng H, Shen Z. Identification of a new anoikis-related gene signature for prognostic significance in head and neck squamous carcinomas. Medicine (Baltimore) 2023; 102:e34790. [PMID: 37682196 PMCID: PMC10489427 DOI: 10.1097/md.0000000000034790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/26/2023] [Indexed: 09/09/2023] Open
Abstract
Anoikis, a mode of programmed cell death, is essential for normal development and homeostasis in the organism and plays an important role in the onset and progression of cancers. The authors of this research sought to establish a gene signature associated with anoikis to predict therapy outcomes and patient prognosis for individuals with head and neck squamous cell carcinoma (HNSCC). Transcriptome data of anoikis-related genes (ARGs) in individuals with HNSCC were retrieved from public databases to aid in the formulation of the gene signature. A novel ARG signature was then created using a combination of the Least Absolute Shrinkage and Selection Operator regression and Cox regression analysis. The relationship between ARGs and tumor immune microenvironment in HNSCC was explored using single-cell analysis. HNSCC individuals were classified into high-risk and low-risk groups as per the median value of risk score. The study also investigated the variations in the infiltration status of immune cells, tumor microenvironment, sensitivity to immunotherapy and chemotherapeutics, as well as functional enrichment between the low-risk and high-risk categories. A total of 18 ARGs were incorporated in the formulation of the signature. Our signature's validity as a standalone predictive predictor was validated by multivariate Cox regression analysis and Kaplan-Meier survival analysis. Generally, the prognosis was worse for high-risk individuals. Subjects in the low-risk groups had a better prognosis and responded in a better way to combination immunotherapy, had higher immunological ratings and activity levels, and had more immune cell infiltration. In addition, gene set enrichment analysis findings showed that the low-risk subjects exhibited heightened activity in several immune-related pathways. However, the high-risk patients responded better to chemotherapy. The aim of this research was to develop a new ARG signature to predict the prognosis and sensitivity to immunotherapeutic and chemotherapeutic schemes for HNSCC patient. As a result, this could help spur the creation of new chemotherapeutics and immunotherapeutic approaches for patients with HNSCC.
Collapse
Affiliation(s)
- Zhengyu Wei
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| | - Chongchang Zhou
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo, China
| | - Yi Shen
- Health Science Center, Ningbo University, Ningbo, China
| | - Hongxia Deng
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo, China
| | - Zhisen Shen
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| |
Collapse
|
2
|
Fierling J, John A, Delorme B, Torzynski A, Blanchard GB, Lye CM, Popkova A, Malandain G, Sanson B, Étienne J, Marmottant P, Quilliet C, Rauzi M. Embryo-scale epithelial buckling forms a propagating furrow that initiates gastrulation. Nat Commun 2022; 13:3348. [PMID: 35688832 PMCID: PMC9187723 DOI: 10.1038/s41467-022-30493-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 05/04/2022] [Indexed: 11/26/2022] Open
Abstract
Cell apical constriction driven by actomyosin contraction forces is a conserved mechanism during tissue folding in embryo development. While much is now understood of the molecular mechanism responsible for apical constriction and of the tissue-scale integration of the ensuing in-plane deformations, it is still not clear if apical actomyosin contraction forces are necessary or sufficient per se to drive tissue folding. To tackle this question, we use the Drosophila embryo model system that forms a furrow on the ventral side, initiating mesoderm internalization. Past computational models support the idea that cell apical contraction forces may not be sufficient and that active or passive cell apico-basal forces may be necessary to drive cell wedging leading to tissue furrowing. By using 3D computational modelling and in toto embryo image analysis and manipulation, we now challenge this idea and show that embryo-scale force balance at the tissue surface, rather than cell-autonomous shape changes, is necessary and sufficient to drive a buckling of the epithelial surface forming a furrow which propagates and initiates embryo gastrulation. Drosophila mesoderm invagination begins with the formation of a furrow. Here they show that a long-range mechanism, powered by actomyosin contraction between the embryo polar caps, works like a ‘cheese-cutter wire’ indenting the tissue surface and folding it into a propagating furrow.
Collapse
Affiliation(s)
| | - Alphy John
- Université Côte d'Azur, CNRS, Inserm, iBV, Nice, France
| | | | | | - Guy B Blanchard
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, Great-Britain, England
| | - Claire M Lye
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, Great-Britain, England
| | - Anna Popkova
- Université Côte d'Azur, CNRS, Inserm, iBV, Nice, France
| | | | - Bénédicte Sanson
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, Great-Britain, England
| | | | | | | | - Matteo Rauzi
- Université Côte d'Azur, CNRS, Inserm, iBV, Nice, France.
| |
Collapse
|
3
|
Ma Y, Zou H. Identification of the circRNA-miRNA-mRNA Prognostic Regulatory Network in Lung Adenocarcinoma. Genes (Basel) 2022; 13:genes13050885. [PMID: 35627270 PMCID: PMC9141977 DOI: 10.3390/genes13050885] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Numerous studies have identified that circular RNAs (circRNAs) can serve as competing endogenous RNAs (ceRNAs) to regulate tumor progression. However, there are still a large number of circRNAs to be deciphered. Objective: The purpose of this study was to reveal novel circRNAs and their potential role in lung adenocarcinoma (LUAD). Methods: To unveil LUAD-related circRNAs, microRNA (miRNAs), and messenger RNA (mRNA) and elucidate their possible molecular mechanisms, we employed a strategy combining extensive data mining and bioinformatics methods. According to the results of bioinformatics workflow analysis, a novel circRNA-miRNA-mRNA network was constructed. Results: Ten circRNAs with different expressions were acquired from four Gene Expression Omnibus (GEO) microarray datasets. Seven Prognostic-related differential miRNAs of LUAD were gained from The Cancer Genome Atlas (TCGA). Simultaneously, the miRNA reaction components corresponding to the ten circRNAs were predicted. Two circRNA–miRNA interactions including two circRNAs (hsa_circ_0008234 and hsa_circ_0002360) and two miRNAs (hsa-miR-490-3p and hsa-miR-1293) were identified above. Then, target genes of the two miRNAs and differently expressed genes (DEGs) from TCGA on LUAD were collected. Three hub-genes (ADCY9, NMUR1, SYT1) were determined according to prognosis in patients with LUAD ulteriorly. Conclusions: hsa_circ_0008234/hsa-miR-490-3p/SYT1 and hsa_circ_0002360/hsa-miR-1293/ (ADCY9, NMUR1) networks were established, and identified molecules may be involved in pathogenesis and prognosis in patients with LUAD.
Collapse
|
4
|
Zhai WY, Duan FF, Chen S, Wang JY, Lin YB, Wang YZ, Rao BY, Zhao ZR, Long H. A Novel Inflammatory-Related Gene Signature Based Model for Risk Stratification and Prognosis Prediction in Lung Adenocarcinoma. Front Genet 2022; 12:798131. [PMID: 35069695 PMCID: PMC8766344 DOI: 10.3389/fgene.2021.798131] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/30/2021] [Indexed: 12/29/2022] Open
Abstract
Inflammation is an important hallmark of cancer and plays a role in both neogenesis and tumor development. Despite this, inflammatory-related genes (IRGs) remain to be poorly studied in lung adenocarcinoma (LUAD). We aim to explore the prognostic value of IRGs for LUAD and construct an IRG-based prognosis signature. The transcriptomic profiles and clinicopathological information of patients with LUAD were obtained from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO). Least absolute shrinkage and selection operator (LASSO) analysis and multivariate Cox regression were applied in the TCGA set to generate an IRG risk signature. LUAD cases with from the GSE31210 and GSE30219 datasets were used to validate the predictive ability of the signature. Analysis of the TCGA cohort revealed a five-IRG risk signature consisting of EREG, GPC3, IL7R, LAMP3, and NMUR1. This signature was used to divide patients into two risk groups with different survival rates. Multivariate Cox regression analysis verified that the risk score from the five-IRG signature negatively correlated with patient outcome. A nomogram was developed using the IRG risk signature and stage, with C-index values of 0.687 (95% CI: 0.644-0.730) in the TCGA training cohort, 0.678 (95% CI: 0.586-0.771) in GSE30219 cohort, and 0.656 (95% CI: 0.571-0.740) in GSE30219 cohort. Calibration curves were consistent between the actual and the predicted overall survival. The immune infiltration analysis in the TCGA training cohort and two GEO validation cohorts showed a distinctly differentiated immune cell infiltration landscape between the two risk groups. The IRG risk signature for LUAD can be used to predict patient prognosis and guide individual treatment. This risk signature is also a potential biomarker of immunotherapy.
Collapse
Affiliation(s)
- Wen-Yu Zhai
- State Key Laboratory of Oncology in Southern China, Department of Thoracic Surgery, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Lung Cancer Research Center, Sun Yat-Sen University, Guangzhou, China
| | - Fang-Fang Duan
- State Key Laboratory of Oncology in Southern China, Department of Medical Oncology, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Si Chen
- State Key Laboratory of Oncology in Southern China, Department of Thoracic Surgery, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Lung Cancer Research Center, Sun Yat-Sen University, Guangzhou, China
| | - Jun-Ye Wang
- State Key Laboratory of Oncology in Southern China, Department of Thoracic Surgery, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yao-Bin Lin
- State Key Laboratory of Oncology in Southern China, Department of Thoracic Surgery, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Lung Cancer Research Center, Sun Yat-Sen University, Guangzhou, China
| | - Yi-Zhi Wang
- State Key Laboratory of Oncology in Southern China, Department of Thoracic Surgery, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Lung Cancer Research Center, Sun Yat-Sen University, Guangzhou, China
| | - Bing-Yu Rao
- State Key Laboratory of Oncology in Southern China, Department of Thoracic Surgery, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Lung Cancer Research Center, Sun Yat-Sen University, Guangzhou, China
| | - Ze-Rui Zhao
- State Key Laboratory of Oncology in Southern China, Department of Thoracic Surgery, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Lung Cancer Research Center, Sun Yat-Sen University, Guangzhou, China
| | - Hao Long
- State Key Laboratory of Oncology in Southern China, Department of Thoracic Surgery, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Lung Cancer Research Center, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
5
|
Liang Y, Wu X, Su Q, Liu Y, Xiao H. Identification and Validation of a Novel Inflammatory Response-Related Gene Signature for the Prognosis of Colon Cancer. J Inflamm Res 2021; 14:3809-3821. [PMID: 34408464 PMCID: PMC8364916 DOI: 10.2147/jir.s321852] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/14/2021] [Indexed: 01/10/2023] Open
Abstract
Purpose The inflammatory response plays a crucial role in the occurrence and development of colon cancer. In this study, we aimed to explore a novel prognostic model for patients with colon cancer (COAD) based on inflammatory response-related genes. Methods Inflammatory response-related genes were obtained from Molecular Signatures database. Univariate and multivariate Cox regression analyses were used for model construction based on TCGA dataset. GSE39582 dataset and qRT-PCR dataset were used for validation. Gene set variation analysis and gene set enrichment analysis were performed to explore the potential regulatory pathways. The immune cell infiltration level was analyzed via CIBERSORT. Immunohistochemistry analysis and experiments were used to explore the function of genes in model. Results In this study, a novel prognostic signature was identified using stepwise Cox proportional hazards regression analysis based on TCGA dataset. The results were subsequently validated in 562 patients from GSE39582 and a qRT-PCR data set from 70 tumor samples. Functional analysis indicated that the tumor microenvironment and immune cell infiltrate were different between high- and low-risk groups. Additionally, IHC results showed that the protein levels of prognostic genes were significantly different between COAD tissues and adjacent non-tumorous tissues, and prognostic genes could regulate the malignant phenotype of COAD cells. Conclusion Overall, the inflammation-related gene signature can be used for prognostic prediction in patients with COAD.
Collapse
Affiliation(s)
- Yichao Liang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Xin Wu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Qi Su
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Yujie Liu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Hong Xiao
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
6
|
Interactive regulation of laryngeal cancer and neuroscience. Biochim Biophys Acta Rev Cancer 2021; 1876:188580. [PMID: 34129916 DOI: 10.1016/j.bbcan.2021.188580] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 06/10/2021] [Accepted: 06/10/2021] [Indexed: 01/11/2023]
Abstract
Nerve fibres are distributed throughout the body along with blood and lymphatic vessels. The intrinsic morphological characteristics of nerves and the general characteristics of secretions in the tumour microenvironment provide a solid theoretical basis for exploring how neuronal tissue can influence the progression of laryngeal cancer (LC). The central nervous system (CNS) and the peripheral nervous system (PNS) jointly control many aspects of cancer and have attracted widespread attention in the study of the progression, invasion and metastasis of tumour tissue banks. Stress activates the neuroendocrine response of the human hypothalamus-pituitary-adrenal (HPA) axis. LC cells induce nerve growth in the microenvironment by releasing neurotrophic factors (NTFs), and they can also stimulate neurite formation by secreting axons and axon guides. Conversely, nerve endings secrete factors that attract LC cells; this is known as perineural invasion (PNI) and promotes the progression of the associated cancer. In this paper, we summarize the systematic understanding of the role of neuroregulation in the LC tumour microenvironment (TME) and ways in which the TME accelerates nerve growth, which is closely related to the occurrence of LC.
Collapse
|
7
|
Nakagawa T, Kurokawa T, Mima M, Imamoto S, Mizokami H, Kondo S, Okamoto Y, Misawa K, Hanazawa T, Kaneda A. DNA Methylation and HPV-Associated Head and Neck Cancer. Microorganisms 2021; 9:microorganisms9040801. [PMID: 33920277 PMCID: PMC8069883 DOI: 10.3390/microorganisms9040801] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 02/06/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC), especially oropharyngeal squamous cell carcinoma (OPSCC), has recently been found to be significantly associated with human papillomavirus (HPV) infection. The incidence of OPSCC has been increasing and surpassed the number of cervical cancer cases in the United States. Although HPV-associated OPSCC has a relatively better prognosis than HPV-negative cancer, approximately 20% of HPV-associated HNSCC patients show a poor prognosis or therapeutic response, and the molecular mechanism behind this outcome in the intermediate-risk group is yet to be elucidated. These biological differences between HPV-associated HNSCC and HPV-negative HNSCC are partly explained by the differences in mutation patterns. However, recent reports have revealed that epigenetic dysregulation, such as dysregulated DNA methylation, is a strikingly common pathological feature of human malignancy. Notably, viral infections can induce aberrant DNA methylation, leading to carcinogenesis, and HPV-associated HNSCC cases tend to harbor a higher amount of aberrantly methylated DNA than HPV-negative HNSCC cases. Furthermore, recent comprehensive genome-wide DNA-methylation analyses with large cohorts have revealed that a sub-group of HPV-associated HNSCC correlates with increased DNA methylation. Accordingly, in this review, we provide an overview of the relationship between DNA methylation and HPV-associated HNSCC.
Collapse
Affiliation(s)
- Takuya Nakagawa
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (T.N.); (T.K.); (S.I.); (Y.O.)
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (M.M.); (H.M.); (S.K.)
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92037, USA
| | - Tomoya Kurokawa
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (T.N.); (T.K.); (S.I.); (Y.O.)
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (M.M.); (H.M.); (S.K.)
- Clinical Research Center, Chiba University Hospital, Chiba 260-8677, Japan
| | - Masato Mima
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (M.M.); (H.M.); (S.K.)
- Department of Otorhinolaryngology, Head and Neck Surgery, School of Medicine, Hamamatsu University, Hamamatsu 431-3192, Japan;
| | - Sakiko Imamoto
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (T.N.); (T.K.); (S.I.); (Y.O.)
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (M.M.); (H.M.); (S.K.)
| | - Harue Mizokami
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (M.M.); (H.M.); (S.K.)
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8640, Japan
| | - Satoru Kondo
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (M.M.); (H.M.); (S.K.)
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8640, Japan
| | - Yoshitaka Okamoto
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (T.N.); (T.K.); (S.I.); (Y.O.)
- Chiba Rosai Hospital, Ichihara 290-0003, Japan
| | - Kiyoshi Misawa
- Department of Otorhinolaryngology, Head and Neck Surgery, School of Medicine, Hamamatsu University, Hamamatsu 431-3192, Japan;
| | - Toyoyuki Hanazawa
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (T.N.); (T.K.); (S.I.); (Y.O.)
- Correspondence: (T.H.); (A.K.); Tel./Fax: +81-43-226-2039
| | - Atsushi Kaneda
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (M.M.); (H.M.); (S.K.)
- Correspondence: (T.H.); (A.K.); Tel./Fax: +81-43-226-2039
| |
Collapse
|
8
|
Yamada S, Misawa K, Mima M, Imai A, Mochizuki D, Yamada T, Shinmura D, Kita J, Ishikawa R, Yamaguchi Y, Misawa Y, Kawasaki H, Mineta H. Telomere shortening in head and neck cancer: association between DNA demethylation and survival. J Cancer 2021; 12:2165-2172. [PMID: 33758594 PMCID: PMC7974875 DOI: 10.7150/jca.54760] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/28/2021] [Indexed: 12/11/2022] Open
Abstract
A growing body of evidence indicates that telomere dysfunction is a biological marker of progression in several types of cancer. However, the association between head and neck squamous cell carcinoma (HNSCC) and telomere length (TL) remains unknown. We measured the absolute TL levels in a well-characterised dataset of 211 tumoral vs normal tissues obtained from the same patients by quantitative polymerase chain reaction assay. Normalised TL levels were significantly lower in tumour samples than in normal tissue (P < 0.001) and there was a positive correlation between tumour tissue and normal mucosal tissue (R2 = 0.176, P < 0.001). We were able to distinguish two classes, one with a tumour/normal TL ratio ≤ 0.3 (38.4%), which showed clear telomere erosion, and the other with a tumour/normal TL ratio > 0.3 (61.6%), in which the TL was slightly shorter or longer than that in normal tissue. Notably, the tumour/normal TL ratio was correlated with the likelihood of disease recurrence (P = 0.002), the 5-hydroxymethylcytosine level (P = 0.043), and expression of the ten-eleven translocation (TET) gene (P = 0.043). Our findings show that TL shortening and subsequent low levels of 5-hydroxymethylcytosine and TET expression may contribute to development of HNSCC.
Collapse
Affiliation(s)
- Satoshi Yamada
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kiyoshi Misawa
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Masato Mima
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Atsushi Imai
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Daiki Mochizuki
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Taiki Yamada
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Daichi Shinmura
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Junya Kita
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Ryuji Ishikawa
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yuki Yamaguchi
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yuki Misawa
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hideya Kawasaki
- Preeminent Medical Photonics Education and Research Center Institute for NanoSuit Research, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hiroyuki Mineta
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
9
|
Liu Y, Xia J, McKay J, Tsavachidis S, Xiao X, Spitz MR, Cheng C, Byun J, Hong W, Li Y, Zhu D, Song Z, Rosenberg SM, Scheurer ME, Kheradmand F, Pikielny CW, Lusk CM, Schwartz AG, Wistuba II, Cho MH, Silverman EK, Bailey-Wilson J, Pinney SM, Anderson M, Kupert E, Gaba C, Mandal D, You M, de Andrade M, Yang P, Liloglou T, Davies MPA, Lissowska J, Swiatkowska B, Zaridze D, Mukeria A, Janout V, Holcatova I, Mates D, Stojsic J, Scelo G, Brennan P, Liu G, Field JK, Hung RJ, Christiani DC, Amos CI. Rare deleterious germline variants and risk of lung cancer. NPJ Precis Oncol 2021; 5:12. [PMID: 33594163 PMCID: PMC7887261 DOI: 10.1038/s41698-021-00146-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 12/11/2020] [Indexed: 01/19/2023] Open
Abstract
Recent studies suggest that rare variants exhibit stronger effect sizes and might play a crucial role in the etiology of lung cancers (LC). Whole exome plus targeted sequencing of germline DNA was performed on 1045 LC cases and 885 controls in the discovery set. To unveil the inherited causal variants, we focused on rare and predicted deleterious variants and small indels enriched in cases or controls. Promising candidates were further validated in a series of 26,803 LCs and 555,107 controls. During discovery, we identified 25 rare deleterious variants associated with LC susceptibility, including 13 reported in ClinVar. Of the five validated candidates, we discovered two pathogenic variants in known LC susceptibility loci, ATM p.V2716A (Odds Ratio [OR] 19.55, 95%CI 5.04-75.6) and MPZL2 p.I24M frameshift deletion (OR 3.88, 95%CI 1.71-8.8); and three in novel LC susceptibility genes, POMC c.*28delT at 3' UTR (OR 4.33, 95%CI 2.03-9.24), STAU2 p.N364M frameshift deletion (OR 4.48, 95%CI 1.73-11.55), and MLNR p.Q334V frameshift deletion (OR 2.69, 95%CI 1.33-5.43). The potential cancer-promoting role of selected candidate genes and variants was further supported by endogenous DNA damage assays. Our analyses led to the identification of new rare deleterious variants with LC susceptibility. However, in-depth mechanistic studies are still needed to evaluate the pathogenic effects of these specific alleles.
Collapse
Grants
- R01 CA060691 NCI NIH HHS
- U19 CA203654 NCI NIH HHS
- R01 CA084354 NCI NIH HHS
- R01 HL110883 NHLBI NIH HHS
- U01 CA076293 NCI NIH HHS
- R01 CA080127 NCI NIH HHS
- R01 CA141769 NCI NIH HHS
- P30 ES006096 NIEHS NIH HHS
- P50 CA090578 NCI NIH HHS
- P30 CA022453 NCI NIH HHS
- S10 RR024574 NCRR NIH HHS
- HHSN261201300011C NCI NIH HHS
- R01 CA134682 NCI NIH HHS
- R01 CA134433 NCI NIH HHS
- R01 HL113264 NHLBI NIH HHS
- R01 HL082487 NHLBI NIH HHS
- R01 CA250905 NCI NIH HHS
- U19 CA148127 NCI NIH HHS
- P20 GM103534 NIGMS NIH HHS
- R01 CA092824 NCI NIH HHS
- R01 CA087895 NCI NIH HHS
- U01 HL089897 NHLBI NIH HHS
- K07 CA181480 NCI NIH HHS
- HHSN268201100011I NHLBI NIH HHS
- HHSN268201100011C NHLBI NIH HHS
- R01 CA127219 NCI NIH HHS
- R01 CA074386 NCI NIH HHS
- P30 CA023108 NCI NIH HHS
- U01 HL089856 NHLBI NIH HHS
- P30 ES030285 NIEHS NIH HHS
- P30 CA125123 NCI NIH HHS
- DP1 AG072751 NIA NIH HHS
- U01 CA243483 NCI NIH HHS
- HHSN268200782096C NHLBI NIH HHS
- HHSN268201200007C NHLBI NIH HHS
- N01HG65404 NHGRI NIH HHS
- R35 GM122598 NIGMS NIH HHS
- U01 CA209414 NCI NIH HHS
- R03 CA077118 NCI NIH HHS
- 001 World Health Organization
- DP1 CA174424 NCI NIH HHS
- This work was supported by grants from the National Institutes of Health (R01CA127219, R01CA141769, R01CA060691, R01CA87895, R01CA80127, R01CA84354, R01CA134682, R01CA134433, R01CA074386, R01CA092824, R01CA250905, R01HL113264, R01HL082487, R01HL110883, R03CA77118, P20GM103534, P30CA125123, P30CA023108, P30CA022453, P30ES006096, P50CA090578, U01CA243483, U01HL089856, U01HL089897, U01CA76293, U19CA148127, U01CA209414, K07CA181480, N01-HG-65404, HHSN268200782096C, HHSN261201300011I, HHSN268201100011, HHSN268201 200007C, DP1-CA174424, DP1-AG072751, CA125123, RR024574, Intramural Research Program of the National Human Genome Research Institute (JEB-W), and Herrick Foundation. Dr. Amos is an Established Research Scholar of the Cancer Prevention Research Institute of Texas (RR170048). We also want to acknowledge the Cytometry and Cell Sorting Core support by the Cancer Prevention and Research Institute of Texas Core Facility (RP180672). At Toronto, the study is supported by The Canadian Cancer Society Research Institute (# 020214) to R. H., Ontario Institute for Cancer Research to R. H, and the Alan Brown Chair to G. L. and Lusi Wong Programs at the Princess Margaret Hospital Foundation. The Liverpool Lung Project is supported by Roy Castle Lung Cancer Foundation.
Collapse
Affiliation(s)
- Yanhong Liu
- Dan L. Duncan Comprehensive Cancer Center, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Jun Xia
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
| | - James McKay
- International Agency for Research on Cancer, Lyon, France
| | - Spiridon Tsavachidis
- Dan L. Duncan Comprehensive Cancer Center, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Xiangjun Xiao
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
| | - Margaret R Spitz
- Dan L. Duncan Comprehensive Cancer Center, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Chao Cheng
- Dan L. Duncan Comprehensive Cancer Center, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
| | - Jinyoung Byun
- Dan L. Duncan Comprehensive Cancer Center, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
| | - Wei Hong
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
| | - Yafang Li
- Dan L. Duncan Comprehensive Cancer Center, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
| | - Dakai Zhu
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
| | - Zhuoyi Song
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
| | - Susan M Rosenberg
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Michael E Scheurer
- Dan L. Duncan Comprehensive Cancer Center, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Farrah Kheradmand
- Dan L. Duncan Comprehensive Cancer Center, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA
| | - Claudio W Pikielny
- Department of Biomedical Data Science, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
| | - Christine M Lusk
- Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Ann G Schwartz
- Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael H Cho
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Edwin K Silverman
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Susan M Pinney
- University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | | - Elena Kupert
- University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Colette Gaba
- The University of Toledo College of Medicine, Toledo, OH, USA
| | - Diptasri Mandal
- Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Ming You
- Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Ping Yang
- Mayo Clinic College of Medicine, Scottsdale, AZ, USA
| | - Triantafillos Liloglou
- Roy Castle Lung Cancer Research Programme, The University of Liverpool, Department of Molecular and Clinical Cancer Medicine, Liverpool, UK
| | - Michael P A Davies
- Roy Castle Lung Cancer Research Programme, The University of Liverpool, Department of Molecular and Clinical Cancer Medicine, Liverpool, UK
| | - Jolanta Lissowska
- M. Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Beata Swiatkowska
- Nofer Institute of Occupational Medicine, Department of Environmental Epidemiology, Lodz, Poland
| | - David Zaridze
- Russian N.N. Blokhin Cancer Research Centre, Moscow, Russian Federation
| | - Anush Mukeria
- Russian N.N. Blokhin Cancer Research Centre, Moscow, Russian Federation
| | - Vladimir Janout
- Faculty of Health Sciences, Palacky University, Olomouc, Czech Republic
| | - Ivana Holcatova
- Institute of Public Health and Preventive Medicine, Charles University, 2nd Faculty of Medicine, Prague, Czech Republic
| | - Dana Mates
- National Institute of Public Health, Bucharest, Romania
| | - Jelena Stojsic
- Department of Thoracopulmonary Pathology, Service of Pathology, Clinical Center of Serbia, Belgrade, Serbia
| | | | - Paul Brennan
- International Agency for Research on Cancer, Lyon, France
| | - Geoffrey Liu
- Princess Margaret Cancer Center, Toronto, ON, Canada
| | - John K Field
- Roy Castle Lung Cancer Research Programme, The University of Liverpool, Department of Molecular and Clinical Cancer Medicine, Liverpool, UK
| | - Rayjean J Hung
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | | | - Christopher I Amos
- Dan L. Duncan Comprehensive Cancer Center, Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
10
|
Misawa K, Imai A, Kanazawa T, Mima M, Yamada S, Mochizuki D, Yamada T, Shinmura D, Ishikawa R, Kita J, Yamaguchi Y, Misawa Y, Mineta H. G Protein-Coupled Receptor Genes, PTGDR1, PTGDR2, and PTGIR, Are Candidate Epigenetic Biomarkers and Predictors for Treated Patients with HPV-Associated Oropharyngeal Cancer. Microorganisms 2020; 8:microorganisms8101504. [PMID: 33003642 PMCID: PMC7601742 DOI: 10.3390/microorganisms8101504] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 12/26/2022] Open
Abstract
Differences in the biology of human papillomavirus (HPV)-associated oropharyngeal cancers (OPCs) and HPV-negative OPCs may have implications in patient management. Early detection is imperative to reduce HPV-associated OPC mortality. Circulating tumor DNA (ctDNA) can potentially serve as a biomarker for monitoring clinically relevant cancer-related genetic and epigenetic modifications. We analyzed the methylation status of 24 G protein-coupled receptor (GPCR) genes in verification (85 OPC primary samples) and validation (8 OPC ctDNA samples) studies using quantitative methylation-specific polymerase chain reaction (Q-MSP). The Q-MSP-based verification study with 85 OPC primary samples revealed the GPCR genes that were significantly associated with recurrence in high methylation groups (≥14 methylated genes) with OPC and HPV-associated OPC (p < 0.001). In the Kaplan–Meier estimate and multivariate Cox proportional hazard analyses, 13 GPCR genes were significantly related to increased recurrence in the methylation group. Furthermore, the validation study on ctDNA showed that three of these genes (Prostaglandin D2 receptor 1: PTGDR1, Prostaglandin D2 receptor 2: PTGDR2, and Prostaglandin I2 Receptor: PTGIR) had a prediction performance as emerging biomarkers. We characterized the relationship between the methylation status of GPCR genes and outcomes in HPV-associated OPC. Our results highlight the potential utility of ctDNA methylation-based detection for the clinical management of HPV-associated OPC.
Collapse
Affiliation(s)
- Kiyoshi Misawa
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan; (A.I.); (M.M.); (S.Y.); (D.M.); (T.Y.); (D.S.); (R.I.); (J.K.); (Y.Y.); (Y.M.); (H.M.)
- Correspondence: ; Tel.: 81-53-435-2252; Fax: 81-53-435-2253
| | - Atsushi Imai
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan; (A.I.); (M.M.); (S.Y.); (D.M.); (T.Y.); (D.S.); (R.I.); (J.K.); (Y.Y.); (Y.M.); (H.M.)
| | - Takeharu Kanazawa
- Department of Otorhinolaryngology/Head and Neck Surgery, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan;
| | - Masato Mima
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan; (A.I.); (M.M.); (S.Y.); (D.M.); (T.Y.); (D.S.); (R.I.); (J.K.); (Y.Y.); (Y.M.); (H.M.)
| | - Satoshi Yamada
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan; (A.I.); (M.M.); (S.Y.); (D.M.); (T.Y.); (D.S.); (R.I.); (J.K.); (Y.Y.); (Y.M.); (H.M.)
| | - Daiki Mochizuki
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan; (A.I.); (M.M.); (S.Y.); (D.M.); (T.Y.); (D.S.); (R.I.); (J.K.); (Y.Y.); (Y.M.); (H.M.)
| | - Taiki Yamada
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan; (A.I.); (M.M.); (S.Y.); (D.M.); (T.Y.); (D.S.); (R.I.); (J.K.); (Y.Y.); (Y.M.); (H.M.)
| | - Daichi Shinmura
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan; (A.I.); (M.M.); (S.Y.); (D.M.); (T.Y.); (D.S.); (R.I.); (J.K.); (Y.Y.); (Y.M.); (H.M.)
| | - Ryuji Ishikawa
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan; (A.I.); (M.M.); (S.Y.); (D.M.); (T.Y.); (D.S.); (R.I.); (J.K.); (Y.Y.); (Y.M.); (H.M.)
| | - Jyunya Kita
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan; (A.I.); (M.M.); (S.Y.); (D.M.); (T.Y.); (D.S.); (R.I.); (J.K.); (Y.Y.); (Y.M.); (H.M.)
| | - Yuki Yamaguchi
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan; (A.I.); (M.M.); (S.Y.); (D.M.); (T.Y.); (D.S.); (R.I.); (J.K.); (Y.Y.); (Y.M.); (H.M.)
| | - Yuki Misawa
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan; (A.I.); (M.M.); (S.Y.); (D.M.); (T.Y.); (D.S.); (R.I.); (J.K.); (Y.Y.); (Y.M.); (H.M.)
| | - Hiroyuki Mineta
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan; (A.I.); (M.M.); (S.Y.); (D.M.); (T.Y.); (D.S.); (R.I.); (J.K.); (Y.Y.); (Y.M.); (H.M.)
| |
Collapse
|
11
|
Li L, Liu G, Lu H, Jin K, Zhai X, Zhou M, Duan Y, Yue K, Wu Y, Wang X. Pre-treatment circulating neutrophil count is an independent prognostic factor in oropharyngeal cancer. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1135. [PMID: 33240984 PMCID: PMC7576053 DOI: 10.21037/atm-20-5702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/04/2020] [Indexed: 11/06/2022]
Abstract
BACKGROUND Oropharyngeal cancer (OPC) is a type of head and neck squamous cell cancer, the incidence of which has increased in recent years. Many studies have reported a variety of prognostic markers of OPC, but they are either expensive or difficult to obtain. Therefore, we retrospectively studied the prognostic value of circulating neutrophil count (CNC) in patients with OPC, with the aim of providing a theoretical basis for further prognostic stratification. METHODS The clinicopathological data of 153 patients diagnosed with OPC from January 2010 to June 2017 were retrospectively analyzed. The CNC of each patient was measured before treatment. Then, the relationship between CNC and the clinicopathological characteristics of the patients was analyzed. The receiver operating characteristic (ROC) curve was used to calculate the cutoff value of CNC. The cox proportional hazards model was used to perform univariate and multivariate analysis of the relevant prognostic factors to determine the factors related to overall survival (OS) and progression-free survival (PFS). RESULTS The cutoff value for CNC was 4.48. Neutrophilia was significantly associated with disease stage, P16 status, and the type of therapy. In the univariate and multivariate analyses, CNC was found to be correlated with OS and PFS. Increased neutrophil count was predictive of poor OS (P<0.001) and PFS (P=0.001). Neutrophil count was an independent risk factor for OS (HR =2.09, 95% CI: 1.25-3.51, P=0.005) and PFS (HR =1.78, 95% CI: 1.10-2.88, P=0.02) in patients with OPC. CONCLUSIONS Pre-treatment CNC is an independent prognostic factor for OPC.
Collapse
Affiliation(s)
- Liang Li
- Department of Maxillofacial and E.N.T. Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Department of Otolaryngology, Tianjin Children’s Hospital, Tianjin University Children’s Hospital, Tianjin, China
| | - Guangping Liu
- Department of Otolaryngology, Tianjin Children’s Hospital, Tianjin University Children’s Hospital, Tianjin, China
| | - Honglue Lu
- Department of Maxillofacial and E.N.T. Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Department of Otolaryngology, the Affiliated Hospital of Chengde Medical College, Chengde, China
| | - Kai Jin
- Department of Maxillofacial and E.N.T. Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Xiang Zhai
- Department of Maxillofacial and E.N.T. Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Mengqian Zhou
- Department of Maxillofacial and E.N.T. Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Yuansheng Duan
- Department of Maxillofacial and E.N.T. Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Kai Yue
- Department of Maxillofacial and E.N.T. Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Yansheng Wu
- Department of Maxillofacial and E.N.T. Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Xudong Wang
- Department of Maxillofacial and E.N.T. Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
12
|
Jank BJ, Kadletz L, Dunkler D, Haas M, Schnoell J, Kenner L, Heiduschka G. Epithelial stem cell marker LGR6 expression identifies a low-risk subgroup in human papillomavirus positive oropharyngeal squamous cell carcinoma. Oral Oncol 2020; 105:104657. [DOI: 10.1016/j.oraloncology.2020.104657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 03/08/2020] [Accepted: 03/16/2020] [Indexed: 01/07/2023]
|
13
|
Misawa K, Imai A, Matsui H, Kanai A, Misawa Y, Mochizuki D, Mima M, Yamada S, Kurokawa T, Nakagawa T, Mineta H. Identification of novel methylation markers in HPV-associated oropharyngeal cancer: genome-wide discovery, tissue verification and validation testing in ctDNA. Oncogene 2020; 39:4741-4755. [PMID: 32415241 PMCID: PMC7286817 DOI: 10.1038/s41388-020-1327-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/02/2020] [Accepted: 05/06/2020] [Indexed: 12/03/2022]
Abstract
Human papilloma virus (HPV)-associated oropharyngeal cancer (OPC) is an independent tumour type with regard to cellular, biological, and clinical features. The use of non-invasive biomarkers such as circulating tumour DNA (ctDNA) may be relevant in early diagnosis and eventually improve the outcomes of patients with head and neck squamous cell carcinoma (HNSCC). Genome-wide discovery using RNA sequencing and reduced representation bisulfite sequencing yielded 21 candidates for methylation-targeted genes. A verification study (252 HNSCC patients) using quantitative methylation-specific PCR (Q-MSP) identified 10 genes (ATP2A1, CALML5, DNAJC5G, GNMT, GPT, LY6D, LYNX1, MAL, MGC16275, and MRGPRF) that showed a significant increase recurrence in methylation groups with OPC. Further study on ctDNA using Q-MSP in HPV-associated OPC showed that three genes (CALML5, DNAJC5G, and LY6D) had a high predictive ability as emerging biomarkers for a validation set, each capable of discriminating between the plasma of the patients from healthy individuals. Among the 42 ctDNA samples, methylated CALML5, DNAJC5G, and LY6D were observed in 31 (73.8%), 19 (45.2%), and 19 (45.2%) samples, respectively. Among pre-treatment ctDNA samples, methylated CALML5, DNAJC5G, and LY6D were observed in 8/8 (100%), 7/8 (87.5%), and 7/8 (87.5%) samples, respectively. Methylated CALML5, DNAJC5G, and LY6D were found in 2/8 (25.0%), 0/8 (0%), and 1/8 (12.5%) of the final samples in the series, respectively. Here, we present the relationship between the methylation status of three specific genes and cancer recurrence for risk classification of HPV-associated OPC cases. In conclusion, ctDNA analysis has the potential to aid in determining patient prognosis and real-time surveillance for disease recurrences and serves as an alternative method of screening for HPV-associated OPC.
Collapse
Affiliation(s)
- Kiyoshi Misawa
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Shizuoka, Japan.
| | - Atsushi Imai
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Hirotaka Matsui
- Department of Molecular Laboratory Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Akinori Kanai
- Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Yuki Misawa
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Daiki Mochizuki
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Masato Mima
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Satoshi Yamada
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Tomoya Kurokawa
- Department of Otorhinolaryngology/Head and Neck Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takuya Nakagawa
- Department of Otorhinolaryngology/Head and Neck Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hiroyuki Mineta
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Shizuoka, Japan
| |
Collapse
|
14
|
Knittelfelder O, Delago D, Jakse G, Lukasiak K, Thurner EM, Thurnher D, Pichler M, Renner W, Stranzl-Lawatsch H, Langsenlehner T. The Pre-Treatment C-Reactive Protein Represents a Prognostic Factor in Patients with Oral and Oropharyngeal Cancer Treated with Radiotherapy. Cancers (Basel) 2020; 12:cancers12030626. [PMID: 32182693 PMCID: PMC7139777 DOI: 10.3390/cancers12030626] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/06/2020] [Accepted: 03/07/2020] [Indexed: 02/07/2023] Open
Abstract
The purpose of the present study was to evaluate the prognostic significance of the pre- treatment C-reactive protein (CRP) level in a cohort of 503 patients with oral and oropharyngeal cancer treated at a tertiary academic center between 2000 and 2017. Cancer-specific survival (CSS), overall survival (OS) and loco-regional control (LC) were calculated using Kaplan-Meier analysis. To evaluate the prognostic value of the CRP level for the clinical endpoints, univariate and multivariate Cox regression models were applied. The median follow-up period was 61 months. Patients were divided into elevated CRP (≥5 mg/L) and normal CRP groups, according to pre-treatment plasma levels. An increased CRP level was significantly associated with shorter CSS (p < 0.001, log-rank test), as well as with shorter OS (p < 0.001, log-rank test) and loco-regional control (p = 0.001, log-rank test). In addition, multivariate analysis identified CRP as an independent predictor for CSS (hazard ratio (HR) 1.59, 95% confidence interval (CI) 1.08-2.35; p = 0.020) as well as for OS (HR 1.62, 95%CI 1.17-2.24; p = 0.004) and LC (HR 1.50, 95%CI 1.06-2.14; p = 0.023). In subgroup analysis, Kaplan Meier curves revealed that an elevated pre-treatment CRP level was a consistent prognostic factor for poor CSS (p = 0.003, log-rank test), OS (p = 0.001, log-rank test), and LC (p = 0.028, log-rank test) in patients treated with definitive (chemo-) radiotherapy, whereas a significant association in patients undergoing surgery and postoperative radiotherapy was not detected. The pre-treatment CRP level seems to represent a prognostic factor for CSS, OS, and LC in patients with oral and oropharyngeal cancer, particularly in those treated with definitive (chemo-) radiotherapy. Additional large-scale prospective studies are warranted to confirm and extend our findings.
Collapse
Affiliation(s)
- Olivia Knittelfelder
- Department of Therapeutic Radiology and Oncology, Comprehensive Cancer Center, Medical University of Graz, 8036 Graz, Austria; (O.K.); (D.D.); (G.J.); (K.L.); (E.-M.T.); (H.S.-L.)
| | - Daniela Delago
- Department of Therapeutic Radiology and Oncology, Comprehensive Cancer Center, Medical University of Graz, 8036 Graz, Austria; (O.K.); (D.D.); (G.J.); (K.L.); (E.-M.T.); (H.S.-L.)
| | - Gabriele Jakse
- Department of Therapeutic Radiology and Oncology, Comprehensive Cancer Center, Medical University of Graz, 8036 Graz, Austria; (O.K.); (D.D.); (G.J.); (K.L.); (E.-M.T.); (H.S.-L.)
| | - Katarzyna Lukasiak
- Department of Therapeutic Radiology and Oncology, Comprehensive Cancer Center, Medical University of Graz, 8036 Graz, Austria; (O.K.); (D.D.); (G.J.); (K.L.); (E.-M.T.); (H.S.-L.)
| | - Eva-Maria Thurner
- Department of Therapeutic Radiology and Oncology, Comprehensive Cancer Center, Medical University of Graz, 8036 Graz, Austria; (O.K.); (D.D.); (G.J.); (K.L.); (E.-M.T.); (H.S.-L.)
| | - Dietmar Thurnher
- Department of Otorhinolaryngology, Medical University of Graz, 8036 Graz, Austria;
| | - Martin Pichler
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria;
- Division of Cancer Medicine, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, UTHealth, Texas A&M College of Medicine, Houston, TX 77030, USA
| | - Wilfried Renner
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, 8036 Graz, Austria;
| | - Heidi Stranzl-Lawatsch
- Department of Therapeutic Radiology and Oncology, Comprehensive Cancer Center, Medical University of Graz, 8036 Graz, Austria; (O.K.); (D.D.); (G.J.); (K.L.); (E.-M.T.); (H.S.-L.)
| | - Tanja Langsenlehner
- Department of Therapeutic Radiology and Oncology, Comprehensive Cancer Center, Medical University of Graz, 8036 Graz, Austria; (O.K.); (D.D.); (G.J.); (K.L.); (E.-M.T.); (H.S.-L.)
- Correspondence: ; Tel.: +43-316-385-87869; Fax: +43-316-385-17681
| |
Collapse
|