1
|
Wagh K, Stavreva DA, Hager GL. Transcription dynamics and genome organization in the mammalian nucleus: Recent advances. Mol Cell 2024:S1097-2765(24)00778-0. [PMID: 39413793 DOI: 10.1016/j.molcel.2024.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/31/2024] [Accepted: 09/19/2024] [Indexed: 10/18/2024]
Abstract
Single-molecule tracking (SMT) has emerged as the dominant technology to investigate the dynamics of chromatin-transcription factor (TF) interactions. How long a TF needs to bind to a regulatory site to elicit a transcriptional response is a fundamentally important question. However, highly divergent estimates of TF binding have been presented in the literature, stemming from differences in photobleaching correction and data analysis. TF movement is often interpreted as specific or non-specific association with chromatin, yet the dynamic nature of the chromatin polymer is often overlooked. In this perspective, we highlight how recent SMT studies have reshaped our understanding of TF dynamics, chromatin mobility, and genome organization in the mammalian nucleus, focusing on the technical details and biological implications of these approaches. In a remarkable convergence of fixed and live-cell imaging, we show how super-resolution and SMT studies of chromatin have dovetailed to provide a convincing nanoscale view of genome organization.
Collapse
Affiliation(s)
- Kaustubh Wagh
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Diana A Stavreva
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gordon L Hager
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
2
|
Engl W, Kunstar-Thomas A, Chen S, Ng WS, Sielaff H, Zhao ZW. Single-molecule imaging of SWI/SNF chromatin remodelers reveals bromodomain-mediated and cancer-mutants-specific landscape of multi-modal DNA-binding dynamics. Nat Commun 2024; 15:7646. [PMID: 39223123 PMCID: PMC11369179 DOI: 10.1038/s41467-024-52040-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
Despite their prevalent cancer implications, the in vivo dynamics of SWI/SNF chromatin remodelers and how misregulation of such dynamics underpins cancer remain poorly understood. Using live-cell single-molecule tracking, we quantify the intranuclear diffusion and chromatin-binding of three key subunits common to all major human SWI/SNF remodeler complexes (BAF57, BAF155 and BRG1), and resolve two temporally distinct stable binding modes for the fully assembled complex. Super-resolved density mapping reveals heterogeneous, nanoscale remodeler binding "hotspots" across the nucleoplasm where multiple binding events (especially longer-lived ones) preferentially cluster. Importantly, we uncover distinct roles of the bromodomain in modulating chromatin binding/targeting in a DNA-accessibility-dependent manner, pointing to a model where successive longer-lived binding within "hotspots" leads to sustained productive remodeling. Finally, systematic comparison of six common BRG1 mutants implicated in various cancers unveils alterations in chromatin-binding dynamics unique to each mutant, shedding insight into a multi-modal landscape regulating the spatio-temporal organizational dynamics of SWI/SNF remodelers.
Collapse
Affiliation(s)
- Wilfried Engl
- Department of Chemistry, Faculty of Science, National University of Singapore, Singapore, 119543, Singapore
- Centre for BioImaging Sciences, Faculty of Science, National University of Singapore, Singapore, 117557, Singapore
| | - Aliz Kunstar-Thomas
- Department of Chemistry, Faculty of Science, National University of Singapore, Singapore, 119543, Singapore
- Centre for BioImaging Sciences, Faculty of Science, National University of Singapore, Singapore, 117557, Singapore
| | - Siyi Chen
- Department of Chemistry, Faculty of Science, National University of Singapore, Singapore, 119543, Singapore
- Centre for BioImaging Sciences, Faculty of Science, National University of Singapore, Singapore, 117557, Singapore
| | - Woei Shyuan Ng
- Department of Chemistry, Faculty of Science, National University of Singapore, Singapore, 119543, Singapore
- Centre for BioImaging Sciences, Faculty of Science, National University of Singapore, Singapore, 117557, Singapore
| | - Hendrik Sielaff
- Department of Chemistry, Faculty of Science, National University of Singapore, Singapore, 119543, Singapore
- Centre for BioImaging Sciences, Faculty of Science, National University of Singapore, Singapore, 117557, Singapore
| | - Ziqing Winston Zhao
- Department of Chemistry, Faculty of Science, National University of Singapore, Singapore, 119543, Singapore.
- Centre for BioImaging Sciences, Faculty of Science, National University of Singapore, Singapore, 117557, Singapore.
- Mechanobiology Institute, National University of Singapore, Singapore, 117411, Singapore.
- Integrative Sciences and Engineering Programme, National University of Singapore, Singapore, 119077, Singapore.
| |
Collapse
|
3
|
Hwang DW, Maekiniemi A, Singer RH, Sato H. Real-time single-molecule imaging of transcriptional regulatory networks in living cells. Nat Rev Genet 2024; 25:272-285. [PMID: 38195868 DOI: 10.1038/s41576-023-00684-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2023] [Indexed: 01/11/2024]
Abstract
Gene regulatory networks drive the specific transcriptional programmes responsible for the diversification of cell types during the development of multicellular organisms. Although our knowledge of the genes involved in these dynamic networks has expanded rapidly, our understanding of how transcription is spatiotemporally regulated at the molecular level over a wide range of timescales in the small volume of the nucleus remains limited. Over the past few decades, advances in the field of single-molecule fluorescence imaging have enabled real-time behaviours of individual transcriptional components to be measured in living cells and organisms. These efforts are now shedding light on the dynamic mechanisms of transcription, revealing not only the temporal rules but also the spatial coordination of underlying molecular interactions during various biological events.
Collapse
Affiliation(s)
- Dong-Woo Hwang
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Anna Maekiniemi
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Robert H Singer
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Hanae Sato
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA.
- Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa, Japan.
| |
Collapse
|
4
|
Heemskerk T, van de Kamp G, Essers J, Kanaar R, Paul MW. Multi-scale cellular imaging of DNA double strand break repair. DNA Repair (Amst) 2023; 131:103570. [PMID: 37734176 DOI: 10.1016/j.dnarep.2023.103570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023]
Abstract
Live-cell and high-resolution fluorescence microscopy are powerful tools to study the organization and dynamics of DNA double-strand break repair foci and specific repair proteins in single cells. This requires specific induction of DNA double-strand breaks and fluorescent markers to follow the DNA lesions in living cells. In this review, where we focused on mammalian cell studies, we discuss different methods to induce DNA double-strand breaks, how to visualize and quantify repair foci in living cells., We describe different (live-cell) imaging modalities that can reveal details of the DNA double-strand break repair process across multiple time and spatial scales. In addition, recent developments are discussed in super-resolution imaging and single-molecule tracking, and how these technologies can be applied to elucidate details on structural compositions or dynamics of DNA double-strand break repair.
Collapse
Affiliation(s)
- Tim Heemskerk
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Gerarda van de Kamp
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Jeroen Essers
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Vascular Surgery, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Radiotherapy, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Roland Kanaar
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Maarten W Paul
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
5
|
Dahal L, Walther N, Tjian R, Darzacq X, Graham TG. Single-molecule tracking (SMT): a window into live-cell transcription biochemistry. Biochem Soc Trans 2023; 51:557-569. [PMID: 36876879 PMCID: PMC10212543 DOI: 10.1042/bst20221242] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 03/07/2023]
Abstract
How molecules interact governs how they move. Single-molecule tracking (SMT) thus provides a unique window into the dynamic interactions of biomolecules within live cells. Using transcription regulation as a case study, we describe how SMT works, what it can tell us about molecular biology, and how it has changed our perspective on the inner workings of the nucleus. We also describe what SMT cannot yet tell us and how new technical advances seek to overcome its limitations. This ongoing progress will be imperative to address outstanding questions about how dynamic molecular machines function in live cells.
Collapse
Affiliation(s)
- Liza Dahal
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, U.S.A
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, U.S.A
- Li Ka Shing Center for Biomedical & Health Sciences, University of California, Berkeley, Berkeley, U.S.A
| | - Nike Walther
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, U.S.A
- Li Ka Shing Center for Biomedical & Health Sciences, University of California, Berkeley, Berkeley, U.S.A
| | - Robert Tjian
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, U.S.A
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, U.S.A
- Li Ka Shing Center for Biomedical & Health Sciences, University of California, Berkeley, Berkeley, U.S.A
| | - Xavier Darzacq
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, U.S.A
- Li Ka Shing Center for Biomedical & Health Sciences, University of California, Berkeley, Berkeley, U.S.A
| | - Thomas G.W. Graham
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, U.S.A
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, U.S.A
- Li Ka Shing Center for Biomedical & Health Sciences, University of California, Berkeley, Berkeley, U.S.A
| |
Collapse
|
6
|
Ball DA, Jalloh B, Karpova TS. Impact of Saccharomyces cerevisiae on the Field of Single-Molecule Biophysics. Int J Mol Sci 2022; 23:15895. [PMID: 36555532 PMCID: PMC9781480 DOI: 10.3390/ijms232415895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/10/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022] Open
Abstract
Cellular functions depend on the dynamic assembly of protein regulator complexes at specific cellular locations. Single Molecule Tracking (SMT) is a method of choice for the biochemical characterization of protein dynamics in vitro and in vivo. SMT follows individual molecules in live cells and provides direct information about their behavior. SMT was successfully applied to mammalian models. However, mammalian cells provide a complex environment where protein mobility depends on numerous factors that are difficult to control experimentally. Therefore, yeast cells, which are unicellular and well-studied with a small and completely sequenced genome, provide an attractive alternative for SMT. The simplicity of organization, ease of genetic manipulation, and tolerance to gene fusions all make yeast a great model for quantifying the kinetics of major enzymes, membrane proteins, and nuclear and cellular bodies. However, very few researchers apply SMT techniques to yeast. Our goal is to promote SMT in yeast to a wider research community. Our review serves a dual purpose. We explain how SMT is conducted in yeast cells, and we discuss the latest insights from yeast SMT while putting them in perspective with SMT of higher eukaryotes.
Collapse
Affiliation(s)
| | | | - Tatiana S. Karpova
- CCR/LRBGE Optical Microscopy Core, National Cancer Institute, National Institutes of Health, Bethesda, MD 20852, USA
| |
Collapse
|
7
|
Bi C, Ou MY, Bouhrara M, Spencer RG. Span of regularization for solution of inverse problems with application to magnetic resonance relaxometry of the brain. Sci Rep 2022; 12:20194. [PMID: 36418516 PMCID: PMC9684479 DOI: 10.1038/s41598-022-22739-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 10/19/2022] [Indexed: 11/25/2022] Open
Abstract
We present a new regularization method for the solution of the Fredholm integral equation (FIE) of the first kind, in which we incorporate solutions corresponding to a range of Tikhonov regularizers into the end result. This method identifies solutions within a much larger function space, spanned by this set of regularized solutions, than is available to conventional regularization methods. An additional key development is the use of dictionary functions derived from noise-corrupted inversion of the discretized FIE. In effect, we combine the stability of solutions with greater degrees of regularization with the resolution of those that are less regularized. The span of regularizations (SpanReg) method may be widely applicable throughout the field of inverse problems.
Collapse
Affiliation(s)
- Chuan Bi
- grid.411024.20000 0001 2175 4264Department of Psychiatry, University of Maryland, Baltimore, Baltimore, MD 21201 USA
| | - M. Yvonne Ou
- grid.33489.350000 0001 0454 4791Department of Mathematical Sciences, University of Delaware, Newark, DE 19716 USA
| | - Mustapha Bouhrara
- grid.94365.3d0000 0001 2297 5165National Institute on Aging, National Institutes of Health, Baltimore, MD 21224 USA
| | - Richard G. Spencer
- grid.94365.3d0000 0001 2297 5165National Institute on Aging, National Institutes of Health, Baltimore, MD 21224 USA
| |
Collapse
|
8
|
Kuhn T, Landge AN, Mörsdorf D, Coßmann J, Gerstenecker J, Čapek D, Müller P, Gebhardt JCM. Single-molecule tracking of Nodal and Lefty in live zebrafish embryos supports hindered diffusion model. Nat Commun 2022; 13:6101. [PMID: 36243734 PMCID: PMC9569377 DOI: 10.1038/s41467-022-33704-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 09/28/2022] [Indexed: 12/24/2022] Open
Abstract
The hindered diffusion model postulates that the movement of a signaling molecule through an embryo is affected by tissue geometry and binding-mediated hindrance, but these effects have not been directly demonstrated in vivo. Here, we visualize extracellular movement and binding of individual molecules of the activator-inhibitor signaling pair Nodal and Lefty in live developing zebrafish embryos using reflected light-sheet microscopy. We observe that diffusion coefficients of molecules are high in extracellular cavities, whereas mobility is reduced and bound fractions are high within cell-cell interfaces. Counterintuitively, molecules nevertheless accumulate in cavities, which we attribute to the geometry of the extracellular space by agent-based simulations. We further find that Nodal has a larger bound fraction than Lefty and shows a binding time of tens of seconds. Together, our measurements and simulations provide direct support for the hindered diffusion model and yield insights into the nanometer-to-micrometer-scale mechanisms that lead to macroscopic signal dispersal.
Collapse
Affiliation(s)
- Timo Kuhn
- grid.6582.90000 0004 1936 9748Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Amit N. Landge
- grid.9811.10000 0001 0658 7699University of Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany
| | - David Mörsdorf
- grid.418026.90000 0004 0492 0357Friedrich Miescher Laboratory of the Max Planck Society, Max-Planck-Ring 9, 72076 Tübingen, Germany ,grid.10420.370000 0001 2286 1424University of Vienna, Department of Neurosciences and Developmental Biology, Djerassiplatz 1, 1030 Vienna, Austria
| | - Jonas Coßmann
- grid.6582.90000 0004 1936 9748Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Johanna Gerstenecker
- grid.6582.90000 0004 1936 9748Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Daniel Čapek
- grid.9811.10000 0001 0658 7699University of Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany
| | - Patrick Müller
- grid.9811.10000 0001 0658 7699University of Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany ,grid.418026.90000 0004 0492 0357Friedrich Miescher Laboratory of the Max Planck Society, Max-Planck-Ring 9, 72076 Tübingen, Germany
| | - J. Christof M. Gebhardt
- grid.6582.90000 0004 1936 9748Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
9
|
Heckert A, Dahal L, Tjian R, Darzacq X. Recovering mixtures of fast-diffusing states from short single-particle trajectories. eLife 2022; 11:e70169. [PMID: 36066004 PMCID: PMC9451534 DOI: 10.7554/elife.70169] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/04/2022] [Indexed: 12/15/2022] Open
Abstract
Single-particle tracking (SPT) directly measures the dynamics of proteins in living cells and is a powerful tool to dissect molecular mechanisms of cellular regulation. Interpretation of SPT with fast-diffusing proteins in mammalian cells, however, is complicated by technical limitations imposed by fast image acquisition. These limitations include short trajectory length due to photobleaching and shallow depth of field, high localization error due to the low photon budget imposed by short integration times, and cell-to-cell variability. To address these issues, we investigated methods inspired by Bayesian nonparametrics to infer distributions of state parameters from SPT data with short trajectories, variable localization precision, and absence of prior knowledge about the number of underlying states. We discuss the advantages and disadvantages of these approaches relative to other frameworks for SPT analysis.
Collapse
Affiliation(s)
- Alec Heckert
- Department of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, University of California, BerkeleyBerkeleyUnited States
| | - Liza Dahal
- Department of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, University of California, BerkeleyBerkeleyUnited States
- CIRM Center of Excellence, University of California, BerkeleyBerkeleyUnited States
| | - Robert Tjian
- CIRM Center of Excellence, University of California, BerkeleyBerkeleyUnited States
- Howard Hughes Medical InstituteBerkeleyUnited States
| | - Xavier Darzacq
- Department of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
10
|
Kenworthy CA, Haque N, Liou SH, Chandris P, Wong V, Dziuba P, Lavis LD, Liu WL, Singer RH, Coleman RA. Bromodomains regulate dynamic targeting of the PBAF chromatin-remodeling complex to chromatin hubs. Biophys J 2022; 121:1738-1752. [PMID: 35364106 PMCID: PMC9117891 DOI: 10.1016/j.bpj.2022.03.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/20/2021] [Accepted: 03/24/2022] [Indexed: 11/12/2022] Open
Abstract
Chromatin remodelers actively target arrays of acetylated nucleosomes at select enhancers and promoters to facilitate or shut down the repeated recruitment of RNA polymerase II during transcriptional bursting. It is poorly understood how chromatin remodelers such as PBAF dynamically target different chromatin states inside a live cell. Our live-cell single-molecule fluorescence microscopy study reveals chromatin hubs throughout the nucleus where PBAF rapidly cycles on and off the genome. Deletion of PBAF's bromodomains impairs targeting and stable engagement of chromatin in hubs. Dual color imaging reveals that PBAF targets both euchromatic and heterochromatic hubs with distinct genome-binding kinetic profiles that mimic chromatin stability. Removal of PBAF's bromodomains stabilizes H3.3 binding within chromatin, indicating that bromodomains may play a direct role in remodeling of the nucleosome. Our data suggests that PBAF's dynamic bromodomain-mediated engagement of a nucleosome may reflect the chromatin-remodeling potential of differentially bound chromatin states.
Collapse
Affiliation(s)
- Charles A Kenworthy
- Gruss-Lipper Biophotonics Center, Department of Cell Biology, Albert Einstein College of Medicine, New York
| | - Nayem Haque
- Gruss-Lipper Biophotonics Center, Department of Cell Biology, Albert Einstein College of Medicine, New York
| | - Shu-Hao Liou
- Gruss-Lipper Biophotonics Center, Department of Cell Biology, Albert Einstein College of Medicine, New York
| | - Panagiotis Chandris
- Section on High Resolution Optical Imaging, National Institute on Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland
| | - Vincent Wong
- Gruss-Lipper Biophotonics Center, Department of Cell Biology, Albert Einstein College of Medicine, New York
| | - Patrycja Dziuba
- Gruss-Lipper Biophotonics Center, Department of Cell Biology, Albert Einstein College of Medicine, New York
| | - Luke D Lavis
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia
| | - Wei-Li Liu
- Gruss-Lipper Biophotonics Center, Department of Cell Biology, Albert Einstein College of Medicine, New York
| | - Robert H Singer
- Gruss-Lipper Biophotonics Center, Department of Cell Biology, Albert Einstein College of Medicine, New York; Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia
| | - Robert A Coleman
- Gruss-Lipper Biophotonics Center, Department of Cell Biology, Albert Einstein College of Medicine, New York.
| |
Collapse
|
11
|
Kuchler O, Gerlach J, Vomhof T, Hettich J, Steinmetz J, Gebhardt JCM, Michaelis J, Knöll B. Single-molecule tracking (SMT) and localization of SRF and MRTF transcription factors during neuronal stimulation and differentiation. Open Biol 2022; 12:210383. [PMID: 35537478 PMCID: PMC9090491 DOI: 10.1098/rsob.210383] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In cells, proteins encoded by the same gene do not all behave uniformly but engage in functional subpopulations induced by spatial or temporal segregation. While conventional microscopy has limitations in revealing such spatial and temporal diversity, single-molecule tracking (SMT) microscopy circumvented this problem and allows for high-resolution imaging and quantification of dynamic single-molecule properties. Particularly in the nucleus, SMT has identified specific DNA residence times of transcription factors (TFs), DNA-bound TF fractions and positions of transcriptional hot-spots upon cell stimulation. By contrast to cell stimulation, SMT has not been employed to follow dynamic TF changes along stages of cell differentiation. Herein, we analysed the serum response factor (SRF), a TF involved in the differentiation of many cell types to study nuclear single-molecule dynamics in neuronal differentiation. Our data in living mouse hippocampal neurons show dynamic changes in SRF DNA residence time and SRF DNA-bound fraction between the stages of adhesion, neurite growth and neurite differentiation in axon and dendrites. Using TALM (tracking and localization microscopy), we identified nuclear positions of SRF clusters and observed changes in their numbers and size during differentiation. Furthermore, we show that the SRF cofactor MRTF-A (myocardin-related TF or MKL1) responds to cell activation by enhancing the long-bound DNA fraction. Finally, a first SMT colocalization study of two proteins was performed in living cells showing enhanced SRF/MRTF-A colocalization upon stimulation. In summary, SMT revealed modulation of dynamic TF properties during cell stimulation and differentiation.
Collapse
Affiliation(s)
- Oliver Kuchler
- Institute of Neurobiochemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany,Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Jule Gerlach
- Institute of Neurobiochemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany,Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Thomas Vomhof
- Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Johannes Hettich
- Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Julia Steinmetz
- Department of Statistics, TU Dortmund University, August-Schmidt Straße 1, 44227 Dortmund, Germany
| | | | - Jens Michaelis
- Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Bernd Knöll
- Institute of Neurobiochemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
12
|
de Jonge WJ, Patel HP, Meeussen JVW, Lenstra TL. Following the tracks: how transcription factor binding dynamics control transcription. Biophys J 2022; 121:1583-1592. [PMID: 35337845 PMCID: PMC9117886 DOI: 10.1016/j.bpj.2022.03.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/28/2022] [Accepted: 03/21/2022] [Indexed: 11/29/2022] Open
Abstract
Transcription, the process of copying genetic information from DNA to messenger RNA, is regulated by sequence-specific DNA binding proteins known as transcription factors (TFs). Recent advances in single-molecule tracking (SMT) technologies have enabled visualization of individual TF molecules as they diffuse and interact with the DNA in the context of living cells. These SMT studies have uncovered multiple populations of DNA binding events characterized by their distinctive DNA residence times. In this perspective, we review recent insights into how these residence times relate to specific and non-specific DNA binding, as well as the contribution of TF domains on the DNA binding dynamics. We discuss different models that aim to link transient DNA binding by TFs to bursts of transcription and present an outlook for how future advances in microscopy development may broaden our understanding of the dynamics of the molecular steps that underlie transcription activation.
Collapse
Affiliation(s)
- Wim J de Jonge
- Division of Gene Regulation, The Netherlands Cancer Institute, Oncode Institute, 1066CX Amsterdam, the Netherlands
| | - Heta P Patel
- Division of Gene Regulation, The Netherlands Cancer Institute, Oncode Institute, 1066CX Amsterdam, the Netherlands
| | - Joseph V W Meeussen
- Division of Gene Regulation, The Netherlands Cancer Institute, Oncode Institute, 1066CX Amsterdam, the Netherlands
| | - Tineke L Lenstra
- Division of Gene Regulation, The Netherlands Cancer Institute, Oncode Institute, 1066CX Amsterdam, the Netherlands.
| |
Collapse
|
13
|
A Protocol for Studying Transcription Factor Dynamics Using Fast Single-Particle Tracking and Spot-On Model-Based Analysis. Methods Mol Biol 2022; 2458:151-174. [PMID: 35103967 DOI: 10.1007/978-1-0716-2140-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Single-particle tracking (SPT) makes it possible to directly observe single protein diffusion dynamics in living cells over time. Thus, SPT has emerged as a powerful method to quantify the dynamics of nuclear proteins such as transcription factors (TFs). Here, we provide a protocol for conducting and analyzing SPT experiments with a focus on fast tracking ("fastSPT") of TFs in mammalian cells. First, we explore how to engineer and prepare cells for SPT experiments. Next, we examine how to optimize SPT experiments by imaging at low densities to minimize tracking errors and by using stroboscopic excitation to minimize motion-blur. Next, we discuss how to convert raw SPT data into single-particle trajectories. Finally, we illustrate how to analyze these trajectories using the kinetic modeling package Spot-On. We discuss how to use Spot-On to fit histograms of displacements and extract useful information such as the fraction of TFs that are bound and freely diffusing, and their associated diffusion coefficients.
Collapse
|
14
|
Abstract
To predict transcription, one needs a mechanistic understanding of how the numerous required transcription factors (TFs) explore the nuclear space to find their target genes, assemble, cooperate, and compete with one another. Advances in fluorescence microscopy have made it possible to visualize real-time TF dynamics in living cells, leading to two intriguing observations: first, most TFs contact chromatin only transiently; and second, TFs can assemble into clusters through their intrinsically disordered regions. These findings suggest that highly dynamic events and spatially structured nuclear microenvironments might play key roles in transcription regulation that are not yet fully understood. The emerging model is that while some promoters directly convert TF-binding events into on/off cycles of transcription, many others apply complex regulatory layers that ultimately lead to diverse phenotypic outputs. Cracking this kinetic code is an ongoing and challenging task that is made possible by combining innovative imaging approaches with biophysical models.
Collapse
Affiliation(s)
- Feiyue Lu
- Institute for Systems Genetics and Cell Biology Department, NYU School of Medicine, New York, New York 10016, USA
| | - Timothée Lionnet
- Institute for Systems Genetics and Cell Biology Department, NYU School of Medicine, New York, New York 10016, USA
| |
Collapse
|
15
|
Pan L, Hoffmeister P, Turkiewicz A, Huynh NND, Große-Berkenbusch A, Knippschild U, Gebhardt JCM, Baumann B, Borggrefe T, Oswald F. Transcription Factor RBPJL Is Able to Repress Notch Target Gene Expression but Is Non-Responsive to Notch Activation. Cancers (Basel) 2021; 13:cancers13195027. [PMID: 34638511 PMCID: PMC8508133 DOI: 10.3390/cancers13195027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 12/01/2022] Open
Abstract
Simple Summary The transcription factor RBPJ is an integral part of the Notch signaling cascade. RBPJ can function as a coactivator when Notch signaling is activated but acts as a repressor in the absence of a Notch stimulus. Here, we characterized the function of RBPJL, a pancreas-specific paralog of RBPJ. Upon depletion of RBPJ using CRISPR/Cas9, we observed specific upregulation of Notch target gene expression. Reconstitution with RBPJL can compensate for the lack of RBPJ function in the repression of Notch target genes but is not able to mediate the Notch-dependent activation of gene expression. On the molecular level, we identified a limited capacity of RBPJL to interact with activated Notch1–4. Abstract The Notch signaling pathway is an evolutionary conserved signal transduction cascade present in almost all tissues and is required for embryonic and postnatal development, as well as for stem cell maintenance, but it is also implicated in tumorigenesis including pancreatic cancer and leukemia. The transcription factor RBPJ forms a coactivator complex in the presence of a Notch signal, whereas it represses Notch target genes in the absence of a Notch stimulus. In the pancreas, a specific paralog of RBPJ, called RBPJL, is expressed and found as part of the heterotrimeric PTF1-complex. However, the function of RBPJL in Notch signaling remains elusive. Using molecular modeling, biochemical and functional assays, as well as single-molecule time-lapse imaging, we show that RBPJL and RBPJ, despite limited sequence homology, possess a high degree of structural similarity. RBPJL is specifically expressed in the exocrine pancreas, whereas it is mostly undetectable in pancreatic tumour cell lines. Importantly, RBPJL is not able to interact with Notch−1 to −4 and it does not support Notch-mediated transactivation. However, RBPJL can bind to canonical RBPJ DNA elements and shows migration dynamics comparable to that of RBPJ in the nuclei of living cells. Importantly, RBPJL is able to interact with SHARP/SPEN, the central corepressor of the Notch pathway. In line with this, RBPJL is able to fully reconstitute transcriptional repression at Notch target genes in cells lacking RBPJ. Together, RBPJL can act as an antagonist of RBPJ, which renders cells unresponsive to the activation of Notch.
Collapse
Affiliation(s)
- Leiling Pan
- Center for Internal Medicine, Department of Internal Medicine I, University Medical Center Ulm, Ulm University, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (L.P.); (P.H.)
| | - Philipp Hoffmeister
- Center for Internal Medicine, Department of Internal Medicine I, University Medical Center Ulm, Ulm University, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (L.P.); (P.H.)
| | - Aleksandra Turkiewicz
- Institute of Biochemistry, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany;
| | - N. N. Duyen Huynh
- Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany; (N.N.D.H.); (A.G.-B.); (J.C.M.G.)
| | - Andreas Große-Berkenbusch
- Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany; (N.N.D.H.); (A.G.-B.); (J.C.M.G.)
| | - Uwe Knippschild
- Department of General and Visceral Surgery, Surgery Center, Ulm University, Albert-Einstein-Allee 23, 89081 Ulm, Germany;
| | - J. Christof M. Gebhardt
- Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany; (N.N.D.H.); (A.G.-B.); (J.C.M.G.)
| | - Bernd Baumann
- Institute of Physiological Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany;
| | - Tilman Borggrefe
- Institute of Biochemistry, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany;
- Correspondence: (T.B.); (F.O.); Tel.: +49-731-500-44544 (F.O.)
| | - Franz Oswald
- Center for Internal Medicine, Department of Internal Medicine I, University Medical Center Ulm, Ulm University, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (L.P.); (P.H.)
- Correspondence: (T.B.); (F.O.); Tel.: +49-731-500-44544 (F.O.)
| |
Collapse
|
16
|
Boka AP, Mukherjee A, Mir M. Single-molecule tracking technologies for quantifying the dynamics of gene regulation in cells, tissue and embryos. Development 2021; 148:272071. [PMID: 34490887 DOI: 10.1242/dev.199744] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
For decades, we have relied on population and time-averaged snapshots of dynamic molecular scale events to understand how genes are regulated during development and beyond. The advent of techniques to observe single-molecule kinetics in increasingly endogenous contexts, progressing from in vitro studies to living embryos, has revealed how much we have missed. Here, we provide an accessible overview of the rapidly expanding family of technologies for single-molecule tracking (SMT), with the goal of enabling the reader to critically analyse single-molecule studies, as well as to inspire the application of SMT to their own work. We start by overviewing the basics of and motivation for SMT experiments, and the trade-offs involved when optimizing parameters. We then cover key technologies, including fluorescent labelling, excitation and detection optics, localization and tracking algorithms, and data analysis. Finally, we provide a summary of selected recent applications of SMT to study the dynamics of gene regulation.
Collapse
Affiliation(s)
- Alan P Boka
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Apratim Mukherjee
- Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Mustafa Mir
- Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.,Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
17
|
Mazzocca M, Colombo E, Callegari A, Mazza D. Transcription factor binding kinetics and transcriptional bursting: What do we really know? Curr Opin Struct Biol 2021; 71:239-248. [PMID: 34481381 DOI: 10.1016/j.sbi.2021.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/02/2021] [Accepted: 08/06/2021] [Indexed: 11/18/2022]
Abstract
In eukaryotes, transcription is a discontinuous process with mRNA being generated in bursts, after the binding of transcription factors (TFs) to regulatory elements on the genome. Live-cell single-molecule microscopy has highlighted that transcriptional bursting can be controlled by tuning TF/DNA binding kinetics. Yet the timescales of these two processes seem disconnected with TF/DNA interactions typically lasting orders of magnitude shorter than transcriptional bursts. To test models that could reconcile these discrepancies, reliable measurements of TF binding kinetics are needed, also accounting for the current limitations in performing these single-molecule measurements at specific regulatory elements. Here, we review the recent studies linking TF binding kinetics to transcriptional bursting and outline some current and future challenges that need to be addressed to provide a microscopic description of transcriptional regulation kinetics.
Collapse
Affiliation(s)
- Matteo Mazzocca
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Emanuele Colombo
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | | | - Davide Mazza
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy.
| |
Collapse
|
18
|
Garcia DA, Fettweis G, Presman DM, Paakinaho V, Jarzynski C, Upadhyaya A, Hager GL. Power-law behavior of transcription factor dynamics at the single-molecule level implies a continuum affinity model. Nucleic Acids Res 2021; 49:6605-6620. [PMID: 33592625 DOI: 10.1093/nar/gkab072] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/13/2021] [Accepted: 02/11/2021] [Indexed: 12/11/2022] Open
Abstract
Single-molecule tracking (SMT) allows the study of transcription factor (TF) dynamics in the nucleus, giving important information regarding the diffusion and binding behavior of these proteins in the nuclear environment. Dwell time distributions obtained by SMT for most TFs appear to follow bi-exponential behavior. This has been ascribed to two discrete populations of TFs-one non-specifically bound to chromatin and another specifically bound to target sites, as implied by decades of biochemical studies. However, emerging studies suggest alternate models for dwell-time distributions, indicating the existence of more than two populations of TFs (multi-exponential distribution), or even the absence of discrete states altogether (power-law distribution). Here, we present an analytical pipeline to evaluate which model best explains SMT data. We find that a broad spectrum of TFs (including glucocorticoid receptor, oestrogen receptor, FOXA1, CTCF) follow a power-law distribution of dwell-times, blurring the temporal line between non-specific and specific binding, suggesting that productive binding may involve longer binding events than previously believed. From these observations, we propose a continuum of affinities model to explain TF dynamics, that is consistent with complex interactions of TFs with multiple nuclear domains as well as binding and searching on the chromatin template.
Collapse
Affiliation(s)
- David A Garcia
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20893, USA.,Department of Physics, University of Maryland, College Park, MD 20742, USA
| | - Gregory Fettweis
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20893, USA
| | - Diego M Presman
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20893, USA.,Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, C1428EGA, Buenos Aires, Argentina
| | - Ville Paakinaho
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20893, USA.,Institute of Biomedicine, University of Eastern Finland, Kuopio, PO Box 1627, FI-70211 Kuopio, Finland
| | - Christopher Jarzynski
- Department of Physics, University of Maryland, College Park, MD 20742, USA.,Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA.,Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA
| | - Arpita Upadhyaya
- Department of Physics, University of Maryland, College Park, MD 20742, USA.,Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA
| | - Gordon L Hager
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20893, USA
| |
Collapse
|
19
|
Patange S, Ball DA, Karpova TS, Larson DR. Towards a 'Spot On' Understanding of Transcription in the Nucleus. J Mol Biol 2021; 433:167016. [PMID: 33951451 PMCID: PMC8184600 DOI: 10.1016/j.jmb.2021.167016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/16/2021] [Accepted: 04/22/2021] [Indexed: 11/29/2022]
Abstract
Regulation of transcription by RNA Polymerase II (RNAPII) is a rapidly evolving area of research. Technological developments in microscopy have revealed insight into the dynamics, structure, and localization of transcription components within single cells. A frequent observation in many studies is the appearance of 'spots' in cell nuclei associated with the transcription process. In this review we highlight studies that characterize the temporal and spatial characteristics of these spots, examine possible pitfalls in interpreting these kind of imaging data, and outline directions where single-cell imaging may advance in ways to further our understanding of transcription regulation.
Collapse
Affiliation(s)
- Simona Patange
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - David A Ball
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Tatiana S Karpova
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Daniel R Larson
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States.
| |
Collapse
|
20
|
Mazzocca M, Fillot T, Loffreda A, Gnani D, Mazza D. The needle and the haystack: single molecule tracking to probe the transcription factor search in eukaryotes. Biochem Soc Trans 2021; 49:1121-1132. [PMID: 34003257 PMCID: PMC8286828 DOI: 10.1042/bst20200709] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 12/13/2022]
Abstract
Transcription factors (TFs) regulate transcription of their target genes by identifying and binding to regulatory regions of the genome among billions of potential non-specific decoy sites, a task that is often presented as a 'needle in the haystack' challenge. The TF search process is now well understood in bacteria, but its characterization in eukaryotes needs to account for the complex organization of the nuclear environment. Here we review how live-cell single molecule tracking is starting to shed light on the TF search mechanism in the eukaryotic cell and we outline the future challenges to tackle in order to understand how nuclear organization modulates the TF search process in physiological and pathological conditions.
Collapse
Affiliation(s)
- Matteo Mazzocca
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Tom Fillot
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Alessia Loffreda
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Daniela Gnani
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Davide Mazza
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| |
Collapse
|
21
|
Popp AP, Hettich J, Gebhardt J. Altering transcription factor binding reveals comprehensive transcriptional kinetics of a basic gene. Nucleic Acids Res 2021; 49:6249-6266. [PMID: 34060631 PMCID: PMC8216454 DOI: 10.1093/nar/gkab443] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 05/03/2021] [Accepted: 05/06/2021] [Indexed: 12/17/2022] Open
Abstract
Transcription is a vital process activated by transcription factor (TF) binding. The active gene releases a burst of transcripts before turning inactive again. While the basic course of transcription is well understood, it is unclear how binding of a TF affects the frequency, duration and size of a transcriptional burst. We systematically varied the residence time and concentration of a synthetic TF and characterized the transcription of a synthetic reporter gene by combining single molecule imaging, single molecule RNA-FISH, live transcript visualisation and analysis with a novel algorithm, Burst Inference from mRNA Distributions (BIRD). For this well-defined system, we found that TF binding solely affected burst frequency and variations in TF residence time had a stronger influence than variations in concentration. This enabled us to device a model of gene transcription, in which TF binding triggers multiple successive steps before the gene transits to the active state and actual mRNA synthesis is decoupled from TF presence. We quantified all transition times of the TF and the gene, including the TF search time and the delay between TF binding and the onset of transcription. Our quantitative measurements and analysis revealed detailed kinetic insight, which may serve as basis for a bottom-up understanding of gene regulation.
Collapse
Affiliation(s)
- Achim P Popp
- Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Johannes Hettich
- Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - J Christof M Gebhardt
- Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
22
|
Kuhn T, Hettich J, Davtyan R, Gebhardt JCM. Single molecule tracking and analysis framework including theory-predicted parameter settings. Sci Rep 2021; 11:9465. [PMID: 33947895 PMCID: PMC8096815 DOI: 10.1038/s41598-021-88802-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 04/16/2021] [Indexed: 02/02/2023] Open
Abstract
Imaging, tracking and analyzing individual biomolecules in living systems is a powerful technology to obtain quantitative kinetic and spatial information such as reaction rates, diffusion coefficients and localization maps. Common tracking tools often operate on single movies and require additional manual steps to analyze whole data sets or to compare different experimental conditions. We report a fast and comprehensive single molecule tracking and analysis framework (TrackIt) to simultaneously process several multi-movie data sets. A user-friendly GUI offers convenient tracking visualization, multiple state-of-the-art analysis procedures, display of results, and data im- and export at different levels to utilize external software tools. We applied our framework to quantify dissociation rates of a transcription factor in the nucleus and found that tracking errors, similar to fluorophore photobleaching, have to be considered for reliable analysis. Accordingly, we developed an algorithm, which accounts for both tracking losses and suggests optimized tracking parameters when evaluating reaction rates. Our versatile and extensible framework facilitates quantitative analysis of single molecule experiments at different experimental conditions.
Collapse
Affiliation(s)
- Timo Kuhn
- grid.6582.90000 0004 1936 9748Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Johannes Hettich
- grid.6582.90000 0004 1936 9748Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Rubina Davtyan
- grid.6582.90000 0004 1936 9748Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany ,grid.4514.40000 0001 0930 2361Present Address: NanoLund and Solid State Physics, Lund University, Box 118, 22100 Lund, Sweden
| | - J. Christof M. Gebhardt
- grid.6582.90000 0004 1936 9748Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
23
|
Garcia DA, Johnson TA, Presman DM, Fettweis G, Wagh K, Rinaldi L, Stavreva DA, Paakinaho V, Jensen RAM, Mandrup S, Upadhyaya A, Hager GL. An intrinsically disordered region-mediated confinement state contributes to the dynamics and function of transcription factors. Mol Cell 2021; 81:1484-1498.e6. [PMID: 33561389 DOI: 10.1016/j.molcel.2021.01.013] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/08/2020] [Accepted: 01/08/2021] [Indexed: 02/06/2023]
Abstract
Transcription factors (TFs) regulate gene expression by binding to specific consensus motifs within the local chromatin context. The mechanisms by which TFs navigate the nuclear environment as they search for binding sites remain unclear. Here, we used single-molecule tracking and machine-learning-based classification to directly measure the nuclear mobility of the glucocorticoid receptor (GR) in live cells. We revealed two distinct and dynamic low-mobility populations. One accounts for specific binding to chromatin, while the other represents a confinement state that requires an intrinsically disordered region (IDR), implicated in liquid-liquid condensate subdomains. Further analysis showed that the dwell times of both subpopulations follow a power-law distribution, consistent with a broad distribution of affinities on the GR cistrome and interactome. Together, our data link IDRs with a confinement state that is functionally distinct from specific chromatin binding and modulates the transcriptional output by increasing the local concentration of TFs at specific sites.
Collapse
Affiliation(s)
- David A Garcia
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20893, USA; Department of Physics, University of Maryland, College Park, MD 20742, USA
| | - Thomas A Johnson
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20893, USA
| | - Diego M Presman
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, C1428EGA Buenos Aires, Argentina
| | - Gregory Fettweis
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20893, USA
| | - Kaustubh Wagh
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20893, USA; Department of Physics, University of Maryland, College Park, MD 20742, USA
| | - Lorenzo Rinaldi
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20893, USA
| | - Diana A Stavreva
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20893, USA
| | - Ville Paakinaho
- Institute of Biomedicine, University of Eastern Finland, Kuopio, P.O. Box 1627, 70211 Kuopio, Finland
| | - Rikke A M Jensen
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20893, USA; Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Susanne Mandrup
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA
| | - Arpita Upadhyaya
- Department of Physics, University of Maryland, College Park, MD 20742, USA; Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA.
| | - Gordon L Hager
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20893, USA.
| |
Collapse
|