1
|
Shi F, Jar PYB. Simulation and Analysis of the Loading, Relaxation, and Recovery Behavior of Polyethylene and Its Pipes. Polymers (Basel) 2024; 16:3153. [PMID: 39599244 PMCID: PMC11598753 DOI: 10.3390/polym16223153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/15/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024] Open
Abstract
Spring-dashpot models have long been used to simulate the mechanical behavior of polymers, but their usefulness is limited because multiple model parameter values can reproduce the experimental data. In view of this limitation, this study explores the possibility of improving uniqueness of parameter values so that the parameters can be used to establish the relationship between deformation and microstructural changes. An approach was developed based on stress during the loading, relaxation, and recovery of polyethylene. In total, 1000 sets of parameter values were determined for fitting the data from the relaxation stages with a discrepancy within 0.08 MPa. Despite a small discrepancy, the 1000 sets showed a wide range of variation, but one model parameter, σv,L0, followed two distinct paths rather than random distribution. The five selected sets of parameter values with discrepancies below 0.04 MPa were found to be highly consistent, except for the characteristic relaxation time. Therefore, this study concludes that the uniqueness of model parameter values can be improved to characterize the mechanical behavior of polyethylene. This approach then determined the quasi-static stress of four polyethylene pipes, which showed that these pipes had very close quasi-static stress. This indicates that the uniqueness of the parameter values can be improved for the spring-dashpot model, enabling further study using spring-dashpot models to characterize polyethylene's microstructural changes during deformation.
Collapse
Affiliation(s)
- Furui Shi
- Department of Mechanical Engineering, University of Alberta, 10-203 Donadeo Innovation Centre for Engineering, 9211-116 Street NW, Edmonton, AB T6G 1H9, Canada;
| | | |
Collapse
|
2
|
Behseresht S, Park YH, Love A, Valdez Pastrana OA. Application of Numerical Modeling and Finite Element Analysis in Fused Filament Fabrication: A Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4185. [PMID: 39274575 PMCID: PMC11395829 DOI: 10.3390/ma17174185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/26/2024] [Accepted: 08/16/2024] [Indexed: 09/16/2024]
Abstract
Additive manufacturing (AM) is not necessarily a new process but an advanced method for manufacturing complex three-dimensional (3D) parts. Among the several advantages of AM are the affordable cost, capability of building objects with complex structures for small-batch production, and raw material versatility. There are several sub-categories of AM, among which is fused filament fabrication (FFF), also commonly known as fused deposition modeling (FDM). FFF has been one of the most widely used additive manufacturing techniques due to its cost-efficiency, simplicity, and widespread availability. The FFF process is mainly used to create 3D parts made of thermoplastic polymers, and complex physical phenomena such as melt flow, heat transfer, solidification, crystallization, etc. are involved in the FFF process. Different techniques have been developed and employed to analyze these phenomena, including experimental, analytical, numerical, and finite element analysis (FEA). This study specifically aims to provide a comprehensive review of the developed numerical models and simulation tools used to analyze melt flow behavior, heat transfer, crystallization and solidification kinetics, structural analysis, and the material characterization of polymeric components in the FFF process. The strengths and weaknesses of these numerical models are discussed, simplifications and assumptions are highlighted, and an outlook on future work in the numerical modeling and FE simulation of FFF is provided.
Collapse
Affiliation(s)
- Saeed Behseresht
- Department of Mechanical and Aerospace Engineering, New Mexico State University, Las Cruces, NM 88003, USA
| | - Young Ho Park
- Department of Mechanical and Aerospace Engineering, New Mexico State University, Las Cruces, NM 88003, USA
| | - Allen Love
- Department of Mechanical and Aerospace Engineering, New Mexico State University, Las Cruces, NM 88003, USA
| | | |
Collapse
|
3
|
Chignola R, Mainente F, Zoccatelli G. Rheology of individual chitosan and polyphenol/chitosan microparticles for food engineering. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Matias G, Lermen FH, Bissaro CA, Nicolin DJ, Fischer C, Jorge LM. Fractional calculus to control transport phenomena in food engineering: A systematic review of barriers and data agenda. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gustavo Matias
- Chemical Engineering Graduate Program and Chemical Engineering Department Universidade Estadual de Maringá Maringá Brazil
- Department of Industrial Engineering Universidade Estadual do Paraná Paranaguá Brazil
| | - Fernando Henrique Lermen
- Department of Industrial Engineering Universidade Estadual do Paraná Paranaguá Brazil
- Department of Industrial Engineering Universidad Tecnológica del Perú Lima Peru
| | - Camila Andressa Bissaro
- Chemical Engineering Graduate Program and Chemical Engineering Department Universidade Estadual de Maringá Maringá Brazil
| | - Douglas Júnior Nicolin
- Department of Chemical Engineering Universidade Tecnológica Federal do Paraná Francisco Beltrão Brazil
| | - Clovis Fischer
- Department of Biosystem Engineering Universidade Estadual de São Paulo Pirassununga São Paulo Brazil
| | - Luiz Mário Jorge
- Chemical Engineering Graduate Program and Chemical Engineering Department Universidade Estadual de Maringá Maringá Brazil
| |
Collapse
|
5
|
Jiang M, Dai L. 非晶态固体力学. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2022-0181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
6
|
Serra-Aguila A, Puigoriol-Forcada JM, Reyes G, Menacho J. Estimation of Tensile Modulus of a Thermoplastic Material from Dynamic Mechanical Analysis: Application to Polyamide 66. Polymers (Basel) 2022; 14:1210. [PMID: 35335539 PMCID: PMC8949491 DOI: 10.3390/polym14061210] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023] Open
Abstract
The mechanical properties of thermoplastic materials depend on temperature and strain rate. This study examined the development of a procedure to predict tensile moduli at different strain rates and temperatures, using experimental data from three-point-bending dynamic mechanical analysis (DMA). The method integrated different classical concepts of rheology to establish a closed formulation that will allow researchers save an important amount of time. Furthermore, it implied a significant decrease in the number of tests when compared to the commonly used procedure with a universal testing machine (UTM). The method was validated by means of a prediction of tensile moduli of polyamide PA66 in the linear elastic range, over a temperature range that included the glass-transition temperature. The method was applicable to thermo-rheologically simple materials under the hypotheses of isotropy, homogeneity, small deformations, and linear viscoelasticity. This method could be applicable to other thermoplastic materials, although it must be tested using these other materials to determine to what extent it can be applied reliably.
Collapse
Affiliation(s)
- Albert Serra-Aguila
- Passive Safety Department, Applus + IDIADA HQ, Santa Oliva, L'Albornar, P.O. Box 20, 43710 Tarragona, Spain
| | | | - Guillermo Reyes
- IQS School of Engineering, Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain
| | - Joaquin Menacho
- IQS School of Engineering, Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain
| |
Collapse
|
7
|
Areyano M, Valois E, Sanchez Carvajal I, Rajkovic I, Wonderly WR, Kossa A, McMeeking RM, Waite JH. Viscoelastic analysis of mussel threads reveals energy dissipative mechanisms. J R Soc Interface 2022; 19:20210828. [PMID: 35317655 PMCID: PMC8941394 DOI: 10.1098/rsif.2021.0828] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Mussels use byssal threads to secure themselves to rocks and as shock absorbers during cyclic loading from wave motion. Byssal threads combine high strength and toughness with extensibility of nearly 200%. Researchers attribute tensile properties of byssal threads to their elaborate multi-domain collagenous protein cores. Because the elastic properties have been previously scrutinized, we instead examined byssal thread viscoelastic behaviour, which is essential for withstanding cyclic loading. By targeting protein domains in the collagenous core via chemical treatments, stress relaxation experiments provided insights on domain contributions and were coupled with in situ small-angle X-ray scattering to investigate relaxation-specific molecular reorganizations. Results show that when silk-like domains in the core were disrupted, the stress relaxation of the threads decreased by nearly 50% and lateral molecular spacing also decreased, suggesting that these domains are essential for energy dissipation and assume a compressed molecular rearrangement when disrupted. A generalized Maxwell model was developed to describe the stress relaxation response. The model predicts that maximal damping (energy dissipation) occurs at around 0.1 Hz which closely resembles the wave frequency along the California coast and implies that these materials may be well adapted to the cyclic loading of the ambient conditions.
Collapse
Affiliation(s)
- Marcela Areyano
- Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106, USA
| | - Eric Valois
- Biomolecular Science and Engineering Graduate Program, University of California, Santa Barbara, CA 93106, USA
| | - Ismael Sanchez Carvajal
- Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106, USA
| | - Ivan Rajkovic
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - William R. Wonderly
- Department of Chemistry, University of California, Santa Barbara, CA 93106, USA
| | - Attila Kossa
- Materials Research Laboratory, University of California, Santa Barbara, CA 93106, USA
- Department of Applied Mechanics, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Budapest, Hungary
| | - Robert M. McMeeking
- Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106, USA
- Materials Department, University of California, Santa Barbara, CA 93106, USA
- School of Engineering, University of Aberdeen, King's College, Aberdeen AB24 3UE, UK
- INM-Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrucken, Germany
| | - J. Herbert Waite
- Marine Science Institute, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
8
|
Mierke CT. Viscoelasticity, Like Forces, Plays a Role in Mechanotransduction. Front Cell Dev Biol 2022; 10:789841. [PMID: 35223831 PMCID: PMC8864183 DOI: 10.3389/fcell.2022.789841] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/11/2022] [Indexed: 12/13/2022] Open
Abstract
Viscoelasticity and its alteration in time and space has turned out to act as a key element in fundamental biological processes in living systems, such as morphogenesis and motility. Based on experimental and theoretical findings it can be proposed that viscoelasticity of cells, spheroids and tissues seems to be a collective characteristic that demands macromolecular, intracellular component and intercellular interactions. A major challenge is to couple the alterations in the macroscopic structural or material characteristics of cells, spheroids and tissues, such as cell and tissue phase transitions, to the microscopic interferences of their elements. Therefore, the biophysical technologies need to be improved, advanced and connected to classical biological assays. In this review, the viscoelastic nature of cytoskeletal, extracellular and cellular networks is presented and discussed. Viscoelasticity is conceptualized as a major contributor to cell migration and invasion and it is discussed whether it can serve as a biomarker for the cells' migratory capacity in several biological contexts. It can be hypothesized that the statistical mechanics of intra- and extracellular networks may be applied in the future as a powerful tool to explore quantitatively the biomechanical foundation of viscoelasticity over a broad range of time and length scales. Finally, the importance of the cellular viscoelasticity is illustrated in identifying and characterizing multiple disorders, such as cancer, tissue injuries, acute or chronic inflammations or fibrotic diseases.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, University of Leipzig, Leipzig, Germany
| |
Collapse
|
9
|
Kang YH, Bae EJ, Lee MH, Han M, Kim BJ, Cho SY. Highly Flexible and Durable Thermoelectric Power Generator Using CNT/PDMS Foam by Rapid Solvent Evaporation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106108. [PMID: 34984817 DOI: 10.1002/smll.202106108] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/30/2021] [Indexed: 06/14/2023]
Abstract
Using a simple, rapid solvent evaporation process, the authors produced 3D carbon nanotube (CNT)/polydimethylsiloxane (PDMS) foams with both high thermoelectric (TE) and good mechanical performance and used them to fabricate highly flexible and durable TE generators. The numerous pores and interfaces in the CNT/PDMS foams, which have porosities exceeding 87%, afford very low thermal conductivity of 0.13 W m-1 K-1 . The foam has a zT value of 6.6 × 10-3 , which is twice as high as that of pristine CNT foam. Importantly, the CNT/PDMS foam exhibits good tensile strength of 0.78 MPa, elongation greater than 20%, and excellent resilience even at compressive strain of 80%. This foam is used to fabricate a highly flexible TE foam generator that exhibits a moderate output power of 1.9 µW generated from the large temperature gradient of 18.1 K produced by applied heat. The authors also demonstrate a practical TE foam generator that produces sustainable output power of 3.1 µW under a compressive strain of 80% and 38.2 nW under the continuous vibrational stress produced by a car engine. The TE foam generator also exhibits excellent stability and durability under cyclic bending and harsh vibrational stress.
Collapse
Affiliation(s)
- Young Hun Kang
- Division of Advanced Materials, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Eun Jin Bae
- Division of Advanced Materials, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Min-Hye Lee
- Agency for Defense Development (ADD), Daejeon, 34188, Republic of Korea
| | - Mijeong Han
- Division of Advanced Materials, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Bumjoon J Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Song Yun Cho
- Division of Advanced Materials, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| |
Collapse
|
10
|
Fast-Acquiring High-Quality Prony Series Parameters of Asphalt Concrete through Viscoelastic Continuous Spectral Models. MATERIALS 2022; 15:ma15030716. [PMID: 35160660 PMCID: PMC8836404 DOI: 10.3390/ma15030716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 12/04/2022]
Abstract
Prony series representations have been extensively applied to characterizing the time-domain linear viscoelastic (LVE) material functions for asphalt concrete. However, existing methods that can generate high-quality Prony series parameters (i.e., discrete spectra) mostly involve complicated programming algorithms, which poses a challenge for quick access of Prony series parameters. Also, very limited research has been devoted to establishing methods for simultaneously determining both retardation and relaxation spectra. To resolve these issues, this study presented a practical approach to fast acquiring high-quality Prony series parameters for both relaxation modulus and creep compliance of asphalt concrete by using the complex modulus test data. The approach adopts the analytical representations of the continuous relaxation and retardation spectra from the Havriliak-Negami (HN) and 2S2P1D complex modulus models to directly determine the discrete spectra, and the elastic constants, Ee and Dg, for both LVE modulus and compliance functions are further calculated by fitting the corresponding generalized Maxwell model representations to smoothed data from the storage modulus representations of the HN and 2S2P1D complex modulus models. In this way, all the procedures in the proposed method can be easily implemented in Microsoft Excel. The results showed that the HN and 2S2P1D models yielded slightly different continuous spectral patterns at shorter relaxation times and longer retardation times. However, at the region covered by the test data, the continuous spectra of the two complex modulus models were very close to each other. Thus, the two models can generate comparable Prony series parameters within the time or frequency range covered by the test data. Considering that the quality of the resulting Prony series parameters are closely related to the master curve models used for presmoothing, the HN and 2S2P1D models were compared with the conventional Sigmoidal model. Additionally, the Black diagram was recommended for examining the quality of the complex modulus test data before constructing the master curves.
Collapse
|
11
|
Aryeetey OJ, Frank M, Lorenz A, Estermann SJ, Reisinger AG, Pahr DH. A parameter reduced adaptive quasi-linear viscoelastic model for soft biological tissue in uniaxial tension. J Mech Behav Biomed Mater 2022; 126:104999. [PMID: 34999491 DOI: 10.1016/j.jmbbm.2021.104999] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/04/2021] [Accepted: 11/24/2021] [Indexed: 11/15/2022]
Abstract
Mechanical characterisation of soft viscous materials is essential for many applications including aerospace industries, material models for surgical simulation, and tissue mimicking materials for anatomical models. Constitutive material models are, therefore, necessary to describe soft biological tissues in physiologically relevant strain ranges. Hereby, the adaptive quasi-linear viscoelastic (AQLV) model enables accurate modelling of the strain-dependent non-linear viscoelastic behaviour of soft tissues with a high flexibility. However, the higher flexibility produces a large number of model parameters. In this study, porcine muscle and liver tissue samples were modelled in the framework of the originally published AQLV (3-layers of Maxwell elements) model using four incremental ramp-hold experiments in uniaxial tension. AQLV model parameters were reduced by decreasing model layers (M) as well as the number of experimental ramp-hold steps (N). Leave One out cross validation tests show that the original AQLV model (3M4N) with 19 parameters, accurately describes porcine muscle tissue with an average R2 of 0.90 and porcine liver tissue, R2 of 0.86. Reducing the number of layers (N) in the model produced acceptable model fits for 1-layer (R2 of 0.83) and 2-layer models (R2 of 0.89) for porcine muscle tissue and 1-layer (R2 of 0.84) and 2-layer model (R2 of 0.85) for porcine liver tissue. Additionally, a 2 step (2N) ramp-hold experiment was performed on additional samples of porcine muscle tissue only to further reduce model parameters. Calibrated spring constant values for 2N ramp-hold tests parameters k1 and k2 had a 16.8% and 38.0% deviation from those calibrated for a 4 step (4N) ramp hold experiment. This enables further reduction of material parameters by means of step reduction, effectively reducing the number of parameters required to calibrate the AQLV model from 19 for a 3M4N model to 8 for a 2M2N model, with the added advantage of reducing the time per experiment by 50%. This study proposes a 'reduced-parameter' AQLV model (2M2N) for the modelling of soft biological tissues at finite strain ranges. Sequentially, the comparison of model parameters of soft tissues is easier and the experimental burden is reduced.
Collapse
Affiliation(s)
- Othniel J Aryeetey
- TU Wien, Institute of Lightweight Design and Structural Biomechanics, Gumpendorfer Straße 7, 1060, Vienna, Austria; Karl Landsteiner University of Health Sciences, Department of Anatomy and Biomechanics, Division Biomechanics, Dr. Karl-Dorrek-Straße 30, 3500, Krems, Austria
| | - Martin Frank
- Karl Landsteiner University of Health Sciences, Department of Anatomy and Biomechanics, Division Biomechanics, Dr. Karl-Dorrek-Straße 30, 3500, Krems, Austria
| | - Andrea Lorenz
- Austrian Center for Medical Innovation & Technology (ACMIT), Viktor Kaplan-Straße 2/1, 2700, Wiener Neustadt, Austria
| | - Sarah-Jane Estermann
- TU Wien, Institute of Lightweight Design and Structural Biomechanics, Gumpendorfer Straße 7, 1060, Vienna, Austria; Karl Landsteiner University of Health Sciences, Department of Anatomy and Biomechanics, Division Biomechanics, Dr. Karl-Dorrek-Straße 30, 3500, Krems, Austria; Austrian Center for Medical Innovation & Technology (ACMIT), Viktor Kaplan-Straße 2/1, 2700, Wiener Neustadt, Austria
| | - Andreas G Reisinger
- TU Wien, Institute of Lightweight Design and Structural Biomechanics, Gumpendorfer Straße 7, 1060, Vienna, Austria; Karl Landsteiner University of Health Sciences, Department of Anatomy and Biomechanics, Division Biomechanics, Dr. Karl-Dorrek-Straße 30, 3500, Krems, Austria
| | - Dieter H Pahr
- TU Wien, Institute of Lightweight Design and Structural Biomechanics, Gumpendorfer Straße 7, 1060, Vienna, Austria; Karl Landsteiner University of Health Sciences, Department of Anatomy and Biomechanics, Division Biomechanics, Dr. Karl-Dorrek-Straße 30, 3500, Krems, Austria.
| |
Collapse
|
12
|
Mierke CT. Viscoelasticity Acts as a Marker for Tumor Extracellular Matrix Characteristics. Front Cell Dev Biol 2021; 9:785138. [PMID: 34950661 PMCID: PMC8691700 DOI: 10.3389/fcell.2021.785138] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/23/2021] [Indexed: 12/28/2022] Open
Abstract
Biological materials such as extracellular matrix scaffolds, cancer cells, and tissues are often assumed to respond elastically for simplicity; the viscoelastic response is quite commonly ignored. Extracellular matrix mechanics including the viscoelasticity has turned out to be a key feature of cellular behavior and the entire shape and function of healthy and diseased tissues, such as cancer. The interference of cells with their local microenvironment and the interaction among different cell types relies both on the mechanical phenotype of each involved element. However, there is still not yet clearly understood how viscoelasticity alters the functional phenotype of the tumor extracellular matrix environment. Especially the biophysical technologies are still under ongoing improvement and further development. In addition, the effect of matrix mechanics in the progression of cancer is the subject of discussion. Hence, the topic of this review is especially attractive to collect the existing endeavors to characterize the viscoelastic features of tumor extracellular matrices and to briefly highlight the present frontiers in cancer progression and escape of cancers from therapy. Finally, this review article illustrates the importance of the tumor extracellular matrix mechano-phenotype, including the phenomenon viscoelasticity in identifying, characterizing, and treating specific cancer types.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, University of Leipzig, Leipzig, Germany
| |
Collapse
|