1
|
Hermenean A, Dossi E, Hamilton A, Trotta MC, Russo M, Lepre CC, Sajtos C, Rusznyák Á, Váradi J, Bácskay I, Budai I, D’Amico M, Fenyvesi F. Chrysin Directing an Enhanced Solubility through the Formation of a Supramolecular Cyclodextrin-Calixarene Drug Delivery System: A Potential Strategy in Antifibrotic Diabetes Therapeutics. Pharmaceuticals (Basel) 2024; 17:107. [PMID: 38256940 PMCID: PMC10819853 DOI: 10.3390/ph17010107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/31/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Calixarene 0118 (OTX008) and chrysin (CHR) are promising molecules for the treatment of fibrosis and diabetes complications but require an effective delivery system to overcome their low solubility and bioavailability. Sulfobutylated β-cyclodextrin (SBECD) was evaluated for its ability to increase the solubility of CHR by forming a ternary complex with OTX008. The resulting increase in solubility and the mechanisms of complex formation were identified through phase-solubility studies, while dynamic light-scattering assessed the molecular associations within the CHR-OTX008-SBECD system. Nuclear magnetic resonance, differential scanning calorimetry, and computational studies elucidated the interactions at the molecular level, and cellular assays confirmed the system's biocompatibility. Combining SBECD with OTX008 enhances CHR solubility more than using SBECD alone by forming water-soluble molecular associates in a ternary complex. This aids in the solubilization and delivery of CHR and OTX008. Structural investigations revealed non-covalent interactions essential to complex formation, which showed no cytotoxicity in hyperglycemic in vitro conditions. A new ternary complex has been formulated to deliver promising antifibrotic agents for diabetic complications, featuring OTX008 as a key structural and pharmacological component.
Collapse
Affiliation(s)
- Anca Hermenean
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Revolutiei, 310414 Arad, Romania;
| | - Eleftheria Dossi
- Centre for Defence Chemistry, Cranfield University, Defence Academy of United Kingdom, Shrivenham, Swindon SN6 8LA, UK;
| | - Alex Hamilton
- Biomolecular Sciences Research Centre (BMRC), Department of Biosciences and Chemistry, College of Health, Wellbeing and Life Sciences, Sheffield Hallam University, Howard Street, Sheffield S1 1WB, UK;
| | - Maria Consiglia Trotta
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.C.T.); (C.C.L.); (M.D.)
| | - Marina Russo
- Doctoral School of National Interest in Public Administration and Innovation for Disability and Social Inclusion, Department of Mental, Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
- School of Pharmacology and Clinical Toxicology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Caterina Claudia Lepre
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.C.T.); (C.C.L.); (M.D.)
- Doctoral School of Translational Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Csilla Sajtos
- Department of Molecular and Nanopharmaceutics, Faculty of Pharmacy, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary; (C.S.); (Á.R.)
| | - Ágnes Rusznyák
- Department of Molecular and Nanopharmaceutics, Faculty of Pharmacy, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary; (C.S.); (Á.R.)
- Institute of Healthcare Industry, University of Debrecen, Egyetem Square 1, H-4032 Debrecen, Hungary;
| | - Judit Váradi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary;
| | - Ildikó Bácskay
- Institute of Healthcare Industry, University of Debrecen, Egyetem Square 1, H-4032 Debrecen, Hungary;
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary;
| | - István Budai
- Faculty of Engineering, University of Debrecen, Ótemető Street 2-4, H-4028 Debrecen, Hungary;
| | - Michele D’Amico
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.C.T.); (C.C.L.); (M.D.)
| | - Ferenc Fenyvesi
- Department of Molecular and Nanopharmaceutics, Faculty of Pharmacy, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary; (C.S.); (Á.R.)
| |
Collapse
|
2
|
Sotoudeheian M, Mirahmadi SMS, Pirhayati M, Azarbad R, Nematollahi S, Taghizadeh M, Pazoki-Toroudi H. Understanding the Role of Galectin-1 in Heart Failure: A Comprehensive Narrative Review. Curr Cardiol Rev 2024; 20:CCR-EPUB-137063. [PMID: 38192129 PMCID: PMC11071677 DOI: 10.2174/011573403x274886231227111902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/27/2023] [Accepted: 12/01/2023] [Indexed: 01/10/2024] Open
Abstract
Heart failure (HF) is the fastest-growing cardiovascular condition worldwide. The immune system may play a role in the development of HF since this condition is associated with elevated pro-inflammatory cytokine levels. HF is a life-threatening disease, and there is an increasing demand for diagnostic biomarkers, prognostic factors, and therapeutic agents that can help treat it. Galectin-1 (Gal-1) is the prototype galectin of the lectin family. Multiple signal transduction pathways are regulated by Ras proteins, which act as a molecular switch in cells. Gal-1 regulates T and B cell activation, differentiation, and survival. Gal-1 has been linked to inflammation. Activated T cells produce Gal-1 through an autocrine apoptotic mechanism involving MEK1/ERK and p38 MAPK. In the cardiovascular system, atherosclerosis is facilitated by Gal-1. Heart disease, myocardial infarction, hypertension, and stroke can be caused by atherosclerotic plaque. HF and heart hypertrophy are caused by decreased cardiac L-type Ca2+ channel activity. Deregulation of Gal-1 and CaV1.2 in pathological cardiac hypertrophy suggests a possible target for anti-hypertrophic therapy. Rat hypertrophic cardiomyocytes express Gal-1 and CaV1.2 channels simultaneously. It has been reported that diastolic dysfunction (DD) is associated with elevated Gal-1 levels. The high Gal-1 level in subjects led to the lowest cumulative survival as a composite endpoint. Incidences of HF, DD, and serum Gal-1 levels correlated significantly. The ejection fraction was negatively correlated with Gal-1 and CRP concentrations. Based on two different approaches in mice and humans, Gal-1 was identified as a potential mediator of HF.
Collapse
Affiliation(s)
- Mohammadjavad Sotoudeheian
- Physiology Research Center, Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Pirhayati
- Department of General Medicine, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Azarbad
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | | | - Mehdi Taghizadeh
- Cardiology Resident, Department of Cardiology, Shahid Madani Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamidreza Pazoki-Toroudi
- Physiology Research Center, Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Trotta MC, Herman H, Ciceu A, Mladin B, Rosu M, Lepre CC, Russo M, Bácskay I, Fenyvesi F, Marfella R, Hermenean A, Balta C, D’Amico M. Chrysin-based supramolecular cyclodextrin-calixarene drug delivery system: a novel approach for attenuating cardiac fibrosis in chronic diabetes. Front Pharmacol 2023; 14:1332212. [PMID: 38169923 PMCID: PMC10759242 DOI: 10.3389/fphar.2023.1332212] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
Introduction: Cardiac fibrosis is strongly induced by diabetic conditions. Both chrysin (CHR) and calixarene OTX008, a specific inhibitor of galectin 1 (Gal-1), seem able to reduce transforming growth factor beta (TGF-β)/SMAD pro-fibrotic pathways, but their use is limited to their low solubility. Therefore, we formulated a dual-action supramolecular system, combining CHR with sulfobutylated β-cyclodextrin (SBECD) and OTX008 (SBECD + OTX + CHR). Here we aimed to test the anti-fibrotic effects of SBECD + OTX + CHR in hyperglycemic H9c2 cardiomyocytes and in a mouse model of chronic diabetes. Methods: H9c2 cardiomyocytes were exposed to normal (NG, 5.5 mM) or high glucose (HG, 33 mM) for 48 h, then treated with SBECD + OTX + CHR (containing OTX008 0.75-1.25-2.5 µM) or the single compounds for 6 days. TGF-β/SMAD pathways, Mitogen-Activated Protein Kinases (MAPKs) and Gal-1 levels were assayed by Enzyme-Linked Immunosorbent Assays (ELISAs) or Real-Time Quantitative Reverse Transcription Polymerase chain reaction (qRT-PCR). Adult CD1 male mice received a single intraperitoneal (i.p.) administration of streptozotocin (STZ) at a dosage of 102 mg/kg body weight. From the second week of diabetes, mice received 2 times/week the following i.p. treatments: OTX (5 mg/kg)-SBECD; OTX (5 mg/kg)-SBECD-CHR, SBECD-CHR, SBECD. After a 22-week period of diabetes, mice were euthanized and cardiac tissue used for tissue staining, ELISA, qRT-PCR aimed to analyse TGF-β/SMAD, extracellular matrix (ECM) components and Gal-1. Results: In H9c2 cells exposed to HG, SBECD + OTX + CHR significantly ameliorated the damaged morphology and reduced TGF-β1, its receptors (TGFβR1 and TGFβR2), SMAD2/4, MAPKs and Gal-1. Accordingly, these markers were reduced also in cardiac tissue from chronic diabetes, in which an amelioration of cardiac remodeling and ECM was evident. In both settings, SBECD + OTX + CHR was the most effective treatment compared to the other ones. Conclusion: The CHR-based supramolecular SBECD-calixarene drug delivery system, by enhancing the solubility and the bioavailability of both CHR and calixarene OTX008, and by combining their effects, showed a strong anti-fibrotic activity in rat cardiomyocytes and in cardiac tissue from mice with chronic diabetes. Also an improved cardiac tissue remodeling was evident. Therefore, new drug delivery system, which could be considered as a novel putative therapeutic strategy for the treatment of diabetes-induced cardiac fibrosis.
Collapse
Affiliation(s)
- Maria Consiglia Trotta
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Hildegard Herman
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, Arad, Romania
| | - Alina Ciceu
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, Arad, Romania
| | - Bianca Mladin
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, Arad, Romania
| | - Marcel Rosu
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, Arad, Romania
| | - Caterina Claudia Lepre
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, Arad, Romania
- PhD Course in Translational Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Marina Russo
- PhD Course in National Interest in Public Administration and Innovation for Disability and Social Inclusion, Department of Mental, Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
- School of Pharmacology and Clinical Toxicology, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Ildikó Bácskay
- Department of Molecular and Nanopharmaceutics, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
- Institute of Healthcare Industry, University of Debrecen, Debrecen, Hungary
| | - Ferenc Fenyvesi
- Department of Molecular and Nanopharmaceutics, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Anca Hermenean
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, Arad, Romania
- Department of Histology, Faculty of Medicine, Vasile Goldis Western University of Arad, Arad, Romania
| | - Cornel Balta
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, Arad, Romania
| | - Michele D’Amico
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| |
Collapse
|
4
|
Nowowiejska J, Baran A, Hermanowicz JM, Sieklucka B, Pawlak D, Flisiak I. Evaluation of Plasma Concentrations of Galectins-1, 2 and 12 in Psoriasis and Their Clinical Implications. Biomolecules 2023; 13:1472. [PMID: 37892153 PMCID: PMC10604582 DOI: 10.3390/biom13101472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Psoriasis is a complex disease that nowadays is considered not only a dermatosis but a kind of systemic disorder associated with many accompanying diseases. Metabolic complications leading to cardiovascular incidences are the cause of increased mortality in psoriatic patients. Galectins (gal) are beta-galactoside-binding lectins that exert different functions, including engagement in metabolic processes. Our aim was to assess the concentrations of gal-1, 2 and 12 in psoriatics, to establish their potential clinical implications, including in metabolic complications. Plasma galectins were assessed by ELISA in 60 psoriatic patients and 30 controls without dermatoses and a negative family history of psoriasis. Plasma concentrations of all galectins were significantly higher in patients than controls (gal-1 with p < 0.001, gal-2 and 12 with p < 0.05). There were no correlations between galectins concentrations and psoriasis severity in PASI or disease duration (p > 0.05). Gal-1 and 12 were significantly negatively correlated with GFR (p < 0.05, p < 0.01, respectively) and gal-2 with HDL (p < 0.05). Gal-2 was significantly positively correlated with CRP (p < 0.05) and gal-12 with fasting glucose (p < 0.01). Based on the results and given the reported role of galectins in metabolic disorders we may conclude that gal-1, 2 and 12 could be potentially engaged in metabolic complications in psoriatics, most probably in atherosclerosis. Gal-2 could be perhaps further investigated as a marker of metabolically induced inflammation in psoriasis, gal-1 and gal-12 as predictors of renal impairment in psoriatics due to metabolic disorders. Potentially, gal-12 could be considered in the future as a marker of carbohydrate metabolism disorders in psoriatics.
Collapse
Affiliation(s)
- Julia Nowowiejska
- Department of Dermatology and Venereology, Medical University of Bialystok, Zurawia 14 St., 15-540 Bialystok, Poland; (A.B.); (I.F.)
| | - Anna Baran
- Department of Dermatology and Venereology, Medical University of Bialystok, Zurawia 14 St., 15-540 Bialystok, Poland; (A.B.); (I.F.)
| | - Justyna Magdalena Hermanowicz
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C St., 15-089 Bialystok, Poland; (J.M.H.); (B.S.); (D.P.)
| | - Beata Sieklucka
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C St., 15-089 Bialystok, Poland; (J.M.H.); (B.S.); (D.P.)
| | - Dariusz Pawlak
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C St., 15-089 Bialystok, Poland; (J.M.H.); (B.S.); (D.P.)
| | - Iwona Flisiak
- Department of Dermatology and Venereology, Medical University of Bialystok, Zurawia 14 St., 15-540 Bialystok, Poland; (A.B.); (I.F.)
| |
Collapse
|
5
|
Galectin-1 in Obesity and Type 2 Diabetes. Metabolites 2022; 12:metabo12100930. [PMID: 36295832 PMCID: PMC9606923 DOI: 10.3390/metabo12100930] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022] Open
Abstract
Galectin-1 is a carbohydrate-binding protein expressed in many tissues. In recent years, increasing evidence has emerged for the role of galectin-1 in obesity, insulin resistance and type 2 diabetes. Galectin-1 has been highly conserved through evolution and is involved in key cellular functions such as tissue maturation and homeostasis. It has been shown that galectin-1 increases in obesity, both in the circulation and in the adipose tissue of human and animal models. Several proteomic studies have independently identified an increased galectin-1 expression in the adipose tissue in obesity and in insulin resistance. Large population-based cohorts have demonstrated associations for circulating galectin-1 and markers of insulin resistance and incident type 2 diabetes. Furthermore, galectin-1 is associated with key metabolic pathways including glucose and lipid metabolism, as well as insulin signalling and inflammation. Intervention studies in animal models alter animal weight and metabolic profile. Several studies have also linked galectin-1 to the progression of complications in diabetes, including kidney disease and retinopathy. Here, we review the current knowledge on the clinical potential of galectin-1 in obesity and type 2 diabetes.
Collapse
|
6
|
Hermenean A, Oatis D, Herman H, Ciceu A, D’Amico G, Trotta MC. Galectin 1-A Key Player between Tissue Repair and Fibrosis. Int J Mol Sci 2022; 23:ijms23105548. [PMID: 35628357 PMCID: PMC9142121 DOI: 10.3390/ijms23105548] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/13/2022] [Accepted: 05/13/2022] [Indexed: 12/20/2022] Open
Abstract
Galectins are ten family members of carbohydrate-binding proteins with a high affinity for β galactose-containing oligosaccharides. Galectin-1 (Gal-1) is the first protein discovered in the family, expressed in many sites under normal and pathological conditions. In the first part of the review article, we described recent advances in the Gal-1 modulatory role on wound healing, by focusing on the different phases triggered by Gal-1, such as inflammation, proliferation, tissue repair and re-epithelialization. On the contrary, Gal-1 persistent over-expression enhances angiogenesis and extracellular matrix (ECM) production via PI3K/Akt pathway activation and leads to keloid tissue. Therefore, the targeted Gal-1 modulation should be considered a method of choice to treat wound healing and avoid keloid formation. In the second part of the review article, we discuss studies clarifying the role of Gal-1 in the pathogenesis of proliferative diabetic retinopathy, liver, renal, pancreatic and pulmonary fibrosis. This evidence suggests that Gal-1 may become a biomarker for the diagnosis and prognosis of tissue fibrosis and a promising molecular target for the development of new and original therapeutic tools to treat fibrosis in different chronic diseases.
Collapse
Affiliation(s)
- Anca Hermenean
- Faculty of Medicine, Vasile Goldis Western University of Arad, 310414 Arad, Romania;
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, 310414 Arad, Romania; (H.H.); (A.C.); (G.D.)
- Correspondence:
| | - Daniela Oatis
- Faculty of Medicine, Vasile Goldis Western University of Arad, 310414 Arad, Romania;
| | - Hildegard Herman
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, 310414 Arad, Romania; (H.H.); (A.C.); (G.D.)
| | - Alina Ciceu
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, 310414 Arad, Romania; (H.H.); (A.C.); (G.D.)
| | - Giovanbattista D’Amico
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, 310414 Arad, Romania; (H.H.); (A.C.); (G.D.)
| | - Maria Consiglia Trotta
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| |
Collapse
|
7
|
Li H, Zhao X, Zheng L, Wang X, Lin S, Shen J, Ren H, Li Y, Qiu Q, Wang Z. Bruceine A protects against diabetic kidney disease via inhibiting galectin-1. Kidney Int 2022; 102:521-535. [DOI: 10.1016/j.kint.2022.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 03/13/2022] [Accepted: 04/06/2022] [Indexed: 10/18/2022]
|
8
|
Drake I, Fryk E, Strindberg L, Lundqvist A, Rosengren AH, Groop L, Ahlqvist E, Borén J, Orho-Melander M, Jansson PA. The role of circulating galectin-1 in type 2 diabetes and chronic kidney disease: evidence from cross-sectional, longitudinal and Mendelian randomisation analyses. Diabetologia 2022; 65:128-139. [PMID: 34743218 PMCID: PMC8660752 DOI: 10.1007/s00125-021-05594-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 08/05/2021] [Indexed: 11/11/2022]
Abstract
AIMS/HYPOTHESIS Galectin-1 modulates inflammation and angiogenesis, and cross-sectional studies indicate that galectin-1 may be a uniting factor between obesity, type 2 diabetes and kidney function. We examined whether circulating galectin-1 can predict incidence of chronic kidney disease (CKD) and type 2 diabetes in a middle-aged population, and if Mendelian randomisation (MR) can provide evidence for causal direction of effects. METHODS Participants (n = 4022; 58.6% women) in the Malmö Diet and Cancer Study-Cardiovascular Cohort enrolled between 1991 and 1994 (mean age 57.6 years) were examined. eGFR was calculated at baseline and after a mean follow-up of 16.6 ± 1.5 years. Diabetes status was ascertained through registry linkage (mean follow-up of 18.4 ± 6.1 years). The associations of baseline galectin-1 with incident CKD and type 2 diabetes were assessed with Cox regression, adjusting for established risk factors. In addition, a genome-wide association study on galectin-1 was performed to identify genetic instruments for two-sample MR analyses utilising the genetic associations obtained from the Chronic Kidney Disease Genetics (CKDGen) Consortium (41,395 cases and 439,303 controls) and the DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) consortium (74,124 cases and 824,006 controls). One genome-wide significant locus in the galectin-1 gene region was identified (sentinel SNP rs7285699; p = 2.4 × 10-11). The association between galectin-1 and eGFR was also examined in individuals with newly diagnosed diabetes from the All New Diabetics In Scania (ANDIS) cohort. RESULTS Galectin-1 was strongly associated with lower eGFR at baseline (p = 2.3 × 10-89) but not with incident CKD. However, galectin-1 was associated with increased risk of type 2 diabetes (per SD increase, HR 1.12; 95% CI 1.02, 1.24). Two-sample MR analyses could not ascertain a causal effect of galectin-1 on CKD (OR 0.92; 95% CI 0.82, 1.02) or type 2 diabetes (OR 1.05; 95% CI 0.98, 1.14) in a general population. However, in individuals with type 2 diabetes from ANDIS who belonged to the severe insulin-resistant diabetes subgroup and were at high risk of diabetic nephropathy, genetically elevated galectin-1 was significantly associated with higher eGFR (p = 5.7 × 10-3). CONCLUSIONS/INTERPRETATION Galectin-1 is strongly associated with lower kidney function in cross-sectional analyses, and two-sample MR analyses suggest a causal protective effect on kidney function among individuals with type 2 diabetes at high risk of diabetic nephropathy. Future studies are needed to explore the mechanisms by which galectin-1 affects kidney function and whether it could be a useful target among individuals with type 2 diabetes for renal improvement.
Collapse
Affiliation(s)
- Isabel Drake
- Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Emanuel Fryk
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lena Strindberg
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Annika Lundqvist
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anders H Rosengren
- Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Malmö, Sweden
- Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Leif Groop
- Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Emma Ahlqvist
- Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Jan Borén
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Marju Orho-Melander
- Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Per-Anders Jansson
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
9
|
Chou RH, Tsai CT, Lu YW, Guo JY, Lu CT, Tsai YL, Wu CH, Lin SJ, Lien RY, Lu SF, Yang SF, Huang PH. Elevated serum galectin-1 concentrations are associated with increased risks of mortality and acute kidney injury in critically ill patients. PLoS One 2021; 16:e0257558. [PMID: 34559847 PMCID: PMC8462742 DOI: 10.1371/journal.pone.0257558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 09/05/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Galectin-1 (Gal-1), a member of the β-galactoside binding protein family, is associated with inflammation and chronic kidney disease. However, the effect of Gal-1 on mortality and acute kidney injury (AKI) in critically-ill patients remain unclear. METHODS From May 2018 to March 2020, 350 patients admitted to the medical intensive care unit (ICU) of Taipei Veterans General Hospital, a tertiary medical center, were enrolled in this study. Forty-one patients receiving long-term renal replacement therapy were excluded. Serum Gal-1 levels were determined within 24 h of ICU admission. The patients were divided into tertiles according to their serum Gal-1 levels (low, serum Gal-1 < 39 ng/ml; median, 39-70 ng/ml; high, ≥71 ng/ml). All patients were followed for 90 days or until death. RESULTS Mortality in the ICU and at 90 days was greater among patients with elevated serum Gal-1 levels. In analyses adjusted for the body mass index, malignancy, sepsis, Sequential Organ Failure Assessment (SOFA) score, and serum lactate level, the serum Gal-1 level remained an independent predictor of 90-day mortality [median vs. low: adjusted hazard ratio (aHR) 2.11, 95% confidence interval (CI) 1.24-3.60, p = 0.006; high vs. low: aHR 3.21, 95% CI 1.90-5.42, p < 0.001]. Higher serum Gal-1 levels were also associated with a higher incidence of AKI within 48 h after ICU admission, independent of the SOFA score and renal function (median vs. low: aHR 2.77, 95% CI 1.21-6.34, p = 0.016; high vs. low: aHR 2.88, 95% CI 1.20-6.88, p = 0.017). The results were consistent among different subgroups with high and low Gal-1 levels. CONCLUSION Serum Gal-1 elevation at the time of ICU admission were associated with an increased risk of mortality at 90 days, and an increased incidence of AKI within 48 h after ICU admission.
Collapse
Affiliation(s)
- Ruey-Hsing Chou
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Critical Care Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chuan-Tsai Tsai
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ya-Wen Lu
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jiun-Yu Guo
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chi-Ting Lu
- Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Lin Tsai
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Cheng-Hsueh Wu
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Critical Care Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shing-Jong Lin
- Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan
- Division of Cardiology, Heart Center, Cheng-Hsin General Hospital, Taipei, Taiwan
| | - Ru-Yu Lien
- Department of Nursing, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Nursing, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shu-Fen Lu
- Department of Nursing, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Nursing, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shang-Feng Yang
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Nephrology, Department of Medicine, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Po-Hsun Huang
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Critical Care Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
10
|
Cutine AM, Bach CA, Veigas F, Merlo JP, Laporte L, Manselle Cocco MN, Massaro M, Sarbia N, Perrotta RM, Mahmoud YD, Rabinovich GA. Tissue-specific control of galectin-1-driven circuits during inflammatory responses. Glycobiology 2021; 31:891-907. [PMID: 33498084 DOI: 10.1093/glycob/cwab007] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/12/2020] [Accepted: 01/15/2021] [Indexed: 02/07/2023] Open
Abstract
The relevance of glycan-binding protein in immune tolerance and inflammation has been well established, mainly by studies of C-type lectins, siglecs and galectins both in experimental models and patient samples. Galectins, a family of evolutionarily conserved lectins, are characterized by sequence homology in the carbohydrate-recognition domain (CRD), atypical secretion via an ER-Golgi-independent pathway and the ability to recognize β-galactoside-containing saccharides. Galectin-1 (Gal-1), a prototype member of this family displays mainly anti-inflammatory and immunosuppressive activities, although, similar to many cytokines and growth factors, it may also trigger paradoxical pro-inflammatory effects under certain circumstances. These dual effects could be associated to tissue-, time- or context-dependent regulation of galectin expression and function, including particular pathophysiologic settings and/or environmental conditions influencing the structure of this lectin, as well as the availability of glycosylated ligands in immune cells during the course of inflammatory responses. Here, we discuss the tissue-specific role of Gal-1 as a master regulator of inflammatory responses across different pathophysiologic settings, highlighting its potential role as a therapeutic target. Further studies designed at analyzing the intrinsic and extrinsic pathways that control Gal-1 expression and function in different tissue microenvironments may contribute to design tailored therapeutic strategies aimed at positively or negatively modulate this glycan-binding protein in pathologic inflammatory conditions.
Collapse
Affiliation(s)
- Anabela M Cutine
- Instituto de Biología y Medicina Experimental (IBYME), Laboratorios de Inmunopatología, Glicómica Funcional e Inmuno-Oncología Translacional, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428 Buenos Aires, Argentina
| | - Camila A Bach
- Instituto de Biología y Medicina Experimental (IBYME), Laboratorios de Inmunopatología, Glicómica Funcional e Inmuno-Oncología Translacional, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428 Buenos Aires, Argentina
| | - Florencia Veigas
- Instituto de Biología y Medicina Experimental (IBYME), Laboratorios de Inmunopatología, Glicómica Funcional e Inmuno-Oncología Translacional, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428 Buenos Aires, Argentina
| | - Joaquín P Merlo
- Instituto de Biología y Medicina Experimental (IBYME), Laboratorios de Inmunopatología, Glicómica Funcional e Inmuno-Oncología Translacional, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428 Buenos Aires, Argentina
| | - Lorena Laporte
- Instituto de Biología y Medicina Experimental (IBYME), Laboratorios de Inmunopatología, Glicómica Funcional e Inmuno-Oncología Translacional, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428 Buenos Aires, Argentina
| | - Montana N Manselle Cocco
- Instituto de Biología y Medicina Experimental (IBYME), Laboratorios de Inmunopatología, Glicómica Funcional e Inmuno-Oncología Translacional, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428 Buenos Aires, Argentina
| | - Mora Massaro
- Instituto de Biología y Medicina Experimental (IBYME), Laboratorios de Inmunopatología, Glicómica Funcional e Inmuno-Oncología Translacional, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428 Buenos Aires, Argentina
| | - Nicolas Sarbia
- Instituto de Biología y Medicina Experimental (IBYME), Laboratorios de Inmunopatología, Glicómica Funcional e Inmuno-Oncología Translacional, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428 Buenos Aires, Argentina
| | - Ramiro M Perrotta
- Instituto de Biología y Medicina Experimental (IBYME), Laboratorios de Inmunopatología, Glicómica Funcional e Inmuno-Oncología Translacional, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428 Buenos Aires, Argentina
| | - Yamil D Mahmoud
- Instituto de Biología y Medicina Experimental (IBYME), Laboratorios de Inmunopatología, Glicómica Funcional e Inmuno-Oncología Translacional, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428 Buenos Aires, Argentina
| | - Gabriel A Rabinovich
- Instituto de Biología y Medicina Experimental (IBYME), Laboratorios de Inmunopatología, Glicómica Funcional e Inmuno-Oncología Translacional, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428 Buenos Aires, Argentina
| |
Collapse
|
11
|
Jesus-Silva SGD, Chaves AE, Maciel CAA, Scotini EEF, Mesquita PGM, De Moraes Silva MA, Cardoso RS. Evaluation of prediction score of contrast-induced nephropathy in inpatients undergone to digital or CT angiography. REVISTA CIÊNCIAS EM SAÚDE 2020. [DOI: 10.21876/rcshci.v10i3.974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Objectives: To assess the incidence of contrast-induced nephropathy (CIN) and determine the Mehran Score's (MS) ability to predict CIN in patients undergoing digital angiography or computed tomography angiography. Methods: 252 medical records of inpatients who underwent DA or CTA over 28 months in a quaternary hospital were reviewed. CIN was defined as serum creatinine> 0.5 mg / dL or > 25% increase in baseline creatinine, 48 h after administration of iodinated contrast. The ROC curve and the area under the curve (AUC) were used as a score test. Results: The majority (159; 63.1%) were male, and the average age was 60.4 years. Anemia, diabetes mellitus, and age > 75 years were the most prevalent factors. The incidence of CIN was 17.8% (n = 45). There was a decrease in the mean values of creatinine pre and post among patients who did not suffer CIN (1.38 ± 1.22 vs 1.19 ± 0.89; t = 3.433; p = 0.0007), while among patients who suffering CIN, the mean increase was 1.03 mg / dL (1.43 ± 1.48 vs 2.46 ± 2.35 mg / dL; t = 5.44; p = 0.117). The ROC curve analysis identified a low correlation between MS and the occurrence of CIN (AUC = 0.506). Conclusion: The incidence of CIN in hospitalized patients undergoing angiography or computed tomography angiography was high. The EM did not allow the prediction of NIC.
Collapse
|