1
|
Temudo A, Albouy G. Using targeted memory reactivation as a tool to provide mechanistic insights into memory consolidation during sleep. Sleep 2024; 47:zsae163. [PMID: 39044535 DOI: 10.1093/sleep/zsae163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Indexed: 07/25/2024] Open
Affiliation(s)
- Ainsley Temudo
- Department of Health and Kinesiology, College of Health, University of Utah, Salt Lake City, UT, USA
| | - Geneviève Albouy
- Department of Health and Kinesiology, College of Health, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
2
|
Xia T, Chen D, Zeng S, Yao Z, Liu J, Qin S, Paller KA, Torres Platas SG, Antony JW, Hu X. Aversive memories can be weakened during human sleep via the reactivation of positive interfering memories. Proc Natl Acad Sci U S A 2024; 121:e2400678121. [PMID: 39052838 PMCID: PMC11295023 DOI: 10.1073/pnas.2400678121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/17/2024] [Indexed: 07/27/2024] Open
Abstract
Recollecting painful or traumatic experiences can be deeply troubling. Sleep may offer an opportunity to reduce such suffering. We developed a procedure to weaken older aversive memories by reactivating newer positive memories during sleep. Participants viewed 48 nonsense words each paired with a unique aversive image, followed by an overnight sleep. In the next evening, participants learned associations between half of the words and additional positive images, creating interference. During the following non-rapid-eye-movement sleep, auditory memory cues were unobtrusively delivered. Upon waking, presenting cues associated with both aversive and positive images during sleep, as opposed to not presenting cues, weakened aversive memory recall while increasing positive memory intrusions. Substantiating these memory benefits, computational modeling revealed that cueing facilitated evidence accumulation toward positive affect judgments. Moreover, cue-elicited theta brain rhythms during sleep predominantly predicted the recall of positive memories. A noninvasive sleep intervention can thus modify aversive recollection and affective responses.
Collapse
Affiliation(s)
- Tao Xia
- Department of Psychology, The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong Special Administrative Region999077, China
| | - Danni Chen
- Department of Psychology, The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong Special Administrative Region999077, China
| | - Shengzi Zeng
- Department of Psychology, The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong Special Administrative Region999077, China
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA02215
- Department of Psychiatry, Harvard Medical School, Boston, MA02215
| | - Ziqing Yao
- Department of Psychology, The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong Special Administrative Region999077, China
| | - Jing Liu
- Department of Applied Social Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region999077, China
| | - Shaozheng Qin
- State Key Laboratory of Cognitive Neuroscience and Learning and International Data Group McGovern Institute for Brain Research, Beijing Normal University, Beijing100875, China
| | - Ken A. Paller
- Cognitive Neuroscience Program and Department of Psychology, Northwestern University, Evanston, IL60208
| | - S. Gabriela Torres Platas
- Cognitive Neuroscience Program and Department of Psychology, Northwestern University, Evanston, IL60208
| | - James W. Antony
- Department of Psychology & Child Development, California Polytechnic State University, San Luis Obispo, CA93407
| | - Xiaoqing Hu
- Department of Psychology, The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong Special Administrative Region999077, China
- The University of Hong Kong-Shenzhen Institute of Research and Innovation, Shenzhen518057, China
| |
Collapse
|
3
|
Antony JW, Schechtman E. Reap while you sleep: Consolidation of memories differs by how they were sown. Hippocampus 2023; 33:922-935. [PMID: 36973868 PMCID: PMC10429120 DOI: 10.1002/hipo.23526] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/26/2023] [Accepted: 03/01/2023] [Indexed: 03/29/2023]
Abstract
Newly formed memories are spontaneously reactivated during sleep, leading to their strengthening. This reactivation process can be manipulated by reinstating learning-related stimuli during sleep, a technique termed targeted memory reactivation. Numerous studies have found that delivering cues during sleep improves memory for simple associations, in which one cue reactivates one tested memory. However, real-life memories often live in rich, complex networks of associations. In this review, we will examine recent forays into investigating how targeted sleep reactivation affects memories within complex paradigms, in which one cue can reactivate multiple tested memories. A common theme across studies is that reactivation consequences do not merely depend on whether memories reside in complex arrangements, but on how memories interact with one another during acquisition. We therefore emphasize how intricate study design details that alter the nature of learning and/or participant intentions impact the outcomes of sleep reactivation. In some cases, complex networks of memories interact harmoniously to bring about mutual memory benefits; in other cases, memories interact antagonistically and produce selective impairments in retrieval. Ultimately, although this burgeoning area of research has yet to be systematically explored, results suggest that the fate of reactivated stimuli within complex arrangements depends on how they were learned.
Collapse
Affiliation(s)
- James W. Antony
- Department of Psychology and Child Development, California Polytechnic State University, San Luis Obispo, California, USA
| | - Eitan Schechtman
- Department of Neurobiology and Behavior, University of California, Irvine, California, USA
- Center for Neurobiology of Learning and Memory, University of California Irvine, Irvine, California, USA
| |
Collapse
|
4
|
Xia T, Yao Z, Guo X, Liu J, Chen D, Liu Q, Paller KA, Hu X. Updating memories of unwanted emotions during human sleep. Curr Biol 2023; 33:309-320.e5. [PMID: 36584677 PMCID: PMC9979073 DOI: 10.1016/j.cub.2022.12.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/21/2022] [Accepted: 12/02/2022] [Indexed: 12/30/2022]
Abstract
Post-learning sleep contributes to memory consolidation. Yet it remains contentious whether sleep affords opportunities to modify or update emotional memories, particularly when people would prefer to forget those memories. Here, we attempted to update memories during sleep, using spoken positive words paired with cues to recent memories of aversive events. Affective updating using positive words during human non-rapid eye movement (NREM) sleep, compared with using neutral words instead, reduced negative affective judgments in post-sleep tests, suggesting that the recalled events were perceived as less aversive. Electroencephalogram (EEG) analyses showed that positive words modulated theta and spindle/sigma activity; specifically, to the extent that theta power was larger for the positive words than for the memory cues that followed, participants judged the memory cues less negatively. Moreover, to the extent that sigma power was larger for the positive words than for the memory cues that followed, participants forgot more episodic details about aversive events. Notably, when the onset of individual positive words coincided with the up-phase of slow oscillations (a state characterized by increased cortical excitability during NREM sleep), affective updating was more successful. In sum, we altered the affective content of memories via the strategic pairing of positive words and memory cues during sleep, linked with EEG theta power increases and the slow oscillation up-phase. These findings suggest novel possibilities for modifying unwanted memories during sleep, which would not require people to consciously confront memories that they prefer to avoid.
Collapse
Affiliation(s)
- Tao Xia
- Department of Psychology, The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Ziqing Yao
- Department of Psychology, The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Xue Guo
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610068, China
| | - Jing Liu
- Department of Applied Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Danni Chen
- Department of Psychology, The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Qiang Liu
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610068, China; Brain and Cognitive Neuroscience Research Center, Liaoning Normal University, Dalian 116029, China.
| | - Ken A Paller
- Department of Psychology and Cognitive Neuroscience Program, Northwestern University, Evanston, IL 60208, USA
| | - Xiaoqing Hu
- Department of Psychology, The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China; HKU-Shenzhen Institute of Research and Innovation, Shenzhen 518057, China.
| |
Collapse
|
5
|
Simon KC, Nadel L, Payne JD. The functions of sleep: A cognitive neuroscience perspective. Proc Natl Acad Sci U S A 2022; 119:e2201795119. [PMID: 36279445 PMCID: PMC9636951 DOI: 10.1073/pnas.2201795119] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023] Open
Abstract
This Special Feature explores the various purposes served by sleep, describing current attempts to understand how the many functions of sleep are instantiated in neural circuits and cognitive structures. Our feature reflects current experts' opinions about, and insights into, the dynamic processes of sleep. In the last few decades, technological advances have supported the updated view that sleep plays an active role in both cognition and health. However, these roles are far from understood. This collection of articles evaluates the dynamic nature of sleep, how it evolves across the lifespan, becomes a competitive arena for memory systems through the influence of the autonomic system, supports the consolidation and integration of new memories, and how lucid dreams might originate. This set of papers highlights new approaches and insights that will lay the groundwork to eventually understand the full range of functions supported by sleep.
Collapse
Affiliation(s)
| | - Lynn Nadel
- Psychology and Cognitive Science, University of Arizona, Tucson, AZ 85721
| | - Jessica D. Payne
- Department of Psychology, University of Notre Dame, Notre Dame, IN 46556
| |
Collapse
|
6
|
Sterpenich V, van Schie MKM, Catsiyannis M, Ramyead A, Perrig S, Yang HD, Van De Ville D, Schwartz S. Reward biases spontaneous neural reactivation during sleep. Nat Commun 2021; 12:4162. [PMID: 34230462 PMCID: PMC8260738 DOI: 10.1038/s41467-021-24357-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 06/16/2021] [Indexed: 01/11/2023] Open
Abstract
Sleep favors the reactivation and consolidation of newly acquired memories. Yet, how our brain selects the noteworthy information to be reprocessed during sleep remains largely unknown. From an evolutionary perspective, individuals must retain information that promotes survival, such as avoiding dangers, finding food, or obtaining praise or money. Here, we test whether neural representations of rewarded (compared to non-rewarded) events have priority for reactivation during sleep. Using functional MRI and a brain decoding approach, we show that patterns of brain activity observed during waking behavior spontaneously reemerge during slow-wave sleep. Critically, we report a privileged reactivation of neural patterns previously associated with a rewarded task (i.e., winning at a complex game). Moreover, during sleep, activity in task-related brain regions correlates with better subsequent memory performance. Our study uncovers a neural mechanism whereby rewarded life experiences are preferentially replayed and consolidated while we sleep.
Collapse
Affiliation(s)
- Virginie Sterpenich
- Department of Neuroscience, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
- Swiss Center for Affective Sciences, University of Geneva, Geneva, Switzerland.
- Geneva Neuroscience Center, University of Geneva, Geneva, Switzerland.
| | - Mojca K M van Schie
- Department of Neuroscience, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Geneva Neuroscience Center, University of Geneva, Geneva, Switzerland
- Leiden University Medical Center, Leiden, Netherlands
| | - Maximilien Catsiyannis
- Department of Neuroscience, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Avinash Ramyead
- Department of Psychiatry, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Stephen Perrig
- Center of Sleep Medicine, Division of Pneumology, University Hospital Geneva, Geneva, Switzerland
| | - Hee-Deok Yang
- Department of Computer Engineering, Chosun University, Seosuk-dong, Dong-ku, Gwangju, Korea
| | - Dimitri Van De Ville
- Geneva Neuroscience Center, University of Geneva, Geneva, Switzerland
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Sophie Schwartz
- Department of Neuroscience, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Swiss Center for Affective Sciences, University of Geneva, Geneva, Switzerland
- Geneva Neuroscience Center, University of Geneva, Geneva, Switzerland
| |
Collapse
|
7
|
Schechtman E, Lampe A, Wilson BJ, Kwon E, Anderson MC, Paller KA. Sleep reactivation did not boost suppression-induced forgetting. Sci Rep 2021; 11:1383. [PMID: 33446812 PMCID: PMC7809483 DOI: 10.1038/s41598-020-80671-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 12/23/2020] [Indexed: 12/31/2022] Open
Abstract
Sleep's role in memory consolidation is widely acknowledged, but its role in weakening memories is still debated. Memory weakening is evolutionary beneficial and makes an integral contribution to cognition. We sought evidence on whether sleep-based memory reactivation can facilitate memory suppression. Participants learned pairs of associable words (e.g., DIET-CREAM) and were then exposed to hint words (e.g., DIET) and instructed to either recall ("think") or suppress ("no-think") the corresponding target words (e.g., CREAM). As expected, suppression impaired retention when tested immediately after a 90-min nap. To test if reactivation could selectively enhance memory suppression during sleep, we unobtrusively presented one of two sounds conveying suppression instructions during sleep, followed by hint words. Results showed that targeted memory reactivation did not enhance suppression-induced forgetting. Although not predicted, post-hoc analyses revealed that sleep cues strengthened memory, but only for suppressed pairs that were weakly encoded before sleep. The results leave open the question of whether memory suppression can be augmented during sleep, but suggest strategies for future studies manipulating memory suppression during sleep. Additionally, our findings support the notion that sleep reactivation is particularly beneficial for weakly encoded information, which may be prioritized for consolidation.
Collapse
Affiliation(s)
- Eitan Schechtman
- Department of Psychology, Northwestern University, Evanston, IL, 60208, USA.
| | - Anna Lampe
- Department of Psychology, Northwestern University, Evanston, IL, 60208, USA
| | - Brianna J Wilson
- Department of Psychology, Northwestern University, Evanston, IL, 60208, USA
| | - Eunbi Kwon
- Department of Psychology, Northwestern University, Evanston, IL, 60208, USA
| | - Michael C Anderson
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, CB2 7EF, UK
| | - Ken A Paller
- Department of Psychology, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
8
|
Davidson P, Jönsson P, Carlsson I, Pace-Schott E. Does Sleep Selectively Strengthen Certain Memories Over Others Based on Emotion and Perceived Future Relevance? Nat Sci Sleep 2021; 13:1257-1306. [PMID: 34335065 PMCID: PMC8318217 DOI: 10.2147/nss.s286701] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 03/24/2021] [Indexed: 12/12/2022] Open
Abstract
Sleep has been found to have a beneficial effect on memory consolidation. It has furthermore frequently been suggested that sleep does not strengthen all memories equally. The first aim of this review paper was to examine whether sleep selectively strengthens emotional declarative memories more than neutral ones. We examined this first by reviewing the literature focusing on sleep/wake contrasts, and then the literature on whether any specific factors during sleep preferentially benefit emotional memories, with a special focus on the often-suggested claim that rapid eye movement sleep primarily consolidates emotional memories. A second aim was to examine if sleep preferentially benefits memories based on other cues of future relevance such as reward, test-expectancy or different instructions during encoding. Once again, we first focused on studies comparing sleep and wake groups, and then on studies examining the contributions of specific factors during sleep (for each future relevance paradigm, respectively). The review revealed that although some support exists that sleep is more beneficial for certain kinds of memories based on emotion or other cues of future relevance, the majority of studies does not support such an effect. Regarding specific factors during sleep, our review revealed that no sleep variable has reliably been found to be specifically associated with the consolidation of certain kinds of memories over others based on emotion or other cues of future relevance.
Collapse
Affiliation(s)
- Per Davidson
- Department of Psychology, Lund University, Lund, Sweden.,Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Peter Jönsson
- School of Education and Environment, Centre for Psychology, Kristianstad University, Kristianstad, Sweden
| | | | - Edward Pace-Schott
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA, USA.,Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| |
Collapse
|