1
|
Gobbi P, Pavone S, Orso M, Passamonti F, Righi C, Beato MS, Feliziani F, Giammarioli M. Molecular Characterization of Small Ruminant Lentiviruses in Sheep and Goats: A Systematic Review. Animals (Basel) 2024; 14:3545. [PMID: 39682510 DOI: 10.3390/ani14233545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/26/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
Small ruminant lentiviruses (SRLVs) are responsible for chronic and progressive multisystemic clinical forms, which significantly reduce flocks' productivity and have a considerable economic impact on the small ruminant industry. Due to the increase in genetic analysis studies and the potential for misclassification of certain strains, owing to the high genetic variability of these viruses, a systematic review was deemed necessary. This review explores the types of matrices used for molecular detection and phylogenetic studies, the genomic regions selected as targets, and the software utilized for phylogenetic analysis, assessing the geographical distribution of identified genotypes and subgenotypes over time. A thorough comparison of the diagnostic approaches highlights the strengths and limitations of each method, identifying gaps that need to be addressed. Additionally, recombination events and compartmentalization are examined to provide an updated, detailed, and comprehensive overview of SRLV phylogenesis.
Collapse
Affiliation(s)
- Paola Gobbi
- National Reference Laboratory for Ruminant Retroviruses, Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati" (IZSUM), Via G. Salvemini 1, 06126 Perugia, Italy
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy
| | - Silvia Pavone
- National Reference Laboratory for Ruminant Retroviruses, Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati" (IZSUM), Via G. Salvemini 1, 06126 Perugia, Italy
| | - Massimiliano Orso
- Office for Research Management, Special Projects, Cooperation and Twinning, Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati" (IZSUM), Via G. Salvemini 1, 06126 Perugia, Italy
| | - Fabrizio Passamonti
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy
| | - Cecilia Righi
- National Reference Laboratory for Ruminant Retroviruses, Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati" (IZSUM), Via G. Salvemini 1, 06126 Perugia, Italy
| | - Maria Serena Beato
- National Reference Laboratory for Ruminant Retroviruses, Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati" (IZSUM), Via G. Salvemini 1, 06126 Perugia, Italy
| | - Francesco Feliziani
- National Reference Laboratory for Ruminant Retroviruses, Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati" (IZSUM), Via G. Salvemini 1, 06126 Perugia, Italy
| | - Monica Giammarioli
- National Reference Laboratory for Ruminant Retroviruses, Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati" (IZSUM), Via G. Salvemini 1, 06126 Perugia, Italy
| |
Collapse
|
2
|
Ostuni A, Albarella S, Tassoni L, Pugliano M, D'Anza E, Crudele MA, Ciotola F, Beato MS, Iovane V, Cecchini Gualandi S, Frontoso R, De Vendel J, Peretti V, Bavoso A. Circulation of small ruminant lentivirus in endangered goat and sheep breeds of Southern Italy. Heliyon 2024; 10:e33906. [PMID: 39027592 PMCID: PMC11255564 DOI: 10.1016/j.heliyon.2024.e33906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/20/2024] Open
Abstract
According to the Domestic Animal Diversity Information System (DAD-IS) of the FAO, Italy has one of the largest numbers of local small ruminant breeds among European countries. In Southern Italy, namely the Campania Region, Bagnolese and Laticauda sheep breeds and Cilentana goat breeds are considered endangered according to the DAD-IS. Conservation of endangered animal breeds is a goal of the European Union (EU). However, the role of infectious diseases as risk factors for endangered breeds has rarely been considered. Small ruminant lentiviruses (SRLV) infect sheep and goats, causing slow-progressive, persistent, and debilitating diseases that can lead to animal death and productivity loss. In this study, we investigated the presence of SRLV in Bagnolese, Laticauda, and Cilentana breeds using a commercial ELISA in parallel with an in-house ELISA. The results of the two tests were in good agreement (Cohen Kappa 0.84, 95 % CI = 0.76-0.93). Discrepancies between the two tests were resolved using western blotting. In total, 430 samples were tested (248 Bagnolese, 125 Laticauda, and 57 Cilentana). The apparent prevalence rates were 12.5 %, 6.4 %, and 1.7 % in Bagnolese, Laticauda, and Cilentana, respectively. In the molecular analysis of 11 proviral partial sequences, subtypes B2 and A24 were identified in two Bagnolese herds. Owing to the beneficial role of sheep and goat breeding in marginal areas, it is important to screen the entire population and implement control/eradication of SRLV infections in conjunction with each conservation program.
Collapse
Affiliation(s)
- Angela Ostuni
- Department of Sciences, University of Basilicata, Via dell’ Ateneo Lucano 10, 85100, Potenza, Italy
| | - Sara Albarella
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via Delpino 1, 80137, Napoli, Italy
| | - Luca Tassoni
- National Reference Laboratory for Ruminant retroviruses, Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche (IZSUM), Via G. Salvemini 1, 06126, Perugia, PG, Italy
| | - Mariagiulia Pugliano
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via Delpino 1, 80137, Napoli, Italy
| | - Emanuele D'Anza
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via Delpino 1, 80137, Napoli, Italy
| | - Maria Antonietta Crudele
- Department of Sciences, University of Basilicata, Via dell’ Ateneo Lucano 10, 85100, Potenza, Italy
| | - Francesca Ciotola
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via Delpino 1, 80137, Napoli, Italy
| | - Maria Serena Beato
- National Reference Laboratory for Ruminant retroviruses, Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche (IZSUM), Via G. Salvemini 1, 06126, Perugia, PG, Italy
| | - Valentina Iovane
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Via Università 100, 80055, Portici, NA, Italy
| | | | - Raffaele Frontoso
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute, 2, 80055, Portici, NA, Italy
- OneHEco APS, 84047, Capaccio Paestum, SA, Italy
| | | | - Vincenzo Peretti
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via Delpino 1, 80137, Napoli, Italy
| | - Alfonso Bavoso
- Department of Sciences, University of Basilicata, Via dell’ Ateneo Lucano 10, 85100, Potenza, Italy
| |
Collapse
|
3
|
Davaasuren N, Molaee V, Erdene-Ochir TO, Nyamdavaa G, Ganzorig S, Mazzei M, Sakoda Y, Lühken G, Tumenjargal S. Phylogenetic analysis of small ruminant lentiviruses in Mongolian sheep supports an ancient east-west split for the genotype A. Vet Res Commun 2024; 48:1955-1962. [PMID: 38530579 DOI: 10.1007/s11259-024-10361-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/22/2024] [Indexed: 03/28/2024]
Abstract
The ovine maedi-visna virus (MVV) and caprine arthritis-encephalitis virus (CAEV) are small ruminant lentiviruses (SRLVs) with striking genetic and structural similarities. The presence of SRLV in Mongolian sheep and goats was serologically demonstrated more than a decade ago; however, the viral genotype remains unknown. In total, 329 blood samples were collected from two sheep breeds (i.e., Khalkha and Sumber) in Tov, Govisumber, Arkhangay, Dornogovi, Zavkhan, and Sukhbaatar provinces, Mongolia. Serological and phylogenetic analyses were performed regardless of any apparent clinical signs, although most of the animals appeared healthy. All sheep in three of the six provinces were seronegative, whereas the seroprevalence in the Tov, Govisumber, and Zavkhan provinces averaged 7.9%. Genomic DNA from seropositive animals was tested using hemi-nested polymerase chain reaction, and sub-genomic SRLV sequences were determined from nine samples. Mongolian SRLV sequences clustered within the divergent subtype A22, which was previously found only in Fertile Crescent regions, including Lebanon, Jordan, and Iran, where the first sheep-domestication (Ovis aries) occurred. According to the phylogenetic analysis, genotype A has two ancestors from the ancient Fertile Crescent: (1) Turkish strains and (2) Iranian, Jordanian, and Lebanese strains. The first ancestor spread westward, whereas the second spread eastward, ultimately reaching Mongolia.
Collapse
Affiliation(s)
- Nergui Davaasuren
- Department of Infectious Diseases and Microbiology, School of Veterinary Medicine, Mongolian University of Life Sciences, Zaisan, Ulaanbaatar, 17024, Mongolia
| | - Vahid Molaee
- Institute of Animal Breeding and Genetics, Justus Liebig University of Giessen, Ludwigstrasse 21, 35390, Giessen, Germany
| | - Tseren-Ochir Erdene-Ochir
- Department of Infectious Diseases and Microbiology, School of Veterinary Medicine, Mongolian University of Life Sciences, Zaisan, Ulaanbaatar, 17024, Mongolia
| | - Guugandaa Nyamdavaa
- Department of Infectious Diseases and Microbiology, School of Veterinary Medicine, Mongolian University of Life Sciences, Zaisan, Ulaanbaatar, 17024, Mongolia
| | - Sumiya Ganzorig
- Department of Biology, National University of Mongolia, Ulaanbaatar, 14021, Mongolia
| | - Maurizio Mazzei
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 20159, Pisa, Italy
| | - Yoshihiro Sakoda
- Laboratory of Microbiology, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, 060-0818, Japan
| | - Gesine Lühken
- Institute of Animal Breeding and Genetics, Justus Liebig University of Giessen, Ludwigstrasse 21, 35390, Giessen, Germany
| | - Sharav Tumenjargal
- Department of Infectious Diseases and Microbiology, School of Veterinary Medicine, Mongolian University of Life Sciences, Zaisan, Ulaanbaatar, 17024, Mongolia.
| |
Collapse
|
4
|
Bouzalas I, Apostolidi ED, Scalas D, Davidopoulou E, Chassalevris T, Rosati S, Colitti B. A Combined Approach for the Characterization of Small Ruminant Lentivirus Strains Circulating in the Islands and Mainland of Greece. Animals (Basel) 2024; 14:1119. [PMID: 38612358 PMCID: PMC11010947 DOI: 10.3390/ani14071119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024] Open
Abstract
Small ruminant lentiviruses are a group of viruses infecting goat and sheep worldwide. These viruses exhibit an extraordinary degree of genetic and antigenic variability that severely influence in vivo and in vitro features, as well as diagnostic test results. Small ruminant farming is the most important animal farming business in Greece, with a high impact on the Greek primary economy. Although SRLV infection and its impact on animal production are well established in the country, little is known about the circulating SRLV strains and their prevalence. The aim of this study was to characterize SRLVs circulating in Greece with a combined serological and molecular approach, using the bulk milk matrix collected from 60 farms in different municipalities. This study allowed us to estimate a seroprevalence of around 52% at the herd level. The B1, B2 and A3 subtypes and a novel A viral cluster were identified. Moreover, the amplicon sequencing method allowed us to identify more than one viral subtype in a sample. These results again confirm the high variability of these viruses and highlight the importance of the constant monitoring of viral evolution, in particular in antigens of diagnostic interest.
Collapse
Affiliation(s)
- Ilias Bouzalas
- Hellenic Agricultural Organization—DEMETER, Veterinary Research Institute, Campus of Thermi, 57001 Thessaloniki, Greece; (I.B.); (E.D.A.); (T.C.)
| | - Evangelia D. Apostolidi
- Hellenic Agricultural Organization—DEMETER, Veterinary Research Institute, Campus of Thermi, 57001 Thessaloniki, Greece; (I.B.); (E.D.A.); (T.C.)
| | - Daniela Scalas
- Department of Veterinary Sciences, University of Turin, L. Braccini 2, 10095 Torino, Italy; (D.S.); (S.R.)
| | | | - Taxiarchis Chassalevris
- Hellenic Agricultural Organization—DEMETER, Veterinary Research Institute, Campus of Thermi, 57001 Thessaloniki, Greece; (I.B.); (E.D.A.); (T.C.)
| | - Sergio Rosati
- Department of Veterinary Sciences, University of Turin, L. Braccini 2, 10095 Torino, Italy; (D.S.); (S.R.)
| | - Barbara Colitti
- Department of Veterinary Sciences, University of Turin, L. Braccini 2, 10095 Torino, Italy; (D.S.); (S.R.)
| |
Collapse
|
5
|
Kalogianni AI, Bouzalas I, Marka S, Zografaki ME, Mavrikou S, Gelasakis AI. Genetic Characterization of Small Ruminant Lentiviruses Isolated from Dairy Sheep in Greece. Viruses 2024; 16:547. [PMID: 38675890 PMCID: PMC11053789 DOI: 10.3390/v16040547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/15/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
The high genetic heterogeneity of small ruminant lentiviruses (SRLV) renders the genetic characterization of the circulating strains crucial for the epidemiological investigation and the designation of effective diagnostic tools. In Greece, research data regarding the genetic diversity of the circulating SRLV strains is scarce, hindering the implementation of efficient surveillance and control programs. The objective of the study was to genetically characterize SRLV strains isolated from intensive dairy sheep farms in Greece and evaluate the variability of the immunodominant regions of the capsid protein. For this reason, a total of 12 SRLV-infected animals from four intensive dairy sheep farms with purebred Chios and Lacaune ewes were used for the amplification and sequencing of an 800 bp gag-pol fragment. The phylogenetic analyses revealed a breed-related circulation of strains; Chios ewes were infected with strains belonging exclusively to a separate group of genotype A, whereas strains belonging to subtype B2 were isolated from Lacaune ewes. Immunodominant epitopes of capsid protein were quite conserved among the strains of the same genotype, except for the Major Homology Region which showed some unique mutations with potential effects on viral evolution. The present study contributes to the extension of the current knowledge regarding the genetic diversity of SRLV strains circulating in sheep in Greece. However, broader genetic characterization studies are warranted for the exploration of possible recombinant events and the more comprehensive classification of the circulating strains.
Collapse
Affiliation(s)
- Aphrodite I. Kalogianni
- Laboratory of Anatomy and Physiology of Farm Animals, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens (AUA), Iera Odos 75 Str., 11855 Athens, Greece;
| | - Ilias Bouzalas
- Veterinary Research Institute, Hellenic Agricultural Organization-DEMETER, Campus of Thermi, 57001 Thessaloniki, Greece;
| | - Sofia Marka
- Laboratory of Cell Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens (AUA), EU-CONEXUS European University, 11855 Athens, Greece; (S.M.); (M.-E.Z.); (S.M.)
| | - Maria-Eleftheria Zografaki
- Laboratory of Cell Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens (AUA), EU-CONEXUS European University, 11855 Athens, Greece; (S.M.); (M.-E.Z.); (S.M.)
| | - Sofia Mavrikou
- Laboratory of Cell Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens (AUA), EU-CONEXUS European University, 11855 Athens, Greece; (S.M.); (M.-E.Z.); (S.M.)
| | - Athanasios I. Gelasakis
- Laboratory of Anatomy and Physiology of Farm Animals, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens (AUA), Iera Odos 75 Str., 11855 Athens, Greece;
| |
Collapse
|
6
|
Colitti B, Daif S, Choukri I, Scalas D, Jerre A, El Berbri I, Fassi Fihri O, Rosati S. Serological and Molecular Characterization of Small Ruminant Lentiviruses in Morocco. Animals (Basel) 2024; 14:550. [PMID: 38396519 PMCID: PMC10886309 DOI: 10.3390/ani14040550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/31/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
Recent studies that investigated the origins of SRLV strains offered new insights into their distribution among domestic ruminants. The aim of the study was to investigate SRLV circulation in Morocco. A total of 51 farms were selected in different geographical locations and tested by screening and genotyping ELISA. Whole blood was used for DNA extraction and nested gag PCR. The sample size allowed for an estimation of prevalence lower than 20% (CI 95%). Surprisingly, a large proportion of screening-positive samples were not correctly serotyped. Sanger and NGS amplicon sequencing approaches allowed us to obtain new sequences even from difficult-to-amplify samples. The serological data support the evidence of an intrinsic difficulty of SRLV to spread, likely due to management practices. The low rate of success by genotyping ELISA led us to suppose that divergent strains might have escaped from diagnostic tools, as partially confirmed by the evidence of an A subtype carrying a mismatch in serotyping epitope. The sequence analysis revealed the circulation of novel B and recombinant A/B subtypes. This study highlights the importance of monitoring viral sequences and their evolution to develop specific diagnostic tests, particularly in countries where control measures are in place.
Collapse
Affiliation(s)
- Barbara Colitti
- Department of Veterinary Science, University of Turin, Largo Braccini 2, 10095 Grugliasco, TO, Italy; (D.S.); (S.R.)
| | - Soukaina Daif
- Department of Pathology and Veterinary Public Health, Agronomic and Veterinary Institute Hassan II, BP: 6202, Rabat-Institutes, Rabat 10101, Morocco; (S.D.); (I.C.); (I.E.B.); (O.F.F.)
| | - Imane Choukri
- Department of Pathology and Veterinary Public Health, Agronomic and Veterinary Institute Hassan II, BP: 6202, Rabat-Institutes, Rabat 10101, Morocco; (S.D.); (I.C.); (I.E.B.); (O.F.F.)
| | - Daniela Scalas
- Department of Veterinary Science, University of Turin, Largo Braccini 2, 10095 Grugliasco, TO, Italy; (D.S.); (S.R.)
| | - Anniken Jerre
- Norwegian Veterinary Institute, P.O. Box 64, 1431 Ås, Norway;
| | - Ikhlass El Berbri
- Department of Pathology and Veterinary Public Health, Agronomic and Veterinary Institute Hassan II, BP: 6202, Rabat-Institutes, Rabat 10101, Morocco; (S.D.); (I.C.); (I.E.B.); (O.F.F.)
| | - Ouafaa Fassi Fihri
- Department of Pathology and Veterinary Public Health, Agronomic and Veterinary Institute Hassan II, BP: 6202, Rabat-Institutes, Rabat 10101, Morocco; (S.D.); (I.C.); (I.E.B.); (O.F.F.)
| | - Sergio Rosati
- Department of Veterinary Science, University of Turin, Largo Braccini 2, 10095 Grugliasco, TO, Italy; (D.S.); (S.R.)
| |
Collapse
|
7
|
Olech M. The genetic variability of small-ruminant lentiviruses and its impact on tropism, the development of diagnostic tests and vaccines and the effectiveness of control programmes. J Vet Res 2023; 67:479-502. [PMID: 38130459 PMCID: PMC10730557 DOI: 10.2478/jvetres-2023-0064] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/13/2023] [Indexed: 12/23/2023] Open
Abstract
Introduction Maedi-visna virus and caprine arthritis encephalitis virus are two closely related lentiviruses which cause multisystemic, progressive and persistent infection in goats and sheep. Because these viruses frequently cross the species barrier, they are considered to be one genetic group called small-ruminant lentiviruses (SRLV). They have in vivo tropism mainly for monocytes and macrophages and organ tropism with unknown mechanisms. Typical clinical signs are pneumonia in sheep, arthritis in goats, and mastitis in both species. Infection with SRLV cannot currently be treated or prevented, and control programmes are the only approaches to avoiding its spread. These programmes rely mainly on annual serological testing and elimination of positive animals. However, the high genetic and antigenic variability of SRLV complicate their early and definitive diagnosis. The objective of this review is to summarise the current knowledge of SRLV genetic variation and its implications for tropism, the development of diagnostic tests and vaccines and the effectiveness of control and eradication programmes. Material and Methods Subject literature was selected from the PubMed and the Google Scholar databases. Results The high genetic diversity of SRLV affects the performance of diagnostic tools and therefore control programmes. For the early and definitive diagnosis of SRLV infection, a combination of serological and molecular tests is suggested. Testing by PCR can also be considered for sub-yearling animals. There are still significant gaps in our knowledge of the epidemiology, immunology and biology of SRLV and their impact on animal production and welfare. Conclusion This information may aid selection of the most effective SRLV spread reduction measures.
Collapse
Affiliation(s)
- Monika Olech
- Department of Pathology, National Veterinary Research Institute, 24-100Puławy, Poland
| |
Collapse
|
8
|
Olech M, Hodor D, Toma C, Negoescu A, Taulescu M. First Molecular Characterization of Small Ruminant Lentiviruses Detected in Romania. Animals (Basel) 2023; 13:3718. [PMID: 38067069 PMCID: PMC10705781 DOI: 10.3390/ani13233718] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 09/10/2024] Open
Abstract
Small ruminant lentiviruses (SRLVs) are a group of retroviruses that cause multisystem chronic diseases in goats and sheep and lead to production losses in these animals, negatively affecting animal health and welfare. Although molecular characterization of SRLV field isolates has been performed in many countries, there is currently no information on SRLV genotypes circulating in sheep and goats in Romania. Therefore, the main objective of this study was to conduct a molecular and phylogenetic analysis of SRLVs from Romania and determine the degree of genetic relatedness of the obtained sequences to other known SRLV reference strains. A total of 81 sheep lung tissue samples and 41 sheep lung lymph node samples were tested using nested real-time PCR, and samples positive for real-time PCR were used to amplify an 800 bp gag-pol fragment and an overlapping 625 bp fragment of the gag gene. Pairwise DNA distance and phylogenetic analysis showed that the Romanian SRLV strains were closely related to the A2 and A3 strains based on gag-pol sequences and to the A3 and A17 subtypes based on gag sequences. No recombination events were found. Our results revealed that the Romanian sequences have similar epitope patterns to other existing subtypes, although E/K and R/K mutations in epitope 3 were found only in the Romanian sequences, which may have potential value in serological diagnosis. This study is the first report on the genetic characterization of SRLV strains circulating in Romania and provides new information on SRLV heterogeneity. Further detailed studies should be conducted to better understand the divergence of SRLV Romanian strains.
Collapse
Affiliation(s)
- Monika Olech
- Department of Pathology, National Veterinary Research Institute, 24-100 Puławy, Poland
| | - Dragoş Hodor
- Department of Veterinary Pathology, University of Agricultural Sciences and Veterinary Medicine, 3-5 Calea Manastur, 400372 Cluj-Napoca, Romania; (D.H.); (C.T.); (A.N.); (M.T.)
| | - Corina Toma
- Department of Veterinary Pathology, University of Agricultural Sciences and Veterinary Medicine, 3-5 Calea Manastur, 400372 Cluj-Napoca, Romania; (D.H.); (C.T.); (A.N.); (M.T.)
| | - Andrada Negoescu
- Department of Veterinary Pathology, University of Agricultural Sciences and Veterinary Medicine, 3-5 Calea Manastur, 400372 Cluj-Napoca, Romania; (D.H.); (C.T.); (A.N.); (M.T.)
| | - Marian Taulescu
- Department of Veterinary Pathology, University of Agricultural Sciences and Veterinary Medicine, 3-5 Calea Manastur, 400372 Cluj-Napoca, Romania; (D.H.); (C.T.); (A.N.); (M.T.)
| |
Collapse
|
9
|
Koshkina O, Deniskova T, Dotsev A, Kunz E, Selionova M, Medugorac I, Zinovieva N. Phylogenetic Analysis of Russian Native Sheep Breeds Based on mtDNA Sequences. Genes (Basel) 2023; 14:1701. [PMID: 37761841 PMCID: PMC10531259 DOI: 10.3390/genes14091701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Eurasia is represented by all climatic zones and various environments. A unique breed variety of farm animals has been developed in Russia, whose territory covers a large area of the continent. A total of 69 local breeds and types of dairy, wool, and meat sheep (Ovis aries) are maintained here. However, the genetic diversity and maternal origin of these local breeds have not been comprehensively investigated. In this study, we describe the diversity and phylogeny of Russian sheep breeds inhabiting different geographical regions based on the analysis of complete sequences of mitochondrial genomes (mtDNA). Complete mtDNA sequences of the studied sheep were obtained using next-generation sequencing technology (NGS). All investigated geographical groups of sheep were characterized by high haplotype (Hd = 0.9992) and nucleotide diversity (π = 0.00378). Analysis of the AMOVA results showed that genetic diversity was majorly determined by within-population differences (77.87%). We identified 128 haplotypes in all studied sheep. Haplotypes belonged to the following haplogroups: B (64.8%), A (28.9%), C (5.5%), and D (0.8%). Haplogroup B was predominant in the western part of Russia. A high level of mtDNA polymorphism in the studied groups of local sheep indicates the presence of a significant reserve of unique genotypes in Russia, which is to be explored.
Collapse
Affiliation(s)
- Olga Koshkina
- L.K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy 60, Podolsk Municipal District, Moscow 142132, Russia; (O.K.); (A.D.); (N.Z.)
| | - Tatiana Deniskova
- L.K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy 60, Podolsk Municipal District, Moscow 142132, Russia; (O.K.); (A.D.); (N.Z.)
| | - Arsen Dotsev
- L.K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy 60, Podolsk Municipal District, Moscow 142132, Russia; (O.K.); (A.D.); (N.Z.)
| | - Elisabeth Kunz
- Population Genomics Group, Department of Veterinary Sciences, Ludwig-Maximilians-University Munich, 82152 Munich, Germany; (E.K.); (I.M.)
| | - Marina Selionova
- Timiryazev Agricultural Academy, Russian State Agrarian University-Moscow, Timiryazevskaya Street, 41, Moscow 127550, Russia;
| | - Ivica Medugorac
- Population Genomics Group, Department of Veterinary Sciences, Ludwig-Maximilians-University Munich, 82152 Munich, Germany; (E.K.); (I.M.)
| | - Natalia Zinovieva
- L.K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy 60, Podolsk Municipal District, Moscow 142132, Russia; (O.K.); (A.D.); (N.Z.)
| |
Collapse
|
10
|
Ostuni A, Iovane V, Monné M, Crudele MA, Scicluna MT, Nardini R, Raimondi P, Frontoso R, Boni R, Bavoso A. A double-strain TM (gp45) polypeptide antigen and its application in the serodiagnosis of equine infectious anemia. J Virol Methods 2023; 315:114704. [PMID: 36842487 DOI: 10.1016/j.jviromet.2023.114704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 02/26/2023]
Abstract
Lentiviruses, including equine infectious anemia virus (EIAV), are considered viral quasispecies because of their intrinsic genetic, structural and phenotypic variability. Immunoenzymatic tests (ELISA) for EIAV reported in the literature were obtained mainly by using the capsid protein p26, which is derived almost exclusively from a single strain (Wyoming), and do not reflect the great potential epitopic variability of the EIAV quasispecies. In this investigation, the GenBank database was exploited in a systematic approach to design a set of representative protein antigens useful for EIAV serodiagnosis. The main bioinformatic tools used were clustering, molecular modelling, epitope predictions and aggregative/ solubility predictions. This approach led to the design of two antigenic proteins, i.e. a full sequence p26 capsid protein and a doublestrain polypeptide derived from the gp45 transmembrane protein fused to Maltose Binding Protein (MBP) that were expressed by recombinant DNA technology starting from synthetic genes, and analyzed by circular dichroism (CD) spectroscopy. Both proteins were used in an indirect ELISA test that can address some of the high variability of EIAV. The novel addition of the gp45 double-strain antigen contributed to enhance the diagnostic sensitivity and could be also useful for immunoblotting application.
Collapse
Affiliation(s)
- Angela Ostuni
- Department of Sciences, University of Basilicata, viale Ateneo Lucano 10, 85100 Potenza, Italy.
| | - Valentina Iovane
- Dipartimento di Agraria - Università degli Studi di Napoli Federico II -Via Università, 100 - 80055 Portici, NA, Italy
| | - Magnus Monné
- Department of Sciences, University of Basilicata, viale Ateneo Lucano 10, 85100 Potenza, Italy
| | | | - Maria Teresa Scicluna
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova, 1411, 00178 Roma, Italy
| | - Roberto Nardini
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova, 1411, 00178 Roma, Italy
| | | | - Raffaele Frontoso
- OneHEco APS, 84047 Capaccio Paestum, SA, Italy; Istituto Zooprofilattico Sperimentale del Mezzogiorno Via Salute, 2 - 80055 Portici, Napoli, Italy
| | - Raffaele Boni
- Department of Sciences, University of Basilicata, viale Ateneo Lucano 10, 85100 Potenza, Italy
| | - Alfonso Bavoso
- Department of Sciences, University of Basilicata, viale Ateneo Lucano 10, 85100 Potenza, Italy
| |
Collapse
|
11
|
de Sousa ALM, Rizaldo Pinheiro R, Furtado Araujo J, Mesquita Peixoto R, de Azevedo DAA, Cesar Lima AM, Marques Canuto K, Vasconcelos Ribeiro PR, de Queiroz Souza AS, Rocha Souza SC, de Amorim SL, Paula Amaral G, de Souza V, de Morais SM, Andrioli A, da Silva Teixeira MF. In vitro antiviral effect of ethanolic extracts from Azadirachta indica and Melia azedarach against goat lentivirus in colostrum and milk. Sci Rep 2023; 13:4677. [PMID: 36949145 PMCID: PMC10031174 DOI: 10.1038/s41598-023-31455-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 03/13/2023] [Indexed: 03/24/2023] Open
Abstract
This study aimed to evaluate, in vitro, the use of leaf extracts of Azadirachta indica (A. indica) and Melia azedarach (M. azedarach) as antivirals against caprine lentivirus (CLV) in colostrum and milk of goat nannies. These were collected from eight individuals and infected with the standard strain of CLV. Samples were then subdivided into aliquots and treated with 150 µg/mL of crude extract, and with ethyl acetate and methanol fractions for 30, 60, and 90 min. Next, somatic cells from colostrum and milk were co-cultured with cells from the ovine third eyelid. After this step, viral titers of the supernatants collected from treatments with greater efficacy in co-culture were assessed. The organic ethyl acetate fractions of both plants at 90 min possibly inhibited the viral activity of CLV by up to a thousandfold in colostrum. In milk, this inhibition was up to 800 times for the respective Meliaceae. In conclusion, the ethanolic fraction of ethyl acetate from both plants demonstrated efficacy against CLV in samples from colostrum and milk when subjected to treatment, which was more effective in colostrum.
Collapse
Affiliation(s)
- Ana Lidia Madeira de Sousa
- Laboratory of Virology (LABOVIR), State University of Ceará (UECE), Fortaleza, CE, Brazil.
- Faculdade Educar da Ibiapaba, Ípu, CE, Brazil.
| | | | | | - Renato Mesquita Peixoto
- Vale do Salgado University Center (UNIVS), Icó, CE, Brazil
- Terra Nordeste College (FATENE), Caucaia, CE, Brazil
| | | | - Ana Milena Cesar Lima
- Scholarship for Regional Scientific Development of the National Council for Scientific and Technological Development (DCR-CNPq/FUNCAP), Level C, Embrapa Goats and Sheep, Sobral, CE, Brazil
| | - Kirley Marques Canuto
- Multiuser Laboratory of Natural Products Chemistry, Embrapa Tropical Agroindustry, Fortaleza, CE, Brazil
| | | | | | | | - Sara Lucena de Amorim
- Department of Veterinary Medicine, Federal University of Rondônia, Rolim de Moura, RO, Brazil
| | | | - Viviane de Souza
- Laboratory of Microbiology, Embrapa Goats and Sheep, Sobral, CE, Brazil
| | - Selene Maia de Morais
- Laboratory of Chemistry and Natural Products (LQPN), Ceará State University, Fortaleza, CE, Brazil
| | - Alice Andrioli
- Laboratory of Virology, Embrapa Goats and Sheep, Sobral, CE, Brazil
| | | |
Collapse
|
12
|
Carrozza ML, Niewiadomska AM, Mazzei M, Abi-Said MR, Hué S, Hughes J, Gatseva A, Gifford RJ. Emergence and pandemic spread of small ruminant lentiviruses. Virus Evol 2023; 9:vead005. [PMID: 36793939 PMCID: PMC9924038 DOI: 10.1093/ve/vead005] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 01/02/2023] [Accepted: 01/17/2023] [Indexed: 01/19/2023] Open
Abstract
Small ruminant lentiviruses (SRLVs) cause chronic, persistent infections in populations of domestic sheep (Ovis aries) and goats (Capra hircus) worldwide. The vast majority of SRLV infections involve two genotypes (A and B) that spread in association with the emergence of global livestock trade. However, SRLVs have likely been present in Eurasian ruminant populations since at least the early Neolithic period. Here, we use phylogenetic and phylogeographic approaches to reconstruct the origin of pandemic SRLV strains and infer their historical pattern of global spread. We constructed an open computational resource ('Lentivirus-GLUE') via which an up-to-date database of published SRLV sequences, multiple sequence alignments (MSAs), and sequence-associated metadata can be maintained. We used data collated in Lentivirus-GLUE to perform a comprehensive phylogenetic investigation of global SRLV diversity. Phylogenies reconstructed from genome-length alignments reveal that the deep divisions in the SRLV phylogeny are consistent with an ancient split into Eastern (A-like) and Western (B-like) lineages as agricultural systems disseminated out of domestication centres during the Neolithic period. These findings are also consistent with historical and phylogeographic evidence linking the early 20th century emergence of SRLV-A to the international export of Central Asian Karakul sheep. Investigating the global diversity of SRLVs can help reveal how anthropogenic factors have impacted the ecology and evolution of livestock diseases. The open resources generated in our study can expedite these studies and can also serve more broadly to facilitate the use of genomic data in SRLV diagnostics and research.
Collapse
Affiliation(s)
| | - Anna-Maria Niewiadomska
- Virus Pathogen Resource, J. Craig Venter Institute, 9605 Medical Center Drive, Suite 150, Rockville, MD 20850, USA
| | | | - Mounir R Abi-Said
- Faculty of Sciences II, Lebanese University, Campus Pierre Gemayel Fanar, Jdeidet 90656, Lebanon
| | | | | | | | | |
Collapse
|
13
|
Braz GF, Heinemann MB, Reis JKP, Teixeira BM, Cruz JCM, Rajão DS, Oliveira FG, Alves F, Castro RS, Leite RC, Valas S. Genetic and antigenic characterization of Brazilian SRLV strains: Natural small ruminant interspecies transmission from mixed herds. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 103:105322. [PMID: 35753623 DOI: 10.1016/j.meegid.2022.105322] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 03/27/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Cross-species transmission events and mixed infection of small ruminant lentiviruses (SRLVs) were studied in seven goats and two sheep from three small ruminant mixed flocks from Northeast and Southeast Brazil. Genetic and antigenic analyses with gag/env genes and ELISA multiepitope SU1/SU5 recombinant antigens were carried out, respectively. The genetic analysis of gag and env sequences showed high viral diversity in both species, MVV-like (subtype A1) and CAEV-like B1 in goats, and CAEV-like (subtype B1) in sheep, revealing SRLV interspecies transmission from sheep to goats and vice versa in Brazilian farms. Two Brazilian caprine lentiviruses were segregated in two new genetic clades based on gag analyses, which suggests a new classification into heterogenic genotype A. Furthermore, goat isolates were grouped into subtype A1 and B1 clusters. Cross-reactive antibodies were detected in goats using ELISA with a recombinant antigen carrying SU1 and SU5 immunodominant epitopes; the results showed anti-CAEV and MVV antibodies in goats and anti-CAEV antibodies in sheep. This result can be associated with the high divergence in the V4 region due to SRLV variability. All results confirm cross-species infection of SRLV in Brazilian mixed herds.
Collapse
Affiliation(s)
- G F Braz
- Curso de Medicina Veterinária, Centro Universitário INTA-UNINTA, Brazil.
| | - M B Heinemann
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, USP, Brazil.
| | - J K P Reis
- Laboratório de Retroviroses, Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, UFMG, Brazil.
| | - B M Teixeira
- Curso de Medicina Veterinária, Centro Universitário INTA-UNINTA, Brazil
| | - J C M Cruz
- Curso de Medicina Veterinária, Centro Universitário INTA-UNINTA, Brazil
| | - D S Rajão
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, United States.
| | | | - F Alves
- Departamento de Fisiologia e Biofísica - ICB, UFMG, Brazil.
| | - R S Castro
- Departamento de Medicina Veterinária, UFRPE, Brazil.
| | - R C Leite
- Laboratório de Retroviroses, Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, UFMG, Brazil
| | - S Valas
- Agence Française de Sécurité Sanitaire des Aliments - ANSES, Niort Laboratory, France
| |
Collapse
|
14
|
Wu JY, Mi XY, Yang XY, Wei J, Meng XX, Bolati H, Wei YR. The First Genomic Analysis of Visna/Maedi Virus Isolates in China. Front Vet Sci 2022; 9:846634. [PMID: 35812856 PMCID: PMC9263623 DOI: 10.3389/fvets.2022.846634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
Visna/Maedi virus (VMV) is a neglected pathogen that damages sheep and goats' nervous and respiratory systems. The virus was discovered 80 years ago and has been endemic in China for nearly four decades; nevertheless, there is little information regarding Chinese isolates' genotypes and genomic characteristics. In this study, the proviral DNA of strains isolated in 1985 and 1994 were extracted, and the proviral DNA was subjected to Illumina sequencing combined with Sanger sequencing of poor coverage regions. The results showed that the two isolates were clustered with genotype A2 and shared 78.3%−89.1% similarity to reference VMV genome sequences, with the highest similarity (88.7%−89.1%) to the USA strain USMARC-200212120-r (accession no. MT993908.1) and lowest similarity (78.3%−78.5%) to the Italian strain SRLV009 (accession no. MG554409.1). A maximum-likelihood tree showed that the Chinese VMV strains and the USA strain 1150 (accession no. MH916859.1) comprise a monophyletic group with a short tree branch. Our data filled the gap in genomic analysis and viral evolution in Chinese VMV strains, and would be benefit China's source-tracing and eradication program development in China.
Collapse
|
15
|
Alternative Molecular Tools for the Fight against Infectious Diseases of Small Ruminants: Native Sicilian Sheep Breeds and Maedi-Visna Genetic Susceptibility. Animals (Basel) 2022; 12:ani12131630. [PMID: 35804527 PMCID: PMC9264923 DOI: 10.3390/ani12131630] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Local breeds represent a precious reservoir of genetic diversity, crucial to adapting to environmental and climate changes and reacting to evolving diseases. In Sicily, four native dairy breeds, namely Valle del Belìce, Comisana, Barbaresca, and Pinzirita, have adapted to low-input farming systems and semiarid environments, having an essential role in producing high-quality milk and typical dairy products. Maedi-visna (MV) is one of the most important chronic diseases affecting the sheep sector worldwide, causing production losses. Different target genes play an important role in immunity and in genetic resilience to MV, such as TMEM154, TLR9, MYD88, and CCR5. A major host genetic component to sheep MV susceptibility was identified in the ovine TMEM154 gene. Animals with either of TMEM154 haplotypes that encode glutamate at position 35 (E35) of the protein are at higher risk of MV infection than those homozygous with lysine at position 35 (K35). In the tested Sicilian breeds, animals carrying the allele E35 showed a greater risk of being serologically positive. Comisana, Barbaresca, and Pinzirita breeds showed a good frequency of the protective allele K35, whilst a high frequency of risk allele was found in the Valle del Belìce breed, related to the selection strategies addressed to obtain a productive dairy sheep. Our results highlight the importance of the preservation of autochthonous breeds as a reservoir of natural resistance against infectious disease. Abstract Maedi-visna (MV) is a disease caused by small ruminant lentiviruses. It is included in the list of notifiable terrestrial animal diseases due to economic losses and animal welfare harm in the sheep sector. To date, control programs remain the onliest approach to avoiding infection. The allelic variant p.Glu35Lys (E35K) of the TMEM154 gene has been strongly associated with host vulnerability to MV illness. The present study aimed to investigate the association of TMEM154 E35K allele frequencies with MV susceptibility in native Sicilian sheep breeds. More than 400 animals from 14 local sheep were serologically tested and genotyped for the TMEM154 E35K polymorphism. The local breeds displayed different values of MV seroprevalence, with the lowest antibody prevalence in Barbaresca and Pinzirita breeds. TMEM154 protective allele (K35) was less frequent than the risk allele (E35) in Valle del Belìce breed, whereas the other three breeds showed a more balanced alleles distribution. A positive association between seroprevalence and genotype was found in the entire sample set. The risk of infection resulted in more than 3-fold times as high in sheep with EK and EE genotype compared to the KK genotype. Our data could be helpful in establishing selection breeding programs aimed at reducing MV infection in Sicilian sheep farming and encouraging the breeding of native breeds.
Collapse
|
16
|
Hailat NQ, Algharaibeh TB, Al-Eitan LN. Pathological, molecular, and serological study of small ruminant lentiviruses in Jordan. Vet World 2022; 15:1423-1429. [PMID: 35993078 PMCID: PMC9375225 DOI: 10.14202/vetworld.2022.1423-1429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/18/2022] [Indexed: 11/22/2022] Open
Abstract
Background and Aim: Maedi-visna is a chronic viral disease of sheep with worldwide distribution causing substantial economic losses to the small ruminant industry. Pneumonia and mastitis are the main manifestations of the disease. This study aimed to investigate the occurrence of maedi-visna virus (MVV) in sheep using histopathology and nested polymerase chain reaction (PCR) techniques and also to estimate the seroprevalence of small ruminant lentiviruses (SRLVs) in sheep and goats using commercially available enzyme-linked immunosorbent assay (ELISA). Materials and Methods: Lung tissue samples from 380 sheep were collected and fixed in 10% formalin for histopathology and molecular diagnosis of MVV. Separately, 806 serum samples were randomly collected from 633 sheep and 173 goats to detect the seroprevalence of SRLVs using ELISA. Results: The results showed that 4.7% of lung samples (n=190) were positive by both histopathology and nested PCR, 5.8% (n = 380) were positive by histopathology only (have lymphoid follicular hyperplasia), and 7.4% (n = 190) were positive by nested PCR only. Statistical analysis revealed a moderate agreement between the two tests (Kappa=0.451, n = 190). Serology results revealed that sheep and/or goats herd prevalence was 59.8% (n = 87), while individual seroprevalence in sheep (40.1%, n = 633) was significantly higher than that in the other six countries and also significantly higher than that in goats (18.5%, n = 173) (at p < 0.05). Conclusion: The moderate statistical agreement between nested PCR and histopathological diagnosis of MVV in formalin-fixed paraffin-embedded sheep lung tissue samples (Kappa=0.451, n = 190) suggests combining both tests for more sensitive MVV detection in sheep lung samples. SRLVs seropositivity in sheep was significantly higher than in goats, thus, it is of high concern and urges the inquiry into the economic impact of the disease and the financial benefit of adopting eradication measures.
Collapse
Affiliation(s)
- Nabil Q. Hailat
- Department of Veterinary Pathology and Public Health, Jordan University of Science and Technology, Irbid, Jordan
| | - Tameem B. Algharaibeh
- Department of Veterinary Pathology and Public Health, Jordan University of Science and Technology, Irbid, Jordan
| | - Laith N. Al-Eitan
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
17
|
Machová K, Málková A, Vostrý L. Sheep Post-Domestication Expansion in the Context of Mitochondrial and Y Chromosome Haplogroups and Haplotypes. Genes (Basel) 2022; 13:genes13040613. [PMID: 35456419 PMCID: PMC9025449 DOI: 10.3390/genes13040613] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/17/2022] [Accepted: 03/26/2022] [Indexed: 01/09/2023] Open
Abstract
Mitochondrial DNA and nonrecombinant parts of Y-chromosome DNA are a great tool for looking at a species’ past. They are inherited for generations almost unaffected because they do not participate in recombination; thus, the time of occurrence of each mutation can be estimated based on the average mutation rate. Thanks to this, male and female haplogroups guide confirming events in the distant past (potential centers of domestication, settlement of areas, trade connections) as well as in modern breeding (crossbreeding, confirmation of paternity). This research focuses mainly on the development of domestic sheep and its post-domestication expansion, which has occurred through human trade from one continent to another. So far, five mitochondrial and five Y-chromosome haplogroups and dozens of their haplotypes have been detected in domestic sheep through studies worldwide. Mitochondrial DNA variability is more or less correlated with distance from the domestication center, but variability on the recombinant region of the Y chromosome is not. According to available data, central China shows the highest variability of male haplogroups and haplotypes.
Collapse
Affiliation(s)
- Karolína Machová
- Department of Genetics and Breeding, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic;
- Correspondence:
| | - Anežka Málková
- Department of Animal Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic;
| | - Luboš Vostrý
- Department of Genetics and Breeding, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic;
| |
Collapse
|
18
|
Genetic Characterization of Small Ruminant Lentiviruses (SRLVs) Circulating in Naturally Infected Sheep in Central Italy. Viruses 2022; 14:v14040686. [PMID: 35458416 PMCID: PMC9032261 DOI: 10.3390/v14040686] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 12/21/2022] Open
Abstract
Small ruminant lentiviruses (SRLVs) represent a very heterogeneous group of ss-RNA viruses that infect sheep and goats worldwide. They cause important, deleterious effects on animal production and limit the animal trade. SRLVs show a high genetic variability due to high mutation rate and frequent recombination events. Indeed, five genotypes (A–E) and several subtypes have been detected. The aim of this work was to genetically characterize SRLVs circulating in central Italy. On this basis, a phylogenetic study on the gag-pol genetic region of 133 sheep, collected from 19 naturally infected flocks, was conducted. In addition, to evaluate the frequency of mutation and the selective pressure on this region, a WebLogo 3 analysis was performed, and the dN/dS ratio was computed. The results showed that 26 samples out of 133 were clustered in genotype A and 106 samples belonged to genotype B, as follows: A9 (n = 8), A11 (n = 10), A24 (n = 7), B1 (n = 2), B2 (n = 59), and B3 (n = 45). No recombination events were found. Mutations were localized mainly in the VR-2 region, and the dN/dS ratio of 0.028 indicated the existence of purifying selection. Since the genetic diversity of SRLVs could make serological identification difficult, it is important to perform molecular characterization to ensure a more reliable diagnosis, to maintain flock health status, and for the application of local and national control programs.
Collapse
|
19
|
Olech M, Kuźmak J. Molecular Characterization of Small Ruminant Lentiviruses in Polish Mixed Flocks Supports Evidence of Cross Species Transmission, Dual Infection, a Recombination Event, and Reveals the Existence of New Subtypes within Group A. Viruses 2021; 13:2529. [PMID: 34960798 PMCID: PMC8708130 DOI: 10.3390/v13122529] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/10/2021] [Accepted: 12/14/2021] [Indexed: 02/06/2023] Open
Abstract
Small ruminant lentiviruses (SRLVs) are a group of highly divergent viruses responsible for global infection in sheep and goats. In a previous study we showed that SRLV strains found in mixed flocks in Poland belonged to subtype A13 and A18, but this study was restricted only to the few flocks from Małopolska region. The present work aimed at extending earlier findings with the analysis of SRLVs in mixed flocks including larger numbers of animals and flocks from different part of Poland. On the basis of gag and env sequences, Polish SRLVs were assigned to the subtypes B2, A5, A12, and A17. Furthermore, the existence of a new subtypes, tentatively designed as A23 and A24, were described for the first time. Subtypes A5 and A17 were only found in goats, subtype A24 has been detected only in sheep while subtypes A12, A23, and B2 have been found in both sheep and goats. Co-infection with strains belonging to different subtypes was evidenced in three sheep and two goats originating from two flocks. Furthermore, three putative recombination events were identified within gag and env SRLVs sequences derived from three sheep. Amino acid (aa) sequences of immunodominant epitopes in CA protein were well conserved while Major Homology Region (MHR) had more alteration showing unique mutations in sequences of subtypes A5 and A17. In contrast, aa sequences of surface glycoprotein exhibited higher variability confirming type-specific variation in the SU5 epitope. The number of potential N-linked glycosylation sites (PNGS) ranged from 3 to 6 in respective sequences and were located in different positions. The analysis of LTR sequences revealed that sequences corresponding to the TATA box, AP-4, AML-vis, and polyadenylation signal (poly A) were quite conserved, while considerable alteration was observed in AP-1 sites. Interestingly, our results revealed that all sequences belonging to subtype A17 had unique substitution T to A in the fifth position of TATA box and did not have a 11 nt deletion in the R region which was noted in other sequences from Poland. These data revealed a complex picture of SRLVs population with ovine and caprine strains belonging to group A and B. We present strong and multiple evidence of dually infected sheep and goats in mixed flocks and present evidence that these viruses can recombine in vivo.
Collapse
Affiliation(s)
- Monika Olech
- Department of Swine Diseases, National Veterinary Research Institute, 24-100 Pulawy, Poland
- Department of Biochemistry, National Veterinary Research Institute, 24-100 Pulawy, Poland;
| | - Jacek Kuźmak
- Department of Biochemistry, National Veterinary Research Institute, 24-100 Pulawy, Poland;
| |
Collapse
|
20
|
Bazzucchi M, Pierini I, Gobbi P, Pirani S, Torresi C, Iscaro C, Feliziani F, Giammarioli M. Genomic Epidemiology and Heterogeneity of SRLV in Italy from 1998 to 2019. Viruses 2021; 13:v13122338. [PMID: 34960606 PMCID: PMC8706641 DOI: 10.3390/v13122338] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/12/2021] [Accepted: 11/19/2021] [Indexed: 01/28/2023] Open
Abstract
Small ruminant lentiviruses (SRLV) are viruses that retro-transcribe RNA to DNA and show high rates of genetic variability. SRLV affect animals with strains specific for each host species (sheep or goats), resulting in a series of clinical manifestations depending on the virulence of the strain, the host’s genetic background and farm production system. The aim of this work was to present an up-to-date overview of the genomic epidemiology and genetic diversity of SRLV in Italy over time (1998–2019). In this study, we investigated 219 SRLV samples collected from 17 different Italian regions in 178 geographically distinct herds by CEREL. Our genetic study was based on partial sequencing of the gag-pol gene (800 bp) and phylogenetic analysis. We identified new subtypes with high heterogeneity, new clusters and recombinant forms. The genetic diversity of Italian SRLV strains may have diagnostic and immunological implications that affect the performance of diagnostic tools. Therefore, it is extremely important to increase the control of genomic variants to improve the control measures.
Collapse
Affiliation(s)
- Moira Bazzucchi
- Istituto Zooprofilattico Sperimentale Umbrita-Marche “Togo Rosati”, 06126 Perugia, Italy; (M.B.); (I.P.); (P.G.); (S.P.); (C.T.); (C.I.); (F.F.)
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini”, 27100 Pavia, Italy
| | - Ilaria Pierini
- Istituto Zooprofilattico Sperimentale Umbrita-Marche “Togo Rosati”, 06126 Perugia, Italy; (M.B.); (I.P.); (P.G.); (S.P.); (C.T.); (C.I.); (F.F.)
| | - Paola Gobbi
- Istituto Zooprofilattico Sperimentale Umbrita-Marche “Togo Rosati”, 06126 Perugia, Italy; (M.B.); (I.P.); (P.G.); (S.P.); (C.T.); (C.I.); (F.F.)
| | - Silvia Pirani
- Istituto Zooprofilattico Sperimentale Umbrita-Marche “Togo Rosati”, 06126 Perugia, Italy; (M.B.); (I.P.); (P.G.); (S.P.); (C.T.); (C.I.); (F.F.)
| | - Claudia Torresi
- Istituto Zooprofilattico Sperimentale Umbrita-Marche “Togo Rosati”, 06126 Perugia, Italy; (M.B.); (I.P.); (P.G.); (S.P.); (C.T.); (C.I.); (F.F.)
| | - Carmen Iscaro
- Istituto Zooprofilattico Sperimentale Umbrita-Marche “Togo Rosati”, 06126 Perugia, Italy; (M.B.); (I.P.); (P.G.); (S.P.); (C.T.); (C.I.); (F.F.)
| | - Francesco Feliziani
- Istituto Zooprofilattico Sperimentale Umbrita-Marche “Togo Rosati”, 06126 Perugia, Italy; (M.B.); (I.P.); (P.G.); (S.P.); (C.T.); (C.I.); (F.F.)
| | - Monica Giammarioli
- Istituto Zooprofilattico Sperimentale Umbrita-Marche “Togo Rosati”, 06126 Perugia, Italy; (M.B.); (I.P.); (P.G.); (S.P.); (C.T.); (C.I.); (F.F.)
- Correspondence:
| |
Collapse
|
21
|
Ostuni A, Monné M, Crudele MA, Cristinziano PL, Cecchini S, Amati M, De Vendel J, Raimondi P, Chassalevris T, Dovas CI, Bavoso A. Design and structural bioinformatic analysis of polypeptide antigens useful for the SRLV serodiagnosis. J Virol Methods 2021; 297:114266. [PMID: 34454989 DOI: 10.1016/j.jviromet.2021.114266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/30/2021] [Accepted: 08/18/2021] [Indexed: 10/20/2022]
Abstract
Due to their intrinsic genetic, structural and phenotypic variability the Lentiviruses, and specifically small ruminant lentiviruses (SRLV), are considered viral quasispecies with a population structure that consists of extremely large numbers of variant genomes, termed mutant spectra or mutant cloud. Immunoenzymatic tests for SRLVs are available but the dynamic heterogeneity of the virus makes the development of a diagnostic "golden standard" extremely difficult. The ELISA reported in the literature have been obtained using proteins derived from a single strain or they are multi-strain based assay that may increase the sensitivity of the serological diagnosis. Hundreds of SRLV protein sequences derived from different viral strains are deposited in GenBank. The aim of this study is to verify if the database can be exploited with the help of bioinformatics in order to have a more systematic approach in the design of a set of representative protein antigens useful in the SRLV serodiagnosis. Clustering, molecular modelling, molecular dynamics, epitope predictions and aggregative/solubility predictions were the main bioinformatic tools used. This approach led to the design of SRLV antigenic proteins that were expressed by recombinant DNA technology using synthetic genes, analyzed by CD spectroscopy, tested by ELISA and preliminarily compared to currently commercially available detection kits.
Collapse
Affiliation(s)
- Angela Ostuni
- Department of Sciences, University of Basilicata, viale Ateneo Lucano 10, 85100, Potenza, Italy.
| | - Magnus Monné
- Department of Sciences, University of Basilicata, viale Ateneo Lucano 10, 85100, Potenza, Italy
| | | | - Pier Luigi Cristinziano
- Department of Sciences, University of Basilicata, viale Ateneo Lucano 10, 85100, Potenza, Italy
| | - Stefano Cecchini
- Department of Sciences, University of Basilicata, viale Ateneo Lucano 10, 85100, Potenza, Italy
| | - Mario Amati
- Department of Sciences, University of Basilicata, viale Ateneo Lucano 10, 85100, Potenza, Italy
| | | | | | - Taxiarchis Chassalevris
- Diagnostic Laboratory, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 11 Stavrou Voutyra Str., 54627, Thessaloniki, Greece
| | - Chrysostomos I Dovas
- Diagnostic Laboratory, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 11 Stavrou Voutyra Str., 54627, Thessaloniki, Greece
| | - Alfonso Bavoso
- Department of Sciences, University of Basilicata, viale Ateneo Lucano 10, 85100, Potenza, Italy
| |
Collapse
|
22
|
Kalogianni AI, Stavropoulos I, Chaintoutis SC, Bossis I, Gelasakis AI. Serological, Molecular and Culture-Based Diagnosis of Lentiviral Infections in Small Ruminants. Viruses 2021; 13:1711. [PMID: 34578292 PMCID: PMC8473411 DOI: 10.3390/v13091711] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/22/2021] [Accepted: 08/25/2021] [Indexed: 02/01/2023] Open
Abstract
Small ruminant lentiviruses (SRLVs) infections lead to chronic diseases and remarkable economic losses undermining health and welfare of animals and the sustainability of farms. Early and definite diagnosis of SRLVs infections is the cornerstone for any control and eradication efforts; however, a "gold standard" test and/or diagnostic protocols with extensive applicability have yet to be developed. The main challenges preventing the development of a universally accepted diagnostic tool with sufficient sensitivity, specificity, and accuracy to be integrated in SRLVs control programs are the genetic variability of SRLVs associated with mutations, recombination, and cross-species transmission and the peculiarities of small ruminants' humoral immune response regarding late seroconversion, as well as intermittent and epitope-specific antibody production. The objectives of this review paper were to summarize the available serological and molecular assays for the diagnosis of SRLVs, to highlight their diagnostic performance emphasizing on advantages and drawbacks of their application, and to discuss current and future perspectives, challenges, limitations and impacts regarding the development of reliable and efficient tools for the diagnosis of SRLVs infections.
Collapse
Affiliation(s)
- Aphrodite I. Kalogianni
- Laboratory of Anatomy and Physiology of Farm Animals, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens (AUA), Iera Odos 75 Str., 11855 Athens, Greece
| | - Ioannis Stavropoulos
- Laboratory of Animal Husbandry, Department of Agricultural Sciences, School of Agriculture, Forestry and Natural Resources, Aristotle University of Thessaloniki (AUTh), 54124 Thessaloniki, Greece; (Ι.S.); (I.B.)
| | - Serafeim C. Chaintoutis
- Diagnostic Laboratory, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki (AUTh), 11 Stavrou Voutyra Str., 54627 Thessaloniki, Greece;
| | - Ioannis Bossis
- Laboratory of Animal Husbandry, Department of Agricultural Sciences, School of Agriculture, Forestry and Natural Resources, Aristotle University of Thessaloniki (AUTh), 54124 Thessaloniki, Greece; (Ι.S.); (I.B.)
| | - Athanasios I. Gelasakis
- Laboratory of Anatomy and Physiology of Farm Animals, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens (AUA), Iera Odos 75 Str., 11855 Athens, Greece
| |
Collapse
|
23
|
Ramírez H, Echeverría I, Benito AA, Glaria I, Benavides J, Pérez V, de Andrés D, Reina R. Accurate Diagnosis of Small Ruminant Lentivirus Infection Is Needed for Selection of Resistant Sheep through TMEM154 E35K Genotyping. Pathogens 2021. [DOI: https://doi.org/10.3390/pathogens10010083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Small ruminant lentiviruses (SRLV) cause an incurable multiorganic disease widely spread in sheep and goats that disturbs animal welfare and production. In the absence of a vaccine, control measures have been traditionally based on early diagnosis and breeding with virus-inactivated colostrum with segregation of seropositive animals. However, antigenic heterogeneity, poor antibody production due to low viral load, and single strain design of most available ELISA, pose a threat to SRLV diagnosis. Genome-wide association studies have described TMEM154 E35K polymorphism as a good genetic marker for selection of resistant animals in some American and European breeds. In this study, a multitargeted serological and virological screening of more than 500 animals from four different breeds (latxa, raza Navarra, assaf, and churra) attending to SRLV infection status was performed. Then, animals were genotyped to characterize TMEM154 E35K polymorphism. ELISA procedures, individually considered, only identified a proportion of the seropositive animals, and PCR detected a fraction of seronegative animals, globally offering different animal classifications according to SRLV infection status. TMEM154 allele frequency differed substantially among breeds and a positive association between seroprevalence and TMEM154 genotype was found only in one breed. Selection based on TMEM154 may be suitable for specific ovine breeds or SRLV strains, however generalization to the whole SRLV genetic spectrum, ovine breeds, or epidemiological situation may need further validation.
Collapse
|
24
|
Ramírez H, Echeverría I, Benito AA, Glaria I, Benavides J, Pérez V, de Andrés D, Reina R. Accurate Diagnosis of Small Ruminant Lentivirus Infection Is Needed for Selection of Resistant Sheep through TMEM154 E35K Genotyping. Pathogens 2021; 10:pathogens10010083. [PMID: 33478070 PMCID: PMC7835874 DOI: 10.3390/pathogens10010083] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/05/2021] [Accepted: 01/13/2021] [Indexed: 02/05/2023] Open
Abstract
Small ruminant lentiviruses (SRLV) cause an incurable multiorganic disease widely spread in sheep and goats that disturbs animal welfare and production. In the absence of a vaccine, control measures have been traditionally based on early diagnosis and breeding with virus-inactivated colostrum with segregation of seropositive animals. However, antigenic heterogeneity, poor antibody production due to low viral load, and single strain design of most available ELISA, pose a threat to SRLV diagnosis. Genome-wide association studies have described TMEM154 E35K polymorphism as a good genetic marker for selection of resistant animals in some American and European breeds. In this study, a multitargeted serological and virological screening of more than 500 animals from four different breeds (latxa, raza Navarra, assaf, and churra) attending to SRLV infection status was performed. Then, animals were genotyped to characterize TMEM154 E35K polymorphism. ELISA procedures, individually considered, only identified a proportion of the seropositive animals, and PCR detected a fraction of seronegative animals, globally offering different animal classifications according to SRLV infection status. TMEM154 allele frequency differed substantially among breeds and a positive association between seroprevalence and TMEM154 genotype was found only in one breed. Selection based on TMEM154 may be suitable for specific ovine breeds or SRLV strains, however generalization to the whole SRLV genetic spectrum, ovine breeds, or epidemiological situation may need further validation.
Collapse
Affiliation(s)
- Hugo Ramírez
- Virology, Genetics and Molecular Biology Laboratory, Faculty of Higher Education, Cuautitlan, Veterinary Medicine, Campus 4, National Autonomous University of Mexico, Km. 2.5 Carretera Cuautitlán-Teoloyucan, San Sebastián Xhala, Cuautitlán Izcalli Estado de México C.P. 54714, Mexico;
| | - Irache Echeverría
- Animal Health Department, Institute of Agrobiotechnology (IdAB), CSIC-Government of Navarra, 31192 Navarra, Spain; (I.E.); (I.G.); (D.d.A.)
| | - Alfredo A. Benito
- Molecular and Cell Biology Department, EXOPOL SL, 50840 Zaragoza, Spain;
| | - Idoia Glaria
- Animal Health Department, Institute of Agrobiotechnology (IdAB), CSIC-Government of Navarra, 31192 Navarra, Spain; (I.E.); (I.G.); (D.d.A.)
| | - Julio Benavides
- Mountain Livestock Institute (IGM), CSIC-University of León, 24346 León, Spain;
| | - Valentín Pérez
- Department of Animal Health, University of León, 24071 León, Spain;
| | - Damián de Andrés
- Animal Health Department, Institute of Agrobiotechnology (IdAB), CSIC-Government of Navarra, 31192 Navarra, Spain; (I.E.); (I.G.); (D.d.A.)
| | - Ramsés Reina
- Animal Health Department, Institute of Agrobiotechnology (IdAB), CSIC-Government of Navarra, 31192 Navarra, Spain; (I.E.); (I.G.); (D.d.A.)
- Correspondence: ; Tel.: +34-948-168022
| |
Collapse
|
25
|
Acevedo Jiménez GE, Tórtora Pérez JL, Rodríguez Murillo C, Arellano Reynoso B, Ramírez Álvarez H. Serotyping versus genotyping in infected sheep and goats with small ruminant lentiviruses. Vet Microbiol 2021. [DOI: https://doi.org/10.1016/j.vetmic.2020.108931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
26
|
Olech M, Kuźmak J. Molecular Characterization of Small Ruminant Lentiviruses of Subtype A5 Detected in Naturally Infected but Clinically Healthy Goats of Carpathian Breed. Pathogens 2020; 9:pathogens9120992. [PMID: 33256245 PMCID: PMC7761454 DOI: 10.3390/pathogens9120992] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 11/18/2022] Open
Abstract
Small ruminant lentiviruses (SRLVs) are widespread in sheep and goats in Poland, and several subtypes were identified and molecularly characterized up to date. This is the first study that characterizes the molecular properties of A5 strains of SRLV detected in naturally infected, but clinically healthy, Carpathian goats. Segments from three genomic regions (gag, env, and LTR) were analyzed. Genetic distance, pairwise comparison, and phylogenetic analysis revealed that Polish SRLV A5 sequences are closely related to the Swiss and German A5 sequences suggesting a common origin. The epidemiological linkage was identified particularly between the small ruminants of Germany and Poland. Amino acid sequences of immunodominant regions in CA protein were well-conserved within analyzed strains; however, they showed some remarkable changes like substitution (D) to (E), at position 90 in Major Homology Region (MHR) and (T) to (S), at position 141 in epitope 3. In contrast, aa sequences of surface glycoprotein exhibited the highest variability confirming type-specific variation in SU5 epitope. Two deletions in the U3 region of A5 strains were noted: One (8 nt) located near the 5′ end of the U3 region and the other (29 nt) located in the central region of U3. Additionally, all A5 strains had specific deletion (10 nt) in the R region. Furthermore, we did not find a correlation between copies of the CAAAT motif and clinical manifestation in infected animals. These data showed some remarkable features in the viral genome of A5 strains, which may be related to the attenuated phenotype in vivo, characterized by the lack of any clinical signs in infected goats. Certainly, more studies are required to support the hypothesis that these A5 viruses are of low pathogenicity for goats. We want to focus our future studies on the analysis of the whole genomes of these isolates and their biological properties, as well as on clinicopathological studies of goats infected by A5 SRLV, aiming to clarify the pathogenic potential of these viruses.
Collapse
Affiliation(s)
- Monika Olech
- Correspondence: ; Tel.: +(48)-8188-9300; Fax: +(48)-8188-62595
| | | |
Collapse
|
27
|
Acevedo Jiménez GE, Tórtora Pérez JL, Rodríguez Murillo C, Arellano Reynoso B, Ramírez Álvarez H. Serotyping versus genotyping in infected sheep and goats with small ruminant lentiviruses. Vet Microbiol 2020; 252:108931. [PMID: 33271419 DOI: 10.1016/j.vetmic.2020.108931] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/15/2020] [Indexed: 02/05/2023]
Abstract
Despite SRLV infection being endemic in Mexico, there is little information regarding which genotypes are present. We compared serotyping and PCR-sequencing results from sheep and goats infected with SRLV. We separated plasma and peripheral blood leukocytes (PBL) from 1940 blood samples from sheep and goats from 12 states across Mexico. To detect SRLV infection, we tested plasma samples using two commercial ELISA kits (VMRD and Eradikit SRLV Screening). Then, we serotyped the infecting virus (A/ B) using Eradikit SRLV Genotyping. PBL DNA was used to detect the proviral genome via PCR. Positive amplicons were sequenced to identify viral genotypes using a phylogenetic analysis. Also, we analysed for residues differences in the sequences of a capsid epitope between genotypes. The serological results indicated a higher detection of seropositive animals using the VMRD ELISA compared to Eradikit, with 21 % and 15.3 % more in sheep and goats respectively. Only 25.7 % of the ELISA serotyping results matched those from PCR-sequencing. PCR-sequencing was able to identify genotype A, B and coinfections in animals classified as indeterminate by the ELISA test. This lack of sensitivity may be related to the lack of epitopes from the matrix and transmembrane peptides used by ELISA screening. Sequences analysis revealed that SRLVs found in sheep cluster with genetic subtypes A2 and B1, while those in goats cluster with subtypes A1 and B1. Serotyping did not prove to be an adequate method for predicting the viral genotype (A and / or B) in infections caused by SRLV.
Collapse
Affiliation(s)
- Gabriel Eduardo Acevedo Jiménez
- Virology, Genetics and Molecular Biology Laboratory, Faculty of Higher Education, Cuautitlán, Veterinary Medicine, Campus 4, National Autonomous University of Mexico, Km. 2.5 ctra. Cuautitlán-Teoloyucan, San Sebastián Xhala, Cuautitlán Izcalli Estado de México, C.P. 54714, Mexico
| | - Jorge Luis Tórtora Pérez
- Virology, Genetics and Molecular Biology Laboratory, Faculty of Higher Education, Cuautitlán, Veterinary Medicine, Campus 4, National Autonomous University of Mexico, Km. 2.5 ctra. Cuautitlán-Teoloyucan, San Sebastián Xhala, Cuautitlán Izcalli Estado de México, C.P. 54714, Mexico
| | - Cecilia Rodríguez Murillo
- Virology, Genetics and Molecular Biology Laboratory, Faculty of Higher Education, Cuautitlán, Veterinary Medicine, Campus 4, National Autonomous University of Mexico, Km. 2.5 ctra. Cuautitlán-Teoloyucan, San Sebastián Xhala, Cuautitlán Izcalli Estado de México, C.P. 54714, Mexico
| | - Beatriz Arellano Reynoso
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Avenida Universidad 3000, 04510, CDMX, Mexico
| | - Hugo Ramírez Álvarez
- Virology, Genetics and Molecular Biology Laboratory, Faculty of Higher Education, Cuautitlán, Veterinary Medicine, Campus 4, National Autonomous University of Mexico, Km. 2.5 ctra. Cuautitlán-Teoloyucan, San Sebastián Xhala, Cuautitlán Izcalli Estado de México, C.P. 54714, Mexico.
| |
Collapse
|