1
|
Ponton F, Tan YX, Forster CC, Austin AJ, English S, Cotter SC, Wilson K. The complex interactions between nutrition, immunity and infection in insects. J Exp Biol 2023; 226:jeb245714. [PMID: 38095228 DOI: 10.1242/jeb.245714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Insects are the most diverse animal group on the planet. Their success is reflected by the diversity of habitats in which they live. However, these habitats have undergone great changes in recent decades; understanding how these changes affect insect health and fitness is an important challenge for insect conservation. In this Review, we focus on the research that links the nutritional environment with infection and immune status in insects. We first discuss the research from the field of nutritional immunology, and we then investigate how factors such as intracellular and extracellular symbionts, sociality and transgenerational effects may interact with the connection between nutrition and immunity. We show that the interactions between nutrition and resistance can be highly specific to insect species and/or infection type - this is almost certainly due to the diversity of insect social interactions and life cycles, and the varied environments in which insects live. Hence, these connections cannot be easily generalised across insects. We finally suggest that other environmental aspects - such as the use of agrochemicals and climatic factors - might also influence the interaction between nutrition and resistance, and highlight how research on these is essential.
Collapse
Affiliation(s)
- Fleur Ponton
- School of Natural Sciences , Macquarie University, North Ryde, NSW 2109, Australia
| | - Yin Xun Tan
- School of Natural Sciences , Macquarie University, North Ryde, NSW 2109, Australia
| | - Casey C Forster
- School of Natural Sciences , Macquarie University, North Ryde, NSW 2109, Australia
| | | | - Sinead English
- School of Biological Sciences , University of Bristol, Bristol, BS8 1QU, UK
| | | | - Kenneth Wilson
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| |
Collapse
|
2
|
Huang X, Kaufman PE, Athrey GN, Fredregill C, Alvarez C, Shetty V, Slotman MA. Potential key genes involved in metabolic resistance to malathion in the southern house mosquito, Culex quinquefasciatus, and functional validation of CYP325BC1 and CYP9M12 as candidate genes using RNA interference. BMC Genomics 2023; 24:160. [PMID: 36991322 PMCID: PMC10061707 DOI: 10.1186/s12864-023-09241-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/10/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND Metabolic detoxification is one of the major mechanisms contributing to the development of resistance in mosquitoes, including the southern house mosquito, Culex quinquefasciatus. The three major detoxification supergene families, cytochrome P450s, glutathione S-transferases and general esterases, have been demonstrated to play an important role in metabolic resistance. In this study, we performed differential gene expression analysis based on high-throughput transcriptome sequencing on samples from four experimental groups to give insight into key genes involved in metabolic resistance to malathion in Cx. quinquefasciatus. We conducted a whole transcriptome analysis of field captured wild Cx. quinquefasciatus from Harris County (WI), Texas and a malathion susceptible laboratory-maintained Sebring colony (CO) to investigate metabolic insecticide resistance. Field captured mosquitoes were also phenotypically classified into the malathion resistant and malathion susceptible groups following a mortality response measure conducted using a Centers for Disease Control and Prevention (CDC) bottle assay. The live (MR) and dead (MS) specimens from the bottle assay, along with an unselected WI sample and a CO sample were processed for total RNA extraction and subjected to whole-transcriptome sequencing. RESULTS We demonstrated that the genes coding for detoxification enzymes, particularly cytochrome P450s, were highly up-regulated in the MR group compared to the MS group with similar up-regulation observed in the WI group compared to the CO group. A total of 1,438 genes were differentially expressed in comparison between MR and MS group, including 614 up-regulated genes and 824 down-regulated genes. Additionally, 1,871 genes were differentially expressed in comparison between WI and CO group, including 1,083 up-regulated genes and 788 down-regulated genes. Further analysis on differentially expressed genes from three major detoxification supergene families in both comparisons resulted in 16 detoxification genes as candidates potentially associated with metabolic resistance to malathion. Knockdown of CYP325BC1 and CYP9M12 using RNA interference on the laboratory-maintained Sebring strain significantly increased the mortality of Cx. quinquefasciatus after exposure to malathion. CONCLUSION We generated substantial transcriptomic evidence on metabolic detoxification of malathion in Cx. quinquefasciatus. We also validated the functional roles of two candidate P450 genes identified through DGE analysis. Our results are the first to demonstrate that knockdown of CYP325BC1 and CYP9M12 both significantly increased malathion susceptibility in Cx. quinquefasciatus, indicating involvement of these two genes in metabolic resistance to malathion.
Collapse
Affiliation(s)
- Xinyue Huang
- Department of Entomology, Texas A&M University Minnie Bell Heep Center, TAMU 2475 370 Olsen Blvd College Station, College Station, TX 77843 USA
| | - Phillip E. Kaufman
- Department of Entomology, Texas A&M University Minnie Bell Heep Center, TAMU 2475 370 Olsen Blvd College Station, College Station, TX 77843 USA
| | - Giridhar N. Athrey
- Department of Poultry Science, Texas A&M University, College Station, TX 77843 USA
| | - Chris Fredregill
- Harris County Public Health, Mosquito & Vector Control Division, Houston, TX 77021 USA
| | - Christina Alvarez
- Harris County Public Health, Mosquito & Vector Control Division, Houston, TX 77021 USA
| | - Vinaya Shetty
- Department of Entomology, Texas A&M University Minnie Bell Heep Center, TAMU 2475 370 Olsen Blvd College Station, College Station, TX 77843 USA
| | - Michel A. Slotman
- Department of Entomology, Texas A&M University Minnie Bell Heep Center, TAMU 2475 370 Olsen Blvd College Station, College Station, TX 77843 USA
| |
Collapse
|
3
|
Medjigbodo AA, Djogbénou LS, Djihinto OY, Akoton RB, Abbey E, Kakossou RM, Sonounameto EG, Salavi EBJ, Djossou L, Badolo A. Putative pleiotropic effects of the knockdown resistance (L1014F) allele on the life-history traits of Anopheles gambiae. Malar J 2021; 20:480. [PMID: 34930272 PMCID: PMC8686585 DOI: 10.1186/s12936-021-04005-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/03/2021] [Indexed: 11/23/2022] Open
Abstract
Background Existing mechanisms of insecticide resistance are known to help the survival of mosquitoes following contact with chemical compounds, even though they could negatively affect the life-history traits of resistant malaria vectors. In West Africa, the knockdown resistance mechanism kdrR (L1014F) is the most common. However, little knowledge is available on its effects on mosquito life-history traits. The fitness effects associated with this knockdown resistance allele in Anopheles gambiae sensu stricto (s.s.) were investigated in an insecticide-free laboratory environment. Methods The life-history traits of Kisumu (susceptible) and KisKdr (kdr resistant) strains of An. gambiae s.s. were compared. Larval survivorship and pupation rate were assessed as well as fecundity and fertility of adult females. Female mosquitoes of both strains were directly blood fed through artificial membrane assays and then the blood-feeding success, blood volume and adult survivorship post-blood meal were assessed. Results The An. gambiae mosquitoes carrying the kdrR allele (KisKdr) laid a reduced number of eggs. The mean number of larvae in the susceptible strain Kisumu was three-fold overall higher than that seen in the KisKdr strain with a significant difference in hatching rates (81.89% in Kisumu vs 72.89% in KisKdr). The KisKdr larvae had a significant higher survivorship than that of Kisumu. The blood-feeding success was significantly higher in the resistant mosquitoes (84%) compared to the susceptible ones (34.75%). However, the mean blood volume was 1.36 µL/mg, 1.45 µL/mg and 1.68 µL/mg in Kisumu, homozygote and heterozygote KisKdr mosquitoes, respectively. After blood-feeding, the heterozygote KisKdr mosquitoes displayed highest survivorship when compared to that of Kisumu. Conclusions The presence of the knockdown resistance allele appears to impact the life-history traits, such as fecundity, fertility, larval survivorship, and blood-feeding behaviour in An. gambiae. These data could help to guide the implementation of more reliable strategies for the control of malaria vectors.
Collapse
Affiliation(s)
- Adandé A Medjigbodo
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, 01BP 526, Cotonou, Benin.,Laboratory of Fundamental and Applied Entomology, University Joseph Ki-Zerbo, BP 7021, Ouagadougou 03, Burkina Faso.,Regional Institute of Public Health/University of Abomey-Calavi, BP 384, Ouidah, Benin
| | - Luc S Djogbénou
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, 01BP 526, Cotonou, Benin. .,Regional Institute of Public Health/University of Abomey-Calavi, BP 384, Ouidah, Benin. .,Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| | - Oswald Y Djihinto
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, 01BP 526, Cotonou, Benin.,Regional Institute of Public Health/University of Abomey-Calavi, BP 384, Ouidah, Benin
| | - Romaric B Akoton
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, 01BP 526, Cotonou, Benin
| | - Emmanuella Abbey
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, 01BP 526, Cotonou, Benin.,Regional Institute of Public Health/University of Abomey-Calavi, BP 384, Ouidah, Benin
| | - Rosaria M Kakossou
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, 01BP 526, Cotonou, Benin.,Regional Institute of Public Health/University of Abomey-Calavi, BP 384, Ouidah, Benin
| | - Eric G Sonounameto
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, 01BP 526, Cotonou, Benin.,Regional Institute of Public Health/University of Abomey-Calavi, BP 384, Ouidah, Benin
| | - Esther B J Salavi
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, 01BP 526, Cotonou, Benin.,Regional Institute of Public Health/University of Abomey-Calavi, BP 384, Ouidah, Benin
| | - Laurette Djossou
- Regional Institute of Public Health/University of Abomey-Calavi, BP 384, Ouidah, Benin
| | - Athanase Badolo
- Laboratory of Fundamental and Applied Entomology, University Joseph Ki-Zerbo, BP 7021, Ouagadougou 03, Burkina Faso
| |
Collapse
|
4
|
Juvenile hormone analog enhances Zika virus infection in Aedes aegypti. Sci Rep 2021; 11:21062. [PMID: 34702871 PMCID: PMC8548497 DOI: 10.1038/s41598-021-00432-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 10/12/2021] [Indexed: 12/17/2022] Open
Abstract
In recent years, there has been a rise in the emergence of arboviruses of public health importance, including Zika, chikungunya, dengue, and yellow fever viruses. Insecticide-based mosquito control has been the primary method for mitigating transmission of arboviruses. The consequences for the application of insecticides include both lethal and sublethal effects, and associated development of insecticide resistance. However, little is known about the influence on arboviral transmission. Mosquitoes with phenotypes that exhibit insecticide resistance or experience sublethal effects may be associated with altered susceptibility to arbovirus infection and transmission. Juvenile hormone analogs (JHAs) are insecticides that prevent pupa to adult molting of mosquitoes by mimicking the action of their natural juvenile hormone. Here, we examined whether the JHA pyriproxyfen interacts with ambient temperature (20 °C and 30 °C) during juvenile stages to influence life-history traits, population growth (λ'), and Zika virus (ZIKV) infection in Aedes aegypti. Development time of females was lengthened at 20 °C and in the presence of JHA. Prevention of pupa to adult molting by JHA was differentially higher at elevated temperature than low temperature. Size of females was larger at 20 °C and smaller at 30 °C. Infection, disseminated infection, and transmission of ZIKV in females were enhanced by JHA at both 20 °C and 30 °C relative to the controls. These results demonstrate that mosquito life-history and vector competence parameters are strongly influenced by interactive effects of JHA and temperature. The JHA-induced enhancement of ZIKV infection in females should be a consideration when implementing JHA in vector control strategies.
Collapse
|
5
|
Partridge FA, Poulton BC, Lake MAI, Lees RA, Mann HJ, Lycett GJ, Sattelle DB. Actions of Camptothecin Derivatives on Larvae and Adults of the Arboviral Vector Aedes aegypti. Molecules 2021; 26:6226. [PMID: 34684807 PMCID: PMC8540655 DOI: 10.3390/molecules26206226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/04/2021] [Accepted: 10/08/2021] [Indexed: 11/25/2022] Open
Abstract
Mosquito-borne viruses including dengue, Zika, and Chikungunya viruses, and parasites such as malaria and Onchocerca volvulus endanger health and economic security around the globe, and emerging mosquito-borne pathogens have pandemic potential. However, the rapid spread of insecticide resistance threatens our ability to control mosquito vectors. Larvae of Aedes aegypti were screened with the Medicines for Malaria Venture Pandemic Response Box, an open-source compound library, using INVAPP, an invertebrate automated phenotyping platform suited to high-throughput chemical screening of larval motility. We identified rubitecan (a synthetic derivative of camptothecin) as a hit compound that reduced A. aegypti larval motility. Both rubitecan and camptothecin displayed concentration dependent reduction in larval motility with estimated EC50 of 25.5 ± 5.0 µM and 22.3 ± 5.4 µM, respectively. We extended our investigation to adult mosquitoes and found that camptothecin increased lethality when delivered in a blood meal to A. aegypti adults at 100 µM and 10 µM, and completely blocked egg laying when fed at 100 µM. Camptothecin and its derivatives are inhibitors of topoisomerase I, have known activity against several agricultural pests, and are also approved for the treatment of several cancers. Crucially, they can inhibit Zika virus replication in human cells, so there is potential for dual targeting of both the vector and an important arbovirus that it carries.
Collapse
Affiliation(s)
- Frederick A. Partridge
- Centre for Respiratory Biology, UCL Respiratory, Division of Medicine, University College London, London WC1E 6BT, UK; (F.A.P.); (M.A.I.L.); (H.-J.M.)
| | - Beth C. Poulton
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK; (B.C.P.); (R.A.L.)
| | - Milly A. I. Lake
- Centre for Respiratory Biology, UCL Respiratory, Division of Medicine, University College London, London WC1E 6BT, UK; (F.A.P.); (M.A.I.L.); (H.-J.M.)
| | - Rebecca A. Lees
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK; (B.C.P.); (R.A.L.)
| | - Harry-Jack Mann
- Centre for Respiratory Biology, UCL Respiratory, Division of Medicine, University College London, London WC1E 6BT, UK; (F.A.P.); (M.A.I.L.); (H.-J.M.)
| | - Gareth J. Lycett
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK; (B.C.P.); (R.A.L.)
| | - David B. Sattelle
- Centre for Respiratory Biology, UCL Respiratory, Division of Medicine, University College London, London WC1E 6BT, UK; (F.A.P.); (M.A.I.L.); (H.-J.M.)
| |
Collapse
|
6
|
Koodalingam A, Dayanidhi MK. Studies on biochemical and synergistic effects of immunosuppressive concentration of imidacloprid with Beauveria bassiana and Metarhizium anisopliae for enhancement of virulence against vector mosquito Culex quinquefasciatus. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 176:104882. [PMID: 34119224 DOI: 10.1016/j.pestbp.2021.104882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/13/2021] [Accepted: 05/19/2021] [Indexed: 06/12/2023]
Abstract
In order to increase the virulence of two commonly used entomopathogens namely Beauveria bassiana and Metarhizium anisopliae for effective mosquito control programs, we developed new combined formulation by the use of immunosuppressive concentration of imidacloprid. Exposure of sublethal concentration (LC10 1.34 ppb) of imidacloprid to second instar larvae for 92 h that differently modulated the larval biochemical markers by decreasing the total protein (20.65% reduction), acetylcholinesterase (35.74% reduction) and increases the β-carboxylesterase (26.59% increase) and acid phosphatase (30.69% increase) levels while no significant difference was noticed in alkaline phosphatase of C. quinquefasciatus. Further we demonstrated that the imidacloprid exposure brings about reduction in phenoloxidase level (39.48% decrease) and nitric oxide production (37.64% decrease) in larval homogenate over control. The reduction in viability of hemocytes (15.37% decrease) and phagocytic activity of hemocytes (32.18% decrease) was noticed in imidacloprid treatment. Moreover in laboratory condition, exposure of 1 × 107 spores/ml of B. bassiana (984) and M. anisopliae (6060) alone for 92 h cumulative toxicity assay exhibited larval mortality of 36.47% and 47.64% respectively against C. quinquefasciatus. However in the synergistic experimental studies with LC10 of imidacloprid and 1 × 107 spores/ml of B. bassiana or M. anisopliae to the larvae for 92 h cumulative assay brought 60% and 50.59% more insecticidal activity than the respective entomopathogens alone. The substantial increase of larvicidal activity noticed in the synergistic test conditions against larvae of C. quinquefasciatus revealed that the inclusion of sublethal concentration was proved to be useful for effective larval control.
Collapse
Affiliation(s)
- Arunagirinathan Koodalingam
- PG & Research Department of Zoology, Sir Theagaraya College, Old Washermenpet, Chennai 600 021, Tamil Nadu, India.
| | | |
Collapse
|
7
|
English S, Barreaux AMG. The evolution of sensitive periods in development: insights from insects. Curr Opin Behav Sci 2020. [DOI: 10.1016/j.cobeha.2020.07.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Hauser G, Thiévent K, Koella JC. Consequences of larval competition and exposure to permethrin for the development of the rodent malaria Plasmodium berghei in the mosquito Anopheles gambiae. Parasit Vectors 2020; 13:107. [PMID: 32106886 PMCID: PMC7045583 DOI: 10.1186/s13071-020-3983-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/18/2020] [Indexed: 01/16/2023] Open
Abstract
Background Mosquitoes and other vectors are often exposed to sublethal doses of insecticides. Larvae can be exposed to the run-off of agricultural use, and adults can be irritated by insecticides used against them and move away before they have picked up a lethal dose. This sublethal exposure may affect the success of control of insect-borne diseases, for it may affect the competence of insects to transmit parasites, in particular if the insects are undernourished. Methods We assessed how exposure of larvae and adults to a sublethal dose of permethrin (a pyrethroid) and how larval competition for food affect several aspects of the vector competence of the mosquito Anopheles gambiae for the malaria parasite Plasmodium berghei. We infected mosquitoes with P. berghei and measured the longevity and the prevalence and intensity of infection to test for an effect of our treatments. Results Our general result was that the exposure to the insecticide helped mosquitoes deal with infection by malaria. Exposure of either larvae or adults decreased the likelihood that mosquitoes were infected by about 20%, but did not effect the parasite load. Exposure also increased the lifespan of infected mosquitoes, but only if they had been reared in competition. Larval competition had no effect on the prevalence of infection, but increased parasite load. These effects may be a consequence of the machinery governing oxidative stress, which underlies the responses of mosquitoes to insecticides, to food stress and to parasites. Conclusions We conclude that insecticide residues are likely to affect the ability of mosquitoes to carry and transmit pathogens such as malaria, irrespective of the stage at which they are exposed to the insecticide. Our results stress the need for further studies to consider sublethal doses in the context of vector ecology and vector-borne disease epidemiology.![]()
Collapse
Affiliation(s)
- Gaël Hauser
- Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland.
| | - Kevin Thiévent
- Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland
| | - Jacob C Koella
- Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland
| |
Collapse
|