1
|
Kim JA, Park YS, Kim JH, Choi CY. Hyposalinity elicits physiological responses and alters intestinal microbiota in Korean rockfish Sebastes schlegelii. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:2315-2326. [PMID: 39102012 DOI: 10.1007/s10695-024-01387-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/22/2024] [Indexed: 08/06/2024]
Abstract
Global warming significantly impacts aquatic ecosystems, with changes in the salt environment negatively affecting the physiological responses of fish. We investigated the impact of hyposalinity on the physiological responses and intestinal microbiota of Sebastes schlegelii under the context of increased freshwater influx due to climate change. We focused on the osmoregulatory capacity, oxidative stress responses, and alterations in the intestinal microbiome of S. schlegelii under low-salinity conditions. Our findings revealed compromised osmoregulatory capacity in S. schlegelii under low-salinity conditions, accompanied by the activation of oxidative stress responses, indicating physiological adaptations to cope with environmental stress. Specifically, changes in Na+/K+-ATPase (NKA) activity in gill tissues were associated with decreased osmoregulatory capacity. Furthermore, the analysis of the intestinal microbiome led to significant changes in microbial diversity. Exposure to low-salinity environments led to dysbiosis, with notable decreases in the relative abundance of Gammaproteobacteria at the class level and specific genera such as Enterovibrio, and Photobacterium. Conversely, Bacilli classes, along with genera like Mycoplasma, exhibited increased proportions in fish exposed to low-salinity conditions. These findings underscore the potential impact of environmental salinity changes on the adaptive capacity of fish species, particularly in the context of aquaculture. Moreover, they highlight the importance of considering both physiological and microbial responses in understanding the resilience of aquatic organisms to environmental stress. Additionally, they highlight the importance of intestinal microbiota analyses in understanding the immune system and disease management in fish.
Collapse
Affiliation(s)
- Jin A Kim
- Department of Convergence Study On the Ocean Science and Technology, Korea Maritime and Ocean University, Busan, 49112, Korea
| | - Young-Su Park
- Department of Nursing, Catholic University of Pusan, Busan, 46252, Korea
| | - Jun-Hwan Kim
- Department of Aquatic Life Medicine, Jeju National University, Jeju, 63243, Korea.
| | - Cheol Young Choi
- Department of Convergence Study On the Ocean Science and Technology, Korea Maritime and Ocean University, Busan, 49112, Korea.
- Division of Marine BioScience, Korea Maritime and Ocean University, Busan, 49112, Korea.
| |
Collapse
|
2
|
Akbarzadeh A, Ming TJ, Schulze AD, Kaukinen KH, Li S, Günther OP, Houde ALS, Miller KM. Developing molecular classifiers to detect environmental stressors, smolt stages and morbidity in coho salmon, Oncorhynchus kisutch. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175626. [PMID: 39168345 DOI: 10.1016/j.scitotenv.2024.175626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/16/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024]
Abstract
Aquatic species are increasingly confronted with environmental stressors because of climate change. Although molecular technologies have advanced our understanding of how organisms respond to stressors in laboratory settings, the ability to detect physiological responses to specific stressors under complex field conditions remains underdeveloped. This research applied multi-stressor challenge trials on coho salmon, employing the "Salmon Fit-Chips" genomic tool and a random forest-based classification model to develop classifiers predictive for chronic thermal and hypoxic stress, as well as salinity acclimation, smolt stage and morbidity status. The study also examined how smolts and de-smolts (smolts not having entered SW during the smolt window) responded transcriptionally to exposure to saltwater. Using RF classifiers optimized with 4 to 12 biomarkers, we identified transcriptional signatures that accurately predicted the presence of each stressor and physiological state, achieving prediction accuracy rates between 86.8 % and 100 %, regardless of other background stressors present. Stressor recovery time was established by placing fish back into non-stressor conditions after stress exposure, providing important context to stressor detections in field applications. Recovery from thermal and hypoxic stress requires about 3 and 2 days, respectively, with >3 days needed for re-acclimation to freshwater for seawater acclimated fish. The study also found non-additive (synergistic) effects of multiple stressors on mortality risk. Importantly, osmotic stress associated with de-smolts was the most important predictor of mortality. In saltwater, de-smolts exposed to salinity, high temperature, and hypoxia experienced a 9-fold increase in mortality compared to those only exposed to saltwater, suggesting a synergistic response to multiple stressors. These findings suggest that delays in hatchery releases to support release of larger fish need to be carefully scrutinized to ensure fish are not being released as de-smolts, which are highly susceptible to additional climate-induced stressors like rising temperatures and reduced dissolved oxygen levels in the marine environment.
Collapse
Affiliation(s)
- Arash Akbarzadeh
- Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Rd, Nanaimo, BC V9T 6N7, Canada; Department of Fisheries, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran.
| | - Tobi J Ming
- Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Rd, Nanaimo, BC V9T 6N7, Canada
| | - Angela D Schulze
- Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Rd, Nanaimo, BC V9T 6N7, Canada
| | - Karia H Kaukinen
- Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Rd, Nanaimo, BC V9T 6N7, Canada
| | - Shaorong Li
- Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Rd, Nanaimo, BC V9T 6N7, Canada
| | - Oliver P Günther
- Günther Analytics, 402-5775 Hampton Place, Vancouver, BC V6T 2G6, Canada
| | - Aimee Lee S Houde
- Environmental Dynamics Inc. (EDI), 208A - 2520 Bowen Road, Nanaimo, BC V9T 3L3, Canada
| | - Kristina M Miller
- Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Rd, Nanaimo, BC V9T 6N7, Canada
| |
Collapse
|
3
|
Escobar-Sierra C, Cañedo-Argüelles M, Vinyoles D, Lampert KP. Unraveling the molecular mechanisms of fish physiological response to freshwater salinization: A comparative multi-tissue transcriptomic study in a river polluted by potash mining. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124400. [PMID: 38906407 DOI: 10.1016/j.envpol.2024.124400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/23/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
Freshwater salinization is an escalating global environmental issue that threatens freshwater biodiversity, including fish populations. This study aims to uncover the molecular basis of salinity physiological responses in a non-native minnow species (Phoxinus septimaniae x P. dragarum) exposed to saline effluents from potash mines in the Llobregat River, Barcelona, Spain. Employing high-throughput mRNA sequencing and differential gene expression analyses, brain, gills, and liver tissues collected from fish at two stations (upstream and downstream of saline effluent discharge) were examined. Salinization markedly influenced global gene expression profiles, with the brain exhibiting the most differentially expressed genes, emphasizing its unique sensitivity to salinity fluctuations. Pathway analyses revealed the expected enrichment of ion transport and osmoregulation pathways across all tissues. Furthermore, tissue-specific pathways associated with stress, reproduction, growth, immune responses, methylation, and neurological development were identified in the context of salinization. Rigorous validation of RNA-seq data through quantitative PCR (qPCR) underscored the robustness and consistency of our findings across platforms. This investigation unveils intricate molecular mechanisms steering salinity physiological response in non-native minnows confronting diverse environmental stressors. This comprehensive analysis sheds light on the underlying genetic and physiological mechanisms governing fish physiological response in salinity-stressed environments, offering essential knowledge for the conservation and management of freshwater ecosystems facing salinization.
Collapse
Affiliation(s)
- Camilo Escobar-Sierra
- Institute of Zoology, Universität zu Köln Mathematisch-Naturwissenschaftliche Fakultät, Zülpicher Str. 47b, Köln, NRW, 50674, Germany.
| | - Miguel Cañedo-Argüelles
- FEHM-Lab, Institute of Environmental Assessment and Water Research (IDAEA), CSIC, Barcelona, Spain
| | - Dolors Vinyoles
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Avda. Diagonal 643, Barcelona, 08028, Catalonia, Spain
| | - Kathrin P Lampert
- Institute of Zoology, Universität zu Köln Mathematisch-Naturwissenschaftliche Fakultät, Zülpicher Str. 47b, Köln, NRW, 50674, Germany
| |
Collapse
|
4
|
Wang Y, Zhang X, Wang J, Wang C, Xiong F, Qian Y, Meng M, Zhou M, Chen W, Ding Z, Yu D, Liu Y, Chang Y, He S, Yang L. Genomic insights into the seawater adaptation in Cyprinidae. BMC Biol 2024; 22:87. [PMID: 38637780 PMCID: PMC11027309 DOI: 10.1186/s12915-024-01885-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/11/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND Cyprinidae, the largest fish family, encompasses approximately 367 genera and 3006 species. While they exhibit remarkable adaptability to diverse aquatic environments, it is exceptionally rare to find them in seawater, with the Far Eastern daces being of few exceptions. Therefore, the Far Eastern daces serve as a valuable model for studying the genetic mechanisms underlying seawater adaptation in Cyprinidae. RESULTS Here, we sequenced the chromosome-level genomes of two Far Eastern daces (Pseudaspius brandtii and P. hakonensis), the two known cyprinid fishes found in seawater, and performed comparative genomic analyses to investigate their genetic mechanism of seawater adaptation. Demographic history reconstruction of the two species reveals that their population dynamics are correlated with the glacial-interglacial cycles and sea level changes. Genomic analyses identified Pseudaspius-specific genetic innovations related to seawater adaptation, including positively selected genes, rapidly evolving genes, and conserved non-coding elements (CNEs). Functional assays of Pseudaspius-specific variants of the prolactin (prl) gene showed enhanced cell adaptation to greater osmolarity. Functional assays of Pseudaspius specific CNEs near atg7 and usp45 genes suggest that they exhibit higher promoter activity and significantly induced at high osmolarity. CONCLUSIONS Our results reveal the genome-wide evidence for the evolutionary adaptation of cyprinid fishes to seawater, offering valuable insights into the molecular mechanisms supporting the survival of migratory fish in marine environments. These findings are significant as they contribute to our understanding of how cyprinid fishes navigate and thrive in diverse aquatic habitats, providing useful implications for the conservation and management of marine ecosystems.
Collapse
Affiliation(s)
- Ying Wang
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Wuhan, 430056, China.
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, 810016, China.
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol, BS81TQ, UK.
| | - Xuejing Zhang
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Wuhan, 430056, China
| | - Jing Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Cheng Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fei Xiong
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Wuhan, 430056, China
| | - Yuting Qian
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Minghui Meng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Min Zhou
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Wuhan, 430056, China
| | - Wenjun Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zufa Ding
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dan Yu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yumei Chang
- National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Heilongjiang Province's Key Laboratory of Fish Stress Resistance Breeding and Germplasm Characteristics On Special Habitats, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, Heilongjiang, China
| | - Shunping He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, 810016, China.
| | - Liandong Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, 810016, China.
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol, BS81TQ, UK.
| |
Collapse
|
5
|
Mohindra V, Chowdhury LM, Chauhan N, Paul A, Singh RK, Kushwaha B, Maurya RK, Lal KK, Jena JK. Transcriptome Analysis Revealed Osmoregulation Related Regulatory Networks and Hub Genes in the Gills of Hilsa shad, Tenualosa ilisha, during the Migratory Osmotic Stress. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:161-173. [PMID: 36631626 DOI: 10.1007/s10126-022-10190-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Tenualosa ilisha (Hilsa shad), an anadromous fish, usually inhabits coastal and estuarine waters, and migrates to freshwater for spawning. In this study, large-scale gill transcriptome analyses from three salinity regions, i.e., fresh, brackish and marine water, revealed 3277 differentially expressed genes (DEGs), out of which 232 were found to be common between marine vs freshwater and brackish vs freshwater. These genes were mapped into 54 KEGG Pathways, and the most significant of these were focal adhesion, adherens junction, tight junction, and PI3K-Akt signaling pathways. A total of 24 osmoregulatory genes were found to be differentially expressed in different habitats. The gene members of slc16 and slc2 families showed a dissimilar pattern of expressions, while two claudin genes (cldn11 & cldn10), transmembrane tm56b, and voltage-gated potassium channel gene kcna10 were downregulated in freshwater samples, as compared to that of brackish and marine environment. Protein-protein interaction (PPI) network analysis of 232 DEGs showed 101 genes to be involved in PPI, while fn1 gene was found to be interacting with the highest number of genes (36). Twenty-five hub genes belonged to 12 functional groups, with muscle structure development with seven genes, forming the major group. These results provided valuable information about the genes, potentially involved in the molecular mechanisms regulating water homeostasis in gills, during migration for spawning and low-salinity adaptation in Hilsa shad. These genes may form the basis for the bio-marker development for adaptation to the stress levied by major environmental changes, due to hatchery/culture conditions.
Collapse
Affiliation(s)
- Vindhya Mohindra
- ICAR-National Bureau of Fish Genetic Resources (NBFGR), Canal Ring Road, Dilkusha, Lucknow, 226002, India.
| | - Labrechai Mog Chowdhury
- ICAR-National Bureau of Fish Genetic Resources (NBFGR), Canal Ring Road, Dilkusha, Lucknow, 226002, India
| | - Nishita Chauhan
- ICAR-National Bureau of Fish Genetic Resources (NBFGR), Canal Ring Road, Dilkusha, Lucknow, 226002, India
| | - Alisha Paul
- ICAR-National Bureau of Fish Genetic Resources (NBFGR), Canal Ring Road, Dilkusha, Lucknow, 226002, India
| | - Rajeev Kumar Singh
- ICAR-National Bureau of Fish Genetic Resources (NBFGR), Canal Ring Road, Dilkusha, Lucknow, 226002, India
| | - Basdeo Kushwaha
- ICAR-National Bureau of Fish Genetic Resources (NBFGR), Canal Ring Road, Dilkusha, Lucknow, 226002, India
| | - Rajesh Kumar Maurya
- ICAR-National Bureau of Fish Genetic Resources (NBFGR), Canal Ring Road, Dilkusha, Lucknow, 226002, India
| | - Kuldeep K Lal
- ICAR-National Bureau of Fish Genetic Resources (NBFGR), Canal Ring Road, Dilkusha, Lucknow, 226002, India
| | - J K Jena
- Indian Council of Agricultural Research (ICAR), Krishi Anusandhan Bhawan-II, New Delhi, 110 012, India
| |
Collapse
|
6
|
The Effect of Salinity Stress on Enzyme Activities, Histology, and Transcriptome of Silver Carp ( Hypophthalmichthys molitrix). BIOLOGY 2022; 11:biology11111580. [PMID: 36358281 PMCID: PMC9687411 DOI: 10.3390/biology11111580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 01/25/2023]
Abstract
A 56-day study was performed to examine the effect of freshwater (FW) and brackish water (BW 6‱ salinity) on the antioxidant ability, Na+/K+-ATPase (NKA) activities, histology, and transcriptome of the gill and kidney tissue in juvenile silver carp (Hypophthalmichthys molitrix). The results show that when juvenile silver carp were exposed to 6‱ salinity, the activities of superoxide dismutase (SOD) and catalase (CAT) were shown to be substantially increased (p < 0.05), while glutathione peroxidase (GSH-PX) activities in gill were not significantly affected (p < 0.05). In kidney tissue, SOD, CAT, and GSH-PX, enzyme activities peaked at 24, 8, and 4 h, respectively, but were not significantly different compared with the control group (p < 0.05). In addition, significant effects of salinity were observed for the NKA level in both the gills and kidney tissues (p < 0.05). The gill filaments of juvenile silver carp under the BW group all underwent adverse changes within 72 h, such as cracks and ruptures in the main part of the gill filaments, bending of the gill lamellae and enlargement of the gaps, and an increase in the number of mucus and chloride-secreting cells. Transcriptome sequencing showed 171 and 261 genes in the gill and kidney tissues of juvenile silver carp compared to the BW group, respectively. Based on their gene ontology annotations, transcripts were sorted into four functional gene groups, each of which may play a role in salt tolerance. Systems involved in these processes include metabolism, signal transduction, immunoinflammatory response, and ion transport. The above findings indicate that the regulation processes in juvenile silver carp under brackish water conditions are complex and multifaceted. These processes and mechanisms shed light on the regulatory mechanism of silver carp osmolarity and provide a theoretical foundation for future research into silver carp growth in brackish water aquaculture area.
Collapse
|
7
|
Li P, Liu W, Lu W, Wang J. Biochemical indices, gene expression, and SNPs associated with salinity adaptation in juvenile chum salmon ( Oncorhynchus keta) as determined by comparative transcriptome analysis. PeerJ 2022; 10:e13585. [PMID: 36117540 PMCID: PMC9477081 DOI: 10.7717/peerj.13585] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/23/2022] [Indexed: 01/17/2023] Open
Abstract
Chum salmon (Oncorhynchus keta) migrate from freshwater to saltwater, and incur developmental, physiological and molecular adaptations as the salinity changes. The molecular regulation for salinity adaptation in chum salmon is currently not well defined. In this study, 1-g salmon were cultured under 0 (control group, D0), 8‰ (D8), 16‰ (D16), and 24‰ (D24) salinity conditions for 42 days. Na+/K+-ATPase and Ca2+/Mg2+-ATPase activities in the gill first increased and then decreased in response to higher salinity environments where D8 exhibited the highest Na+/K+ATPase and Ca2+/Mg2+-ATPase activity and D24 exhibited the lowest. Alkaline phosphatase (AKP) activity was elevated in all salinity treatment groups relative to controls, while no significant difference in acid phosphatase (ACP) activity was observed across treatment groups. De novo transcriptome sequencing in the D0 and D24 groups using RNA-Seq analysis identified 187,836 unigenes, of which 2,143 were differentially expressed in response to environmental salinity (71 up-regulated and 2,072 down-regulated). A total of 56,020 putative single nucleotide polymorphisms (SNPs) were also identified. The growth, development, osmoregulation and maturation factors of N-methyl-D-aspartate receptors (nmdas) expressed in memory formation, as well as insulin-like growth factor 1 (igf-1) and igf-binding proteins (igfbps) were further investigated using targeted qRT-PCR. The lowest expression of all these genes occurred in the low salinity environments (D8 or D16), while their highest expression occurred in the high salinity environments (D24). These results provide preliminary insight into salinity adaptation in chum salmon and a foundation for the development of marker-assisted breeding for this species.
Collapse
Affiliation(s)
- Peilun Li
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China,Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Harbin, China
| | - Wei Liu
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China,Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Harbin, China
| | - Wanqiao Lu
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China,Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Harbin, China
| | - Jilong Wang
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China,Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Harbin, China
| |
Collapse
|
8
|
Xing S, Li P, He S, Cao Z, Wang X, Cao X, Liu B, Chen C, You H, Li ZH. Physiological responses in Nile tilapia (Oreochromis niloticus) induced by combined stress of environmental salinity and triphenyltin. MARINE ENVIRONMENTAL RESEARCH 2022; 180:105736. [PMID: 36049432 DOI: 10.1016/j.marenvres.2022.105736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Triphenyltin (TPT) has attracted considerable attention owing to its vitality, bioaccumulation, and lurking damage. TPT widely exists in complex salinity areas such as estuaries and coastal regions. However, there are few studies on the toxicological behavior of TPT under different salinity. In the study, juvenile Nile tilapia (Oreochromis niloticus) were utilized as model animals to investigate the effects of environmental relevant TPT exposure on the osmoregulation and energy metabolism in gill under different salinity. The results showed that salinity and TPT single or combined exposure affected the morphology of the gill tissue. After TPT exposure, Na+-K+-ATPase (NKA) activity significantly decreased at 0 ppt, while NKA and Ca2+-Mg2+-ATPase (CMA) activities significantly increased at 15 ppt. In addition, significantly higher succinate dehydrogenase (SDH) and lactate dehydrogenase (LDH) activities were found in the control fish compared to the TPT-exposed ones at 15 ppt. Quantitative real-time PCR results showed that TPT exposure affected the expression of osmoregulation and energy metabolism-related genes under different salinity. Overall, TPT exposure interfered with osmoregulation and energy metabolism under different salinity. The study will provide reference data for assessing the toxicity of organotin compounds in complex-salinity areas.
Collapse
Affiliation(s)
- Shaoying Xing
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Shuwen He
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Zhihan Cao
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Xu Wang
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Xuqian Cao
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Bin Liu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Chengzhuang Chen
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Hong You
- State Key Laboratory of Urban Water Resources & Environment, Harbin Institute of Technology, Harbin, 150001, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China.
| |
Collapse
|
9
|
Nobata S, Iino Y, Kawakami T, Sasaki K, Kitagawa T, Hyodo S. Significance of sea entry pathway of chum salmon Oncorhynchus keta fry, inferred from the differential expressions of Na +,K +-ATPase α-subunit genes in the gills. Comp Biochem Physiol A Mol Integr Physiol 2022; 269:111224. [PMID: 35460896 DOI: 10.1016/j.cbpa.2022.111224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/14/2022] [Accepted: 04/14/2022] [Indexed: 10/18/2022]
Abstract
Na+,K+-ATPase (NKA) α-subunit 1a (α1a) and 1b (α1b) gene expressions in the gills are changeable in response to ambient salinity in a few salmonids. In this study, the expressions were compared among ambient salinities and used to infer sea entry migration of chum salmon Oncorhynchus keta fry. The expression of α1a decreased from the 2 days after seawater (SW) transfer from freshwater (FW) and was significantly lower in SW-acclimated fry than that in FW-fry. On the other hand, the expression of α1b peaked on the first to second day after SW transfer and then settled to a level 2-fold higher than in FW-fry. In fry caught in the waterfronts of the beaches, the expression levels were quite similar to those on the first and second days after SW transfer, whereas, in fry caught off beach, the expressions were identical to those of SW-acclimated fry. These suggest that fry adapt to SW with moving along the shoal in the bay, and move to off beach after completing SW adaptation. One of the physiological significances in a usage of waterfront may be to transform the gills to SW type. Only fry on the 2 days after SW transfer failed to exhibit condition factor-dependency of burst swimming, probably due to physiological perturbation, which may be related to poor predation avoidance. The physiological approach used in this study inferred sea entry migration of fry; furthermore, it shows the possible significance of adaptation to SW in the shoal is to reduce predation risk.
Collapse
Affiliation(s)
- Shigenori Nobata
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-8564, Japan; International Coastal Research Center, Atmosphere and Ocean Research Institute, University of Tokyo, 1-19-8, Akahama, Otsuchi, Kamihei, Iwate 028-1102, Japan.
| | - Yuki Iino
- International Coastal Research Center, Atmosphere and Ocean Research Institute, University of Tokyo, 1-19-8, Akahama, Otsuchi, Kamihei, Iwate 028-1102, Japan.
| | - Tatsuya Kawakami
- International Coastal Research Center, Atmosphere and Ocean Research Institute, University of Tokyo, 1-19-8, Akahama, Otsuchi, Kamihei, Iwate 028-1102, Japan.
| | - Kei Sasaki
- Environment and Fisheries Applied Techniques Research Department, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 4-9-1, Sakiyama, Miyako, Iwate 027-0097, Japan.
| | - Takashi Kitagawa
- International Coastal Research Center, Atmosphere and Ocean Research Institute, University of Tokyo, 1-19-8, Akahama, Otsuchi, Kamihei, Iwate 028-1102, Japan.
| | - Susumu Hyodo
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-8564, Japan.
| |
Collapse
|
10
|
Zolotarenko AD, Shitova MV. Transcriptome Studies of Salmonid Fishes of the Genius Oncorhynchus. RUSS J GENET+ 2022. [DOI: 10.1134/s102279542207016x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Transcriptional Contribution of Transposable Elements in Relation to Salinity Conditions in Teleosts and Silencing Mechanisms Involved. Int J Mol Sci 2022; 23:ijms23095215. [PMID: 35563606 PMCID: PMC9101882 DOI: 10.3390/ijms23095215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 12/10/2022] Open
Abstract
Fish are an interesting taxon comprising species adapted to a wide range of environments. In this work, we analyzed the transcriptional contribution of transposable elements (TEs) in the gill transcriptomes of three fish species exposed to different salinity conditions. We considered the giant marbled eel Anguilla marmorata and the chum salmon Oncorhynchus keta, both diadromous, and the marine medaka Oryzias melastigma, an euryhaline organism sensu stricto. Our analyses revealed an interesting activity of TEs in the case of juvenile eels, commonly adapted to salty water, when exposed to brackish and freshwater conditions. Moreover, the expression assessment of genes involved in TE silencing mechanisms (six in heterochromatin formation, fourteen known to be part of the nucleosome remodeling deacetylase (NuRD) complex, and four of the Argonaute subfamily) unveiled that they are active. Finally, our results evidenced for the first time a krüppel-associated box (KRAB)-like domain specific to actinopterygians that, together with TRIM33, might allow the functioning of NuRD complex also in fish species. The possible interaction between these two proteins was supported by structural prediction analyses.
Collapse
|
12
|
Peng Y, Shi H, Liu Y, Huang Y, Zheng R, Jiang D, Jiang M, Zhu C, Li G. RNA Sequencing Analysis Reveals Divergent Adaptive Response to Hypo- and Hyper-Salinity in Greater Amberjack ( Seriola dumerili) Juveniles. Animals (Basel) 2022; 12:327. [PMID: 35158652 PMCID: PMC8833429 DOI: 10.3390/ani12030327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 02/01/2023] Open
Abstract
Salinity significantly affects physiological and metabolic activities, breeding, development, survival, and growth of marine fish. The greater amberjack (Seriola dumerili) is a fast-growing species that has immensely contributed to global aquaculture diversification. However, the tolerance, adaptation, and molecular responses of greater amberjack to salinity are unclear. This study reared greater amberjack juveniles under different salinity stresses (40, 30, 20, and 10 ppt) for 30 days to assess their tolerance, adaptation, and molecular responses to salinity. RNA sequencing analysis of gill tissue was used to identify genes and biological processes involved in greater amberjack response to salinity stress at 40, 30, and 20 ppt. Eighteen differentially expressed genes (DEGs) (nine upregulated and nine downregulated) were identified in the 40 vs. 30 ppt group. Moreover, 417 DEGs (205 up-regulated and 212 down-regulated) were identified in the 20 vs. 30 ppt group. qPCR and transcriptomic analysis indicated that salinity stress affected the expression of genes involved in steroid biosynthesis (ebp, sqle, lss, dhcr7, dhcr24, and cyp51a1), lipid metabolism (msmo1, nsdhl, ogdh, and edar), ion transporters (slc25a48, slc37a4, slc44a4, and apq4), and immune response (wnt4 and tlr5). Furthermore, KEGG pathway enrichment analysis showed that the DEGs were enriched in steroid biosynthesis, lipids metabolism, cytokine-cytokine receptor interaction, tryptophan metabolism, and insulin signaling pathway. Therefore, this study provides insights into the molecular mechanisms of marine fish adaptation to salinity.
Collapse
Affiliation(s)
- Yuhao Peng
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.P.); (H.S.); (Y.L.); (Y.H.); (R.Z.); (D.J.); (M.J.); (C.Z.)
| | - Hongjuan Shi
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.P.); (H.S.); (Y.L.); (Y.H.); (R.Z.); (D.J.); (M.J.); (C.Z.)
| | - Yuqi Liu
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.P.); (H.S.); (Y.L.); (Y.H.); (R.Z.); (D.J.); (M.J.); (C.Z.)
| | - Yang Huang
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.P.); (H.S.); (Y.L.); (Y.H.); (R.Z.); (D.J.); (M.J.); (C.Z.)
| | - Renchi Zheng
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.P.); (H.S.); (Y.L.); (Y.H.); (R.Z.); (D.J.); (M.J.); (C.Z.)
| | - Dongneng Jiang
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.P.); (H.S.); (Y.L.); (Y.H.); (R.Z.); (D.J.); (M.J.); (C.Z.)
| | - Mouyan Jiang
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.P.); (H.S.); (Y.L.); (Y.H.); (R.Z.); (D.J.); (M.J.); (C.Z.)
| | - Chunhua Zhu
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.P.); (H.S.); (Y.L.); (Y.H.); (R.Z.); (D.J.); (M.J.); (C.Z.)
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524025, China
| | - Guangli Li
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.P.); (H.S.); (Y.L.); (Y.H.); (R.Z.); (D.J.); (M.J.); (C.Z.)
| |
Collapse
|
13
|
The time course of molecular acclimation to seawater in a euryhaline fish. Sci Rep 2021; 11:18127. [PMID: 34518569 PMCID: PMC8438076 DOI: 10.1038/s41598-021-97295-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/17/2021] [Indexed: 11/25/2022] Open
Abstract
The Arabian pupfish, Aphanius dispar, is a euryhaline fish inhabiting both inland nearly-freshwater desert ponds and highly saline Red Sea coastal lagoons of the Arabian Peninsula. Desert ponds and coastal lagoons, located respectively upstream and at the mouths of dry riverbeds (“wadies”), have been found to potentially become connected during periods of intense rainfall, which could allow the fish to migrate between these different habitats. Flash floods would therefore flush Arabian pupfish out to sea, requiring a rapid acclimation to a greater than 40 ppt change in salinity. To investigate the molecular pathways of salinity acclimation during such events, a Red Sea coastal lagoon and a desert pond population were sampled, with the latter exposed to a rapid increase in water salinity. Changes in branchial gene expression were investigated via genome-wide transcriptome measurements over time from 6 h to 21 days. The two natural populations displayed basal differences in genes related to ion transport, osmoregulation and immune system functions. These mechanisms were also differentially regulated in seawater transferred fish, revealing their crucial role in long-term adaptation. Other processes were only transiently activated shortly after the salinity exposure, including cellular stress response mechanisms, such as molecular chaperone synthesis and apoptosis. Tissue remodelling processes were also identified as transient, but took place later in the timeline, suggesting their importance to long-term acclimation as they likely equip the fish with lasting adaptations to their new environment. The alterations in branchial functional pathways displayed by Arabian pupfish in response to salinity increases are diverse. These reveal a large toolkit of molecular processes important for adaptation to hyperosmolarity that allow for successful colonization to a wide variety of different habitats.
Collapse
|
14
|
Rautsaw RM, Schramer TD, Acuña R, Arick LN, DiMeo M, Mercier KP, Schrum M, Mason AJ, Margres MJ, Strickland JL, Parkinson CL. Genomic Adaptations to Salinity Resist Gene Flow in the Evolution of Floridian Watersnakes. Mol Biol Evol 2021; 38:745-760. [PMID: 33035326 PMCID: PMC7947766 DOI: 10.1093/molbev/msaa266] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The migration-selection balance often governs the evolution of lineages, and speciation with gene flow is now considered common across the tree of life. Ecological speciation is a process that can facilitate divergence despite gene flow due to strong selective pressures caused by ecological differences; however, the exact traits under selection are often unknown. The transition from freshwater to saltwater habitats provides strong selection targeting traits with osmoregulatory function. Several lineages of North American watersnakes (Nerodia spp.) are known to occur in saltwater habitat and represent a useful system for studying speciation by providing an opportunity to investigate gene flow and evaluate how species boundaries are maintained or degraded. We use double digest restriction-site associated DNA sequencing to characterize the migration-selection balance and test for evidence of ecological divergence within the Nerodia fasciata-clarkii complex in Florida. We find evidence of high intraspecific gene flow with a pattern of isolation-by-distance underlying subspecific lineages. However, we identify genetic structure indicative of reduced gene flow between inland and coastal lineages suggesting divergence due to isolation-by-environment. This pattern is consistent with observed environmental differences where the amount of admixture decreases with increased salinity. Furthermore, we identify significantly enriched terms related to osmoregulatory function among a set of candidate loci, including several genes that have been previously implicated in adaptation to salinity stress. Collectively, our results demonstrate that ecological differences, likely driven by salinity, cause strong divergent selection which promotes divergence in the N. fasciata-clarkii complex despite significant gene flow.
Collapse
Affiliation(s)
- Rhett M Rautsaw
- Department of Biological Sciences, Clemson University, Clemson, SC.,Department of Biology, University of Central Florida, Orlando, FL
| | | | - Rachel Acuña
- Department of Biology, University of Central Florida, Orlando, FL
| | - Lindsay N Arick
- Department of Biology, University of Central Florida, Orlando, FL
| | - Mark DiMeo
- Department of Biological Sciences, Clemson University, Clemson, SC.,Department of Biology, University of Central Florida, Orlando, FL
| | - Kathryn P Mercier
- Department of Biological Sciences, Clemson University, Clemson, SC.,Department of Biology, University of Central Florida, Orlando, FL.,Department of Biology, City College of New York, New York, NY.,PhD Program in Biology, The Graduate Center of the City University of New York, New York, NY
| | - Michael Schrum
- Department of Biology, University of Central Florida, Orlando, FL
| | - Andrew J Mason
- Department of Biological Sciences, Clemson University, Clemson, SC.,Department of Biology, University of Central Florida, Orlando, FL
| | - Mark J Margres
- Department of Biological Sciences, Clemson University, Clemson, SC.,Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA.,Department of Integrative Biology, University of South Florida, Tampa, FL
| | - Jason L Strickland
- Department of Biological Sciences, Clemson University, Clemson, SC.,Department of Biology, University of Central Florida, Orlando, FL.,Department of Biology, University of South Alabama, Mobile, AL
| | - Christopher L Parkinson
- Department of Biological Sciences, Clemson University, Clemson, SC.,Department of Biology, University of Central Florida, Orlando, FL.,Department of Forestry and Environmental Conservation, Clemson University, Clemson, SC
| |
Collapse
|
15
|
Seale AP, Malintha GHT, Celino-Brady FT, Head T, Belcaid M, Yamaguchi Y, Lerner DT, Baltzegar DA, Borski RJ, Stoytcheva ZR, Breves JP. Transcriptional regulation of prolactin in a euryhaline teleost: Characterisation of gene promoters through in silico and transcriptome analyses. J Neuroendocrinol 2020; 32:e12905. [PMID: 32996203 PMCID: PMC8612711 DOI: 10.1111/jne.12905] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 07/31/2020] [Accepted: 08/26/2020] [Indexed: 12/20/2022]
Abstract
The sensitivity of prolactin (Prl) cells of the Mozambique tilapia (Oreochromis mossambicus) pituitary to variations in extracellular osmolality enables investigations into how osmoreception underlies patterns of hormone secretion. Through the actions of their main secretory products, Prl cells play a key role in supporting hydromineral balance of fishes by controlling the major osmoregulatory organs (ie, gill, intestine and kidney). The release of Prl from isolated cells of the rostral pars distalis (RPD) occurs in direct response to physiologically relevant reductions in extracellular osmolality. Although the particular signal transduction pathways that link osmotic conditions to Prl secretion have been identified, the processes that underlie hyposmotic induction of prl gene expression remain unknown. In this short review, we describe two distinct tilapia gene loci that encode Prl177 and Prl188 . From our in silico analyses of prl177 and prl188 promoter regions (approximately 1000 bp) and a transcriptome analysis of RPDs from fresh water (FW)- and seawater (SW)-acclimated tilapia, we propose a working model for how multiple transcription factors link osmoreceptive processes with adaptive patterns of prl177 and prl188 gene expression. We confirmed via RNA-sequencing and a quantitative polymerase chain reaction that multiple transcription factors emerging as predicted regulators of prl gene expression are expressed in the RPD of tilapia. In particular, gene transcripts encoding pou1f1, stat3, creb3l1, pbxip1a and stat1a were highly expressed; creb3l1, pbxip1a and stat1a were elevated in fish acclimated to SW vs FW. Combined, our in silico and transcriptome analyses set a path for resolving how adaptive patterns of Prl secretion are achieved via the integration of osmoreceptive processes with the control of prl gene transcription.
Collapse
Affiliation(s)
- Andre P. Seale
- Department of Human Nutrition, Food and Animal Sciences, University of Hawai’i at Mānoa, Honolulu, HI, USA
| | | | - Fritzie T. Celino-Brady
- Department of Human Nutrition, Food and Animal Sciences, University of Hawai’i at Mānoa, Honolulu, HI, USA
| | - Tony Head
- Department of Human Nutrition, Food and Animal Sciences, University of Hawai’i at Mānoa, Honolulu, HI, USA
| | - Mahdi Belcaid
- Hawai’i Institute of Marine Biology, University of Hawai’i at Mānoa, Kaneohe, HI, USA
| | - Yoko Yamaguchi
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue, Japan
| | - Darren T. Lerner
- University of Hawai’i Sea Grant College Program, University of Hawai’i at Mānoa, Honolulu, HI, USA
| | - David A. Baltzegar
- Genomic Sciences Laboratory, Office of Research and Innovation, North Carolina State University, Raleigh, NC, USA
| | - Russell J. Borski
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Zoia R. Stoytcheva
- Department of Human Nutrition, Food and Animal Sciences, University of Hawai’i at Mānoa, Honolulu, HI, USA
| | - Jason P. Breves
- Department of Biology, Skidmore College, Saratoga Springs, NY, USA
| |
Collapse
|
16
|
Divergent Influenza-Like Viruses of Amphibians and Fish Support an Ancient Evolutionary Association. Viruses 2020; 12:v12091042. [PMID: 32962015 PMCID: PMC7551885 DOI: 10.3390/v12091042] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/15/2020] [Accepted: 09/15/2020] [Indexed: 12/15/2022] Open
Abstract
Influenza viruses (family Orthomyxoviridae) infect a variety of vertebrates, including birds, humans, and other mammals. Recent metatranscriptomic studies have uncovered divergent influenza viruses in amphibians, fish and jawless vertebrates, suggesting that these viruses may be widely distributed. We sought to identify additional vertebrate influenza-like viruses through the analysis of publicly available RNA sequencing data. Accordingly, by data mining, we identified the complete coding segments of five divergent vertebrate influenza-like viruses. Three fell as sister lineages to influenza B virus: salamander influenza-like virus in Mexican walking fish (Ambystoma mexicanum) and plateau tiger salamander (Ambystoma velasci), Siamese algae-eater influenza-like virus in Siamese algae-eater fish (Gyrinocheilus aymonieri) and chum salmon influenza-like virus in chum salmon (Oncorhynchus keta). Similarly, we identified two influenza-like viruses of amphibians that fell as sister lineages to influenza D virus: cane toad influenza-like virus and the ornate chorus frog influenza-like virus, in the cane toad (Rhinella marina) and ornate chorus frog (Microhyla fissipes), respectively. Despite their divergent phylogenetic positions, these viruses retained segment conservation and splicing consistent with transcriptional regulation in influenza B and influenza D viruses, and were detected in respiratory tissues. These data suggest that influenza viruses have been associated with vertebrates for their entire evolutionary history.
Collapse
|
17
|
Avellán-Llaguno RD, Liu X, Liu L, Dong S, Huang Q. Elevated bioaccumulation of PFAAs in Oryzias melastigma following the increase of salinity is associated with the up-regulated expression of PFAA-binding proteins. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 725:138336. [PMID: 32298882 DOI: 10.1016/j.scitotenv.2020.138336] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/28/2020] [Accepted: 03/29/2020] [Indexed: 06/11/2023]
Abstract
Perfluoroalkyl acids (PFAAs) are widely detected in the environment, especially in estuarine and coastal areas where fluctuation of salinity occurs. Salinity alteration affected the distribution of PFAAs and even the bioaccumulation in organisms. However, the inner mechanism is still unclear. In this study, the marine medaka (Oryzias melastigma), a euryhaline fish model, was exposed to four PFAAs congeners under three different salinities (0, 15 and 35 psu). Results showed that the bioaccumulation of PFAAs increased in fish as the water salinity increased. PFAAs with longer lengths of carbon‑fluorine bond showed higher bioaccumulation in the fish. Salinity did not alter the levels of PFAAs in water media, however, the uptake rate of PFAAs from gills did increase with the salinity. Further analysis of the mechanism showed that PFAA bound to branchial proteins as confirmed by fluorescence spectroscopy. Higher expressions of proteins binding to PFAAs including organic anion transporter 1 (OAT1) and fatty acid-binding protein (FABP) facilitated the uptake of PFAAs through gills in fish culturing under higher salinity. In all, our study showed that elevation of salinity can induce the expression of proteins binding to PFAAs in gills, thus facilitate the uptake of water PFAAs. Salinity fluctuation should be taken into consideration when assessing the chemical risk in the estuarine and coastal areas.
Collapse
Affiliation(s)
- Ricardo David Avellán-Llaguno
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiaobo Liu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; College of life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Liangpo Liu
- Department of Public Health Laboratory Sciences, School of Public Health, Shanxi Medical University, Taiyuan 030001, PR China
| | - Sijun Dong
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Qiansheng Huang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China.
| |
Collapse
|