1
|
Pang W, Yuan C, Zhong T, Huang X, Pan Y, Qu J, Nie L, Zhou Y, Lai P. Diagnostic and therapeutic optical imaging in cardiovascular diseases. iScience 2024; 27:111216. [PMID: 39569375 PMCID: PMC11576408 DOI: 10.1016/j.isci.2024.111216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024] Open
Abstract
Cardiovascular disease (CVD) is one of the most prevalent health threats globally. Traditional diagnostic methods for CVDs, including electrocardiography, ultrasound, and cardiac magnetic resonance imaging, have inherent limitations in real-time monitoring and high-resolution visualization of cardiovascular pathophysiology. In recent years, optical imaging technology has gained considerable attention as a non-invasive, high-resolution, real-time monitoring solution in the study and diagnosis of CVD. This review discusses the latest advancements, and applications of optical techniques in cardiac imaging. We compare the advantages of optical imaging over traditional modalities and especially scrutinize techniques such as optical coherence tomography, photoacoustic imaging, and fluorescence imaging. We summarize their investigations in atherosclerosis, myocardial infarction, and heart valve disease, etc. Additionally, we discuss challenges like deep-tissue imaging and high spatiotemporal resolution adjustment, and review existing solutions such as multimodal integration, artificial intelligence, and enhanced optical probes. This article aims to drive further development in optical imaging technologies to provide more precise and efficient tools for early diagnosis, pathological mechanism exploration, and treatment of CVD.
Collapse
Affiliation(s)
- Weiran Pang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Chuqi Yuan
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Tianting Zhong
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Xiazi Huang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Yue Pan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Nanchang Research Institute, Sun Yat-Sen University, Nanchang 330096, China
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen 518060, China
| | - Liming Nie
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Yingying Zhou
- College of Professional and Continuing Education, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Puxiang Lai
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
- The Joint Research Centre for Biosensing and Precision Theranostics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| |
Collapse
|
2
|
Wei Y, Deng Y, Sun C, Lin M, Jiang H, Peng Y. Deep learning with noisy labels in medical prediction problems: a scoping review. J Am Med Inform Assoc 2024; 31:1596-1607. [PMID: 38814164 PMCID: PMC11187424 DOI: 10.1093/jamia/ocae108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/27/2024] [Accepted: 05/03/2024] [Indexed: 05/31/2024] Open
Abstract
OBJECTIVES Medical research faces substantial challenges from noisy labels attributed to factors like inter-expert variability and machine-extracted labels. Despite this, the adoption of label noise management remains limited, and label noise is largely ignored. To this end, there is a critical need to conduct a scoping review focusing on the problem space. This scoping review aims to comprehensively review label noise management in deep learning-based medical prediction problems, which includes label noise detection, label noise handling, and evaluation. Research involving label uncertainty is also included. METHODS Our scoping review follows the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. We searched 4 databases, including PubMed, IEEE Xplore, Google Scholar, and Semantic Scholar. Our search terms include "noisy label AND medical/healthcare/clinical," "uncertainty AND medical/healthcare/clinical," and "noise AND medical/healthcare/clinical." RESULTS A total of 60 papers met inclusion criteria between 2016 and 2023. A series of practical questions in medical research are investigated. These include the sources of label noise, the impact of label noise, the detection of label noise, label noise handling techniques, and their evaluation. Categorization of both label noise detection methods and handling techniques are provided. DISCUSSION From a methodological perspective, we observe that the medical community has been up to date with the broader deep-learning community, given that most techniques have been evaluated on medical data. We recommend considering label noise as a standard element in medical research, even if it is not dedicated to handling noisy labels. Initial experiments can start with easy-to-implement methods, such as noise-robust loss functions, weighting, and curriculum learning.
Collapse
Affiliation(s)
- Yishu Wei
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY 10065, United States
- Reddit Inc., San Francisco, CA 16093, United States
| | - Yu Deng
- Center for Health Information Partnerships, Northwestern University, Chicago, IL 10611, United States
| | - Cong Sun
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY 10065, United States
| | - Mingquan Lin
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY 10065, United States
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, United States
| | - Hongmei Jiang
- Department of Statistics and Data Science, Northwestern University, Evanston, IL 60208, United States
| | - Yifan Peng
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY 10065, United States
| |
Collapse
|
3
|
Lee J, Kim JN, Dallan LAP, Zimin VN, Hoori A, Hassani NS, Makhlouf MHE, Guagliumi G, Bezerra HG, Wilson DL. Deep learning segmentation of fibrous cap in intravascular optical coherence tomography images. Sci Rep 2024; 14:4393. [PMID: 38388637 PMCID: PMC10884035 DOI: 10.1038/s41598-024-55120-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/20/2024] [Indexed: 02/24/2024] Open
Abstract
Thin-cap fibroatheroma (TCFA) is a prominent risk factor for plaque rupture. Intravascular optical coherence tomography (IVOCT) enables identification of fibrous cap (FC), measurement of FC thicknesses, and assessment of plaque vulnerability. We developed a fully-automated deep learning method for FC segmentation. This study included 32,531 images across 227 pullbacks from two registries (TRANSFORM-OCT and UHCMC). Images were semi-automatically labeled using our OCTOPUS with expert editing using established guidelines. We employed preprocessing including guidewire shadow detection, lumen segmentation, pixel-shifting, and Gaussian filtering on raw IVOCT (r,θ) images. Data were augmented in a natural way by changing θ in spiral acquisitions and by changing intensity and noise values. We used a modified SegResNet and comparison networks to segment FCs. We employed transfer learning from our existing much larger, fully-labeled calcification IVOCT dataset to reduce deep-learning training. Postprocessing with a morphological operation enhanced segmentation performance. Overall, our method consistently delivered better FC segmentation results (Dice: 0.837 ± 0.012) than other deep-learning methods. Transfer learning reduced training time by 84% and reduced the need for more training samples. Our method showed a high level of generalizability, evidenced by highly-consistent segmentations across five-fold cross-validation (sensitivity: 85.0 ± 0.3%, Dice: 0.846 ± 0.011) and the held-out test (sensitivity: 84.9%, Dice: 0.816) sets. In addition, we found excellent agreement of FC thickness with ground truth (2.95 ± 20.73 µm), giving clinically insignificant bias. There was excellent reproducibility in pre- and post-stenting pullbacks (average FC angle: 200.9 ± 128.0°/202.0 ± 121.1°). Our fully automated, deep-learning FC segmentation method demonstrated excellent performance, generalizability, and reproducibility on multi-center datasets. It will be useful for multiple research purposes and potentially for planning stent deployments that avoid placing a stent edge over an FC.
Collapse
Affiliation(s)
- Juhwan Lee
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Justin N Kim
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Luis A P Dallan
- Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
| | - Vladislav N Zimin
- Brookdale University Hospital Medical Center, 1 Brookdale Plaza, Brooklyn, NY, 11212, USA
| | - Ammar Hoori
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Neda S Hassani
- Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
| | - Mohamed H E Makhlouf
- Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
| | - Giulio Guagliumi
- Cardiovascular Department, Innovation District, Galeazzi San'Ambrogio Hospital, Milan, Italy
| | - Hiram G Bezerra
- Interventional Cardiology Center, Heart and Vascular Institute, University of South Florida, Tampa, FL, 33606, USA
| | - David L Wilson
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
- Department of Radiology, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
4
|
Föllmer B, Williams MC, Dey D, Arbab-Zadeh A, Maurovich-Horvat P, Volleberg RHJA, Rueckert D, Schnabel JA, Newby DE, Dweck MR, Guagliumi G, Falk V, Vázquez Mézquita AJ, Biavati F, Išgum I, Dewey M. Roadmap on the use of artificial intelligence for imaging of vulnerable atherosclerotic plaque in coronary arteries. Nat Rev Cardiol 2024; 21:51-64. [PMID: 37464183 DOI: 10.1038/s41569-023-00900-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/07/2023] [Indexed: 07/20/2023]
Abstract
Artificial intelligence (AI) is likely to revolutionize the way medical images are analysed and has the potential to improve the identification and analysis of vulnerable or high-risk atherosclerotic plaques in coronary arteries, leading to advances in the treatment of coronary artery disease. However, coronary plaque analysis is challenging owing to cardiac and respiratory motion, as well as the small size of cardiovascular structures. Moreover, the analysis of coronary imaging data is time-consuming, can be performed only by clinicians with dedicated cardiovascular imaging training, and is subject to considerable interreader and intrareader variability. AI has the potential to improve the assessment of images of vulnerable plaque in coronary arteries, but requires robust development, testing and validation. Combining human expertise with AI might facilitate the reliable and valid interpretation of images obtained using CT, MRI, PET, intravascular ultrasonography and optical coherence tomography. In this Roadmap, we review existing evidence on the application of AI to the imaging of vulnerable plaque in coronary arteries and provide consensus recommendations developed by an interdisciplinary group of experts on AI and non-invasive and invasive coronary imaging. We also outline future requirements of AI technology to address bias, uncertainty, explainability and generalizability, which are all essential for the acceptance of AI and its clinical utility in handling the anticipated growing volume of coronary imaging procedures.
Collapse
Affiliation(s)
- Bernhard Föllmer
- Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | | | - Damini Dey
- Biomedical Imaging Research Institute and Department of Imaging, Medicine and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Armin Arbab-Zadeh
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Pál Maurovich-Horvat
- Department of Radiology, Medical Imaging Center, Semmelweis University, Budapest, Hungary
| | - Rick H J A Volleberg
- Department of Cardiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Daniel Rueckert
- Artificial Intelligence in Medicine and Healthcare, Technical University of Munich, Munich, Germany
- Department of Computing, Imperial College London, London, UK
| | - Julia A Schnabel
- School of Biomedical Imaging and Imaging Sciences, King's College London, London, UK
- Institute of Machine Learning in Biomedical Imaging, Helmholtz Munich, Neuherberg, Germany
- School of Computation, Information and Technology, Technical University of Munich, Munich, Germany
| | - David E Newby
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Marc R Dweck
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Giulio Guagliumi
- Division of Cardiology, IRCCS Galeazzi Sant'Ambrogio Hospital, Milan, Italy
| | - Volkmar Falk
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité, Charité Universitätsmedizin, Berlin, Germany
- Department of Health Science and Technology, ETH Zurich, Zurich, Switzerland
- Berlin Institute of Health at Charité and DZHK (German Centre for Cardiovascular Research), Partner Site, Berlin, Germany
| | | | - Federico Biavati
- Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ivana Išgum
- Department of Biomedical Engineering and Physics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Informatics Institute, Faculty of Science, University of Amsterdam, Amsterdam, Netherlands
| | - Marc Dewey
- Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany.
- Berlin Institute of Health, Campus Charité Mitte, Berlin, Germany.
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin and Deutsches Herzzentrum der Charité (DHZC), Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
5
|
Jagadeesan K, Palanisamy G. Atherosclerosis plaque tissue classification using self-attention-based conditional variational auto-encoder generative adversarial network using OCT plaque image. BIOMED ENG-BIOMED TE 2023; 68:633-649. [PMID: 37401612 DOI: 10.1515/bmt-2022-0286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 05/08/2023] [Indexed: 07/05/2023]
Abstract
Adults with coronary artery disease often have atherosclerosis, this is defined as the accumulation of plaque in the tissues of the arterial wall. Cardiologists utilize optical coherence tomography (OCT), a light-based imaging method, to examine the layers of intracoronary tissue along pathological formations, such as plaque accumulation. Intracoronary cross-sectional images produced by state-of-the-art catheter-based imaging scheme have 10-15 µm high resolution. Nevertheless, interpretation of the obtained images depends on the operator, which takes a lot of time and is exceedingly error-prone from one observer to another. OCT image post-processing that automatically and accurately tags coronary plaques can help the technique become more widely used and lower the diagnostic error rate. To overcome these problems, Atherosclerosis plaque tissue classification using Self-Attention-Based Conditional Variational Auto-Encoder Generative Adversarial Network (APC-OCTPI-SACVAGAN) is proposed which classifies the Atherosclerosis plaque images as Fibro calcific plaque, Fibro atheroma, Thrombus, Fibrous plaque and Micro-vessel. The proposed APC-OCTPI-SACVAGAN technique is executed in MATLAB. The efficiency of proposed APC-OCTPI-SACVAGAN method attains 16.19 %, 17.93 %, 19.81 % and 1.57 % higher accuracy; 16.92 %, 11.54 %, 5.29 % and 1.946 % higher Area under curve; and 28.06 %, 25.32 %, 32.19 % and 39.185 % lower computational time comparing to the existing methods respectively.
Collapse
Affiliation(s)
- Kowsalyadevi Jagadeesan
- Research Scholar, Department of Computer Science and Engineering, College of Engineering Guindy, Anna University, Chennai, Tamil Nadu, India
| | - Geetha Palanisamy
- Department of Computer Science and Engineering, College of Engineering Guindy, Anna University, Chennai, Tamil Nadu, India
| |
Collapse
|
6
|
Gharaibeh Y, Lee J, Zimin VN, Kolluru C, Dallan LAP, Pereira GTR, Vergara-Martel A, Kim JN, Hoori A, Dong P, Gamage PT, Gu L, Bezerra HG, Al-Kindi S, Wilson DL. Prediction of stent under-expansion in calcified coronary arteries using machine learning on intravascular optical coherence tomography images. Sci Rep 2023; 13:18110. [PMID: 37872298 PMCID: PMC10593923 DOI: 10.1038/s41598-023-44610-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 10/10/2023] [Indexed: 10/25/2023] Open
Abstract
It can be difficult/impossible to fully expand a coronary artery stent in a heavily calcified coronary artery lesion. Under-expanded stents are linked to later complications. Here we used machine/deep learning to analyze calcifications in pre-stent intravascular optical coherence tomography (IVOCT) images and predicted the success of vessel expansion. Pre- and post-stent IVOCT image data were obtained from 110 coronary lesions. Lumen and calcifications in pre-stent images were segmented using deep learning, and lesion features were extracted. We analyzed stent expansion along the lesion, enabling frame, segmental, and whole-lesion analyses. We trained regression models to predict the post-stent lumen area and then computed the stent expansion index (SEI). Best performance (root-mean-square-error = 0.04 ± 0.02 mm2, r = 0.94 ± 0.04, p < 0.0001) was achieved when we used features from both lumen and calcification to train a Gaussian regression model for segmental analysis of 31 frames in length. Stents with minimum SEI > 80% were classified as "well-expanded;" others were "under-expanded." Under-expansion classification results (e.g., AUC = 0.85 ± 0.02) were significantly improved over a previous, simple calculation, as well as other machine learning solutions. Promising results suggest that such methods can identify lesions at risk of under-expansion that would be candidates for intervention lesion preparation (e.g., atherectomy).
Collapse
Affiliation(s)
- Yazan Gharaibeh
- Department of Biomedical Engineering, Faculty of Engineering, The Hashemite University, Zarqa, Jordan
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Juhwan Lee
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
| | - Vladislav N Zimin
- Cardiovascular Imaging Core Laboratory, Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
| | - Chaitanya Kolluru
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Luis A P Dallan
- Cardiovascular Imaging Core Laboratory, Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
| | - Gabriel T R Pereira
- Cardiovascular Imaging Core Laboratory, Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
| | - Armando Vergara-Martel
- Cardiovascular Imaging Core Laboratory, Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
| | - Justin N Kim
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Ammar Hoori
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Pengfei Dong
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, 32901, USA
| | - Peshala T Gamage
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, 32901, USA
| | - Linxia Gu
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, 32901, USA
| | - Hiram G Bezerra
- Interventional Cardiology Center, Heart and Vascular Institute, University of South Florida, Tampa, FL, 33606, USA
| | - Sadeer Al-Kindi
- Cardiovascular Imaging Core Laboratory, Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
| | - David L Wilson
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
- Department of Radiology, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
7
|
Kim JN, Gomez-Perez L, Zimin VN, Makhlouf MHE, Al-Kindi S, Wilson DL, Lee J. Pericoronary Adipose Tissue Radiomics from Coronary Computed Tomography Angiography Identifies Vulnerable Plaques. Bioengineering (Basel) 2023; 10:360. [PMID: 36978751 PMCID: PMC10045206 DOI: 10.3390/bioengineering10030360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/07/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023] Open
Abstract
Pericoronary adipose tissue (PCAT) features on Computed Tomography (CT) have been shown to reflect local inflammation and increased cardiovascular risk. Our goal was to determine whether PCAT radiomics extracted from coronary CT angiography (CCTA) images are associated with intravascular optical coherence tomography (IVOCT)-identified vulnerable-plaque characteristics (e.g., microchannels (MC) and thin-cap fibroatheroma (TCFA)). The CCTA and IVOCT images of 30 lesions from 25 patients were registered. The vessels with vulnerable plaques were identified from the registered IVOCT images. The PCAT-radiomics features were extracted from the CCTA images for the lesion region of interest (PCAT-LOI) and the entire vessel (PCAT-Vessel). We extracted 1356 radiomic features, including intensity (first-order), shape, and texture features. The features were reduced using standard approaches (e.g., high feature correlation). Using stratified three-fold cross-validation with 1000 repeats, we determined the ability of PCAT-radiomics features from CCTA to predict IVOCT vulnerable-plaque characteristics. In the identification of TCFA lesions, the PCAT-LOI and PCAT-Vessel radiomics models performed comparably (Area Under the Curve (AUC) ± standard deviation 0.78 ± 0.13, 0.77 ± 0.14). For the identification of MC lesions, the PCAT-Vessel radiomics model (0.89 ± 0.09) was moderately better associated than the PCAT-LOI model (0.83 ± 0.12). In addition, both the PCAT-LOI and the PCAT-Vessel radiomics model identified coronary vessels thought to be highly vulnerable to a similar standard (i.e., both TCFA and MC; 0.88 ± 0.10, 0.91 ± 0.09). The most favorable radiomic features tended to be those describing the texture and size of the PCAT. The application of PCAT radiomics can identify coronary vessels with TCFA or MC, consistent with IVOCT. Furthermore, the use of CCTA radiomics may improve risk stratification by noninvasively detecting vulnerable-plaque characteristics that are only visible with IVOCT.
Collapse
Affiliation(s)
- Justin N. Kim
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Lia Gomez-Perez
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Vladislav N. Zimin
- Cardiovascular Imaging Core Laboratory, Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Mohamed H. E. Makhlouf
- Cardiovascular Imaging Core Laboratory, Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Sadeer Al-Kindi
- Cardiovascular Imaging Core Laboratory, Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - David L. Wilson
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Radiology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Juhwan Lee
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
8
|
Huang X, Wang J, Li Z. 3D carotid artery segmentation using shape-constrained active contours. Comput Biol Med 2023; 153:106530. [PMID: 36610215 DOI: 10.1016/j.compbiomed.2022.106530] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/12/2022] [Accepted: 12/31/2022] [Indexed: 01/04/2023]
Abstract
Reconstruction of the carotid artery is demanded in the detection and characterization of atherosclerosis. This study proposes a shape-constrained active contour model for segmenting the carotid artery from MR images, which embeds the output of the deep learning network into the active contour. First the centerline of the carotid artery is localized and then modified active contour initialized from the centerline is used to extract the vessel lumen, finally the probability atlas generated by the deep learning network in polar representation domain is integrated into the active contour as a prior information to detect the outer wall. The results showed that the proposed active contour model was efficient and comparable to manual segmentation.
Collapse
Affiliation(s)
- Xianjue Huang
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Jun Wang
- First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Zhiyong Li
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China; School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, 4000, Australia; Faculty of Sports Science, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
9
|
Lee J, Kim JN, Gharaibeh Y, Zimin VN, Dallan LA, Pereira GT, Vergara-Martel A, Kolluru C, Hoori A, Bezerra HG, Wilson DL. OCTOPUS - Optical coherence tomography plaque and stent analysis software. Heliyon 2023; 9:e13396. [PMID: 36816277 PMCID: PMC9932655 DOI: 10.1016/j.heliyon.2023.e13396] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Background and objective Compared with other imaging modalities, intravascular optical coherence tomography (IVOCT) has significant advantages for guiding percutaneous coronary interventions, assessing their outcomes, and characterizing plaque components. To aid IVOCT research studies, we developed the Optical Coherence TOmography PlaqUe and Stent (OCTOPUS) analysis software, which provides highly automated, comprehensive analysis of coronary plaques and stents in IVOCT images. Methods User specifications for OCTOPUS were obtained from detailed, iterative discussions with IVOCT analysts in the Cardiovascular Imaging Core Laboratory at University Hospitals Cleveland Medical Center, a leading laboratory for IVOCT image analysis. To automate image analysis results, the software includes several important algorithmic steps: pre-processing, deep learning plaque segmentation, machine learning identification of stent struts, and registration of pullbacks for sequential comparisons. Intuitive, interactive visualization and manual editing of segmentations were included in the software. Quantifications include stent deployment characteristics (e.g., stent area and stent strut malapposition), strut level analysis, calcium angle, and calcium thickness measurements. Interactive visualizations include (x,y) anatomical, en face, and longitudinal views with optional overlays (e.g., segmented calcifications). To compare images over time, linked visualizations were enabled to display up to four registered vessel segments at a time. Results OCTOPUS has been deployed for nearly 1 year and is currently being used in multiple IVOCT studies. Underlying plaque segmentation algorithm yielded excellent pixel-wise results (86.2% sensitivity and 0.781 F1 score). Using OCTOPUS on 34 new pullbacks, we determined that following automated segmentation, only 13% and 23% of frames needed any manual touch up for detailed lumen and calcification labeling, respectively. Only up to 3.8% of plaque pixels were modified, leading to an average editing time of only 7.5 s/frame, an approximately 80% reduction compared to manual analysis. Regarding stent analysis, sensitivity and precision were both greater than 90%, and each strut was successfully classified as either covered or uncovered with high sensitivity (94%) and specificity (90%). We demonstrated use cases for sequential analysis. To analyze plaque progression, we loaded multiple pullbacks acquired at different points (e.g., pre-stent, 3-month follow-up, and 18-month follow-up) and evaluated frame-level development of in-stent neo-atherosclerosis. In ex vivo cadaver experiments, the OCTOPUS software enabled visualization and quantitative evaluation of irregular stent deployment in the presence of calcifications identified in pre-stent images. Conclusions We introduced and evaluated the clinical application of a highly automated software package, OCTOPUS, for quantitative plaque and stent analysis in IVOCT images. The software is currently used as an offline tool for research purposes; however, the software's embedded algorithms may also be useful for real-time treatment planning.
Collapse
Affiliation(s)
- Juhwan Lee
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Justin N. Kim
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Yazan Gharaibeh
- Department of Biomedical Engineering, The Hashemite University, Zarqa, 13133, Jordan
| | - Vladislav N. Zimin
- Cardiovascular Imaging Core Laboratory, Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
| | - Luis A.P. Dallan
- Cardiovascular Imaging Core Laboratory, Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
| | - Gabriel T.R. Pereira
- Cardiovascular Imaging Core Laboratory, Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
| | - Armando Vergara-Martel
- Cardiovascular Imaging Core Laboratory, Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
| | - Chaitanya Kolluru
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Ammar Hoori
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Hiram G. Bezerra
- Interventional Cardiology Center, Heart and Vascular Institute, University of South Florida, Tampa, FL, 33606, USA
| | - David L. Wilson
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
- Case Western Reserve University, Department of Radiology, Cleveland, OH, 44106, USA
| |
Collapse
|
10
|
Kim JN, Gomez-Perez L, Zimin VN, Makhlouf MHE, Al-Kindi S, Wilson DL, Lee J. Pericoronary adipose tissue radiomics from coronary CT angiography identifies vulnerable plaques characteristics in intravascular OCT. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.01.09.23284346. [PMID: 36711678 PMCID: PMC9882469 DOI: 10.1101/2023.01.09.23284346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Pericoronary adipose tissue (PCAT) features on CT have been shown to reflect local inflammation, and signals increased cardiovascular risk. Our goal was to determine if PCAT radiomics extracted from coronary CT angiography (CCTA) images are associated with intravascular optical coherence tomography (IVOCT)-identified vulnerable plaque characteristics (e.g., microchannels [MC] and thin-cap fibroatheroma [TCFA]). CCTA and IVOCT images of 30 lesions from 25 patients were registered. Vessels with vulnerable plaques were identified from the registered IVOCT images. PCAT radiomics features were extracted from CCTA images for the lesion region of interest (PCAT-LOI) and the entire vessel (PCAT-Vessel). We extracted 1356 radiomics features, including intensity (first-order), shape, and texture features. Features were reduced using standard approaches (e.g., high feature correlation). Using stratified three-fold cross-validation with 1000 repeats, we determined the ability of PCAT radiomics features from CCTA to predict IVOCT vulnerable plaque characteristics. In identification of TCFA lesions, PCAT-LOI and PCAT-Vessel radiomics models performed comparably (AUC±standard deviation 0.78±0.13, 0.77±0.14). For identification of MC lesions, PCAT-Vessel radiomics model (0.89±0.09) was moderately better associated than that of PCAT-LOI model (0.83±0.12). Both PCAT-LOI and PCAT-Vessel radiomics models also similarly identified coronary vessels thought to be highly vulnerable (i.e., both TCFA and MC) (0.88±0.10, 0.91±0.09). Favorable radiomics features tended to be those describing texture and size of PCAT. PCAT radiomics can identify coronary vessels with TCFA or MC, consistent with IVOCT. CCTA radiomics may improve risk stratification by noninvasively detecting vulnerable plaque characteristics that are only visible with IVOCT.
Collapse
|
11
|
Lee J, Pereira GTR, Motairek I, Kim JN, Zimin VN, Dallan LAP, Hoori A, Al-Kindi S, Guagliumi G, Wilson DL. Neoatherosclerosis prediction using plaque markers in intravascular optical coherence tomography images. Front Cardiovasc Med 2022; 9:1079046. [PMID: 36588557 PMCID: PMC9794759 DOI: 10.3389/fcvm.2022.1079046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
Introduction In-stent neoatherosclerosis has emerged as a crucial factor in post-stent complications including late in-stent restenosis and very late stent thrombosis. In this study, we investigated the ability of quantitative plaque characteristics from intravascular optical coherence tomography (IVOCT) images taken just prior to stent implantation to predict neoatherosclerosis after implantation. Methods This was a sub-study of the TRiple Assessment of Neointima Stent FOrmation to Reabsorbable polyMer with Optical Coherence Tomography (TRANSFORM-OCT) trial. Images were obtained before and 18 months after stent implantation. Final analysis included images of 180 lesions from 90 patients; each patient had images of two lesions in different coronary arteries. A total of 17 IVOCT plaque features, including lesion length, lumen (e.g., area and diameter); calcium (e.g., angle and thickness); and fibrous cap (FC) features (e.g., thickness, surface area, and burden), were automatically extracted from the baseline IVOCT images before stenting using dedicated software developed by our group (OCTOPUS). The predictive value of baseline IVOCT plaque features for neoatherosclerosis development after stent implantation was assessed using univariate/multivariate logistic regression and receiver operating characteristic (ROC) analyses. Results Follow-up IVOCT identified stents with (n = 19) and without (n = 161) neoatherosclerosis. Greater lesion length and maximum calcium angle and features related to FC were associated with a higher prevalence of neoatherosclerosis after stent implantation (p < 0.05). Hierarchical clustering identified six clusters with the best prediction p-values. In univariate logistic regression analysis, maximum calcium angle, minimum calcium thickness, maximum FC angle, maximum FC area, FC surface area, and FC burden were significant predictors of neoatherosclerosis. Lesion length and features related to the lumen were not significantly different between the two groups. In multivariate logistic regression analysis, only larger FC surface area was strongly associated with neoatherosclerosis (odds ratio 1.38, 95% confidence interval [CI] 1.05-1.80, p < 0.05). The area under the ROC curve was 0.901 (95% CI 0.859-0.946, p < 0.05) for FC surface area. Conclusion Post-stent neoatherosclerosis can be predicted by quantitative IVOCT imaging of plaque characteristics prior to stent implantation. Our findings highlight the additional clinical benefits of utilizing IVOCT imaging in the catheterization laboratory to inform treatment decision-making and improve outcomes.
Collapse
Affiliation(s)
- Juhwan Lee
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Gabriel T. R. Pereira
- Cardiovascular Imaging Core Laboratory, Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Issam Motairek
- Cardiovascular Imaging Core Laboratory, Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Justin N. Kim
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Vladislav N. Zimin
- Cardiovascular Imaging Core Laboratory, Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Luis A. P. Dallan
- Cardiovascular Imaging Core Laboratory, Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Ammar Hoori
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Sadeer Al-Kindi
- Cardiovascular Imaging Core Laboratory, Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Giulio Guagliumi
- Cardiovascular Department, Galeazzi San’Ambrogio Hospital, Innovation District, Milan, Italy
| | - David L. Wilson
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Department of Radiology, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
12
|
Lee J, Pereira GTR, Gharaibeh Y, Kolluru C, Zimin VN, Dallan LAP, Kim JN, Hoori A, Al-Kindi SG, Guagliumi G, Bezerra HG, Wilson DL. Automated analysis of fibrous cap in intravascular optical coherence tomography images of coronary arteries. Sci Rep 2022; 12:21454. [PMID: 36509806 PMCID: PMC9744742 DOI: 10.1038/s41598-022-24884-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 11/22/2022] [Indexed: 12/14/2022] Open
Abstract
Thin-cap fibroatheroma (TCFA) and plaque rupture have been recognized as the most frequent risk factor for thrombosis and acute coronary syndrome. Intravascular optical coherence tomography (IVOCT) can identify TCFA and assess cap thickness, which provides an opportunity to assess plaque vulnerability. We developed an automated method that can detect lipidous plaque and assess fibrous cap thickness in IVOCT images. This study analyzed a total of 4360 IVOCT image frames of 77 lesions among 41 patients. Expert cardiologists manually labeled lipidous plaque based on established criteria. To improve segmentation performance, preprocessing included lumen segmentation, pixel-shifting, and noise filtering on the raw polar (r, θ) IVOCT images. We used the DeepLab-v3 plus deep learning model to classify lipidous plaque pixels. After lipid detection, we automatically detected the outer border of the fibrous cap using a special dynamic programming algorithm and assessed the cap thickness. Our method provided excellent discriminability of lipid plaque with a sensitivity of 85.8% and A-line Dice coefficient of 0.837. By comparing lipid angle measurements between two analysts following editing of our automated software, we found good agreement by Bland-Altman analysis (difference 6.7° ± 17°; mean ~ 196°). Our method accurately detected the fibrous cap from the detected lipid plaque. Automated analysis required a significant modification for only 5.5% frames. Furthermore, our method showed a good agreement of fibrous cap thickness between two analysts with Bland-Altman analysis (4.2 ± 14.6 µm; mean ~ 175 µm), indicating little bias between users and good reproducibility of the measurement. We developed a fully automated method for fibrous cap quantification in IVOCT images, resulting in good agreement with determinations by analysts. The method has great potential to enable highly automated, repeatable, and comprehensive evaluations of TCFAs.
Collapse
Affiliation(s)
- Juhwan Lee
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Gabriel T R Pereira
- Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
| | - Yazan Gharaibeh
- Department of Biomedical Engineering, The Hashemite University, Zarqa, 13133, Jordan
| | - Chaitanya Kolluru
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Vladislav N Zimin
- Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
| | - Luis A P Dallan
- Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
| | - Justin N Kim
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Ammar Hoori
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Sadeer G Al-Kindi
- Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
| | - Giulio Guagliumi
- Cardiovascular Department, Galeazzi San'Ambrogio Hospital, Innovation District, Milan, Italy
| | - Hiram G Bezerra
- Interventional Cardiology Center, Heart and Vascular Institute, University of South Florida, Tampa, FL, 33606, USA
| | - David L Wilson
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
- Department of Radiology, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
13
|
Lee J, Kim JN, Gomez-Perez L, Gharaibeh Y, Motairek I, Pereira GTR, Zimin VN, Dallan LAP, Hoori A, Al-Kindi S, Guagliumi G, Bezerra HG, Wilson DL. Automated Segmentation of Microvessels in Intravascular OCT Images Using Deep Learning. Bioengineering (Basel) 2022; 9:648. [PMID: 36354559 PMCID: PMC9687448 DOI: 10.3390/bioengineering9110648] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/27/2022] [Accepted: 11/02/2022] [Indexed: 09/03/2024] Open
Abstract
Microvessels in vascular plaque are associated with plaque progression and are found in plaque rupture and intra-plaque hemorrhage. To analyze this characteristic of vulnerability, we developed an automated deep learning method for detecting microvessels in intravascular optical coherence tomography (IVOCT) images. A total of 8403 IVOCT image frames from 85 lesions and 37 normal segments were analyzed. Manual annotation was performed using a dedicated software (OCTOPUS) previously developed by our group. Data augmentation in the polar (r,θ) domain was applied to raw IVOCT images to ensure that microvessels appear at all possible angles. Pre-processing methods included guidewire/shadow detection, lumen segmentation, pixel shifting, and noise reduction. DeepLab v3+ was used to segment microvessel candidates. A bounding box on each candidate was classified as either microvessel or non-microvessel using a shallow convolutional neural network. For better classification, we used data augmentation (i.e., angle rotation) on bounding boxes with a microvessel during network training. Data augmentation and pre-processing steps improved microvessel segmentation performance significantly, yielding a method with Dice of 0.71 ± 0.10 and pixel-wise sensitivity/specificity of 87.7 ± 6.6%/99.8 ± 0.1%. The network for classifying microvessels from candidates performed exceptionally well, with sensitivity of 99.5 ± 0.3%, specificity of 98.8 ± 1.0%, and accuracy of 99.1 ± 0.5%. The classification step eliminated the majority of residual false positives and the Dice coefficient increased from 0.71 to 0.73. In addition, our method produced 698 image frames with microvessels present, compared with 730 from manual analysis, representing a 4.4% difference. When compared with the manual method, the automated method improved microvessel continuity, implying improved segmentation performance. The method will be useful for research purposes as well as potential future treatment planning.
Collapse
Affiliation(s)
- Juhwan Lee
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Justin N Kim
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Lia Gomez-Perez
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Yazan Gharaibeh
- Department of Biomedical Engineering, Faculty of Engineering, The Hashemite University, Zarqa, 13133, Jordan
| | - Issam Motairek
- Cardiovascular Imaging Core Laboratory, Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Gabriel T R Pereira
- Cardiovascular Imaging Core Laboratory, Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Vladislav N Zimin
- Cardiovascular Imaging Core Laboratory, Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Luis A P Dallan
- Cardiovascular Imaging Core Laboratory, Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Ammar Hoori
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Sadeer Al-Kindi
- Cardiovascular Imaging Core Laboratory, Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Giulio Guagliumi
- Cardiovascular Department, Galeazzi San'Ambrogio Hospital, Innovation District Milan, 20157 Milan, Italy
| | - Hiram G Bezerra
- Interventional Cardiology Center, Heart and Vascular Institute, University of South Florida, Tampa, FL 33606, USA
| | - David L Wilson
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Radiology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
14
|
Dallan LAP, Zimin VN, Lee J, Gharaibeh Y, Kim JN, Pereira GTR, Vergara-Martel A, Dong P, Gu L, Wilson DL, Bezerra HG. Assessment of Post-Dilatation Strategies for Optimal Stent Expansion in Calcified Coronary Lesions: Ex Vivo Analysis With Optical Coherence Tomography. CARDIOVASCULAR REVASCULARIZATION MEDICINE 2022; 43:62-70. [PMID: 35597721 DOI: 10.1016/j.carrev.2022.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Interventional cardiologists make adjustments in the presence of coronary calcifications known to limit stent expansion, but proper balloon sizing, plaque-modification approaches, and high-pressure regimens are not well established. Intravascular optical coherence tomography (IVOCT) provides high-resolution images of coronary tissues, including detailed imaging of calcifications, and accurate measurements of stent deployment, providing a means for detailed study of stent deployment. OBJECTIVE Evaluate stent expansion in an ex vivo model of calcified coronary arteries as a function of balloon size and high-pressure, post-dilatation strategies. METHODS We conducted experiments on cadaver hearts with calcified coronary lesions. We assessed stent expansion as a function of size and pressure of non-compliant (NC) balloons (i.e., nominal, 0.5, 1.0, and 1.5 mm balloons at 10, 20 and 30 atm). IVOCT images were acquired pre-stent, post-stent, and at all post-dilatations. Stent expansion was calculated using minimum expansion index (MEI). RESULTS We analyzed 134 IVOCT pullbacks from ten ex-vivo experiments. The mean distal and proximal reference lumen diameters were 2.2 ± 0.5 mm and 2.5 ± 0.7 mm, respectively, 80% of times using a 3.0 mm diameter stent. Overall, based on stent sizing, a good expansion (MEI ≥ 80%) was reached using the 1:1 NC balloon at 20 atm, and expansion > 100% was reached using the 1:1 NC balloon at 30 atm. In the subgroup analysis, comparing low-calcified and high-calcified lesions, good expansion (MEI ≥ 80%) was reached using the 1:1 NC balloon at nominal pressure (10 atm) versus using 1:1 NC balloon at 30 atm, respectively. Significant vessel rupture was identified in all the vessels mainly upon post-dilatation with larger balloons, and 60% of the experiments (6 vessels, 3 in each calcium subgroup) presented rupture with the +1.0 mm NC balloon at 20 atm. CONCLUSION When treating calcified lesions, good stent expansion was reached using smaller balloons at higher pressures without coronary injuries, whereas bigger balloons yielded unpredictable expansion even at lower pressures and demonstrated potential harmful damages to the vessels. As these findings could help physicians with appropriate planning of stent post-dilatation for calcified lesions, it will be important to clinically evaluate the recommended protocol.
Collapse
Affiliation(s)
- Luis A P Dallan
- Cardiovascular Imaging Core Laboratory, Harrington Heart & Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Vladislav N Zimin
- Cardiovascular Imaging Core Laboratory, Harrington Heart & Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Juhwan Lee
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Yazan Gharaibeh
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Justin N Kim
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Gabriel T R Pereira
- Cardiovascular Imaging Core Laboratory, Harrington Heart & Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Armando Vergara-Martel
- Cardiovascular Imaging Core Laboratory, Harrington Heart & Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Pengfei Dong
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA
| | - Linxia Gu
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA
| | - David L Wilson
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Radiology, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Hiram G Bezerra
- Interventional Cardiology Center, Heart and Vascular Institute, University of South Florida, Tampa, FL 33606, USA
| |
Collapse
|
15
|
Rico-Jimenez JJ, Jo JA. Rapid lipid-laden plaque identification in intravascular optical coherence tomography imaging based on time-series deep learning. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:106006. [PMID: 36307914 PMCID: PMC9616160 DOI: 10.1117/1.jbo.27.10.106006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
SIGNIFICANCE Coronary heart disease has the highest rate of death and morbidity in the Western world. Atherosclerosis is an asymptomatic condition that is considered the primary cause of cardiovascular diseases. The accumulation of low-density lipoprotein triggers an inflammatory process in focal areas of arteries, which leads to the formation of plaques. Lipid-laden plaques containing a necrotic core may eventually rupture, causing heart attack and stroke. Lately, intravascular optical coherence tomography (IV-OCT) imaging has been used for plaque assessment. The interpretation of the IV-OCT images is performed visually, which is burdensome and requires highly trained physicians for accurate plaque identification. AIM Our study aims to provide high throughput lipid-laden plaque identification that can assist in vivo imaging by offering faster screening and guided decision making during percutaneous coronary interventions. APPROACH An A-line-wise classification methodology based on time-series deep learning is presented to fulfill this aim. The classifier was trained and validated with a database consisting of IV-OCT images of 98 artery sections. A trained physician with expertise in the analysis of IV-OCT imaging provided the visual evaluation of the database that was used as ground truth for training and validation. RESULTS This method showed an accuracy, sensitivity, and specificity of 89.6%, 83.6%, and 91.1%, respectively. This deep learning methodology has the potential to increase the speed of lipid-laden plaques identification to provide a high throughput of more than 100 B-scans/s. CONCLUSIONS These encouraging results suggest that this method will allow for high throughput video-rate atherosclerotic plaque assessment through automated tissue characterization for in vivo imaging by providing faster screening to assist in guided decision making during percutaneous coronary interventions.
Collapse
Affiliation(s)
- Jose J. Rico-Jimenez
- Texas A&M University, Department of Biomedical Engineering, College Station, Texas, United States
| | - Javier A. Jo
- University of Oklahoma, School of Electrical and Computer Engineering, Norman, Oklahoma, United States
| |
Collapse
|
16
|
Gu SZ, Bennett MR. Plaque Structural Stress: Detection, Determinants and Role in Atherosclerotic Plaque Rupture and Progression. Front Cardiovasc Med 2022; 9:875413. [PMID: 35872913 PMCID: PMC9300846 DOI: 10.3389/fcvm.2022.875413] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/10/2022] [Indexed: 12/02/2022] Open
Abstract
Atherosclerosis remains a major cause of death worldwide, with most myocardial infarctions being due to rupture or erosion of coronary plaques. Although several imaging modalities can identify features that confer risk, major adverse cardiovascular event (MACE) rates attributable to each plaque are low, such that additional biomarkers are required to improve risk stratification at plaque and patient level. Coronary arteries are exposed to continual mechanical forces, and plaque rupture occurs when plaque structural stress (PSS) exceeds its mechanical strength. Prospective studies have shown that peak PSS is correlated with acute coronary syndrome (ACS) presentation, plaque rupture, and MACE, and provides additional prognostic information to imaging. In addition, PSS incorporates multiple variables, including plaque architecture, plaque material properties, and haemodynamic data into a defined solution, providing a more detailed overview of higher-risk lesions. We review the methods for calculation and determinants of PSS, imaging modalities used for modeling PSS, and idealized models that explore structural and geometric components that affect PSS. We also discuss current experimental and clinical data linking PSS to the natural history of coronary artery disease, and explore potential for refining treatment options and predicting future events.
Collapse
Affiliation(s)
| | - Martin R. Bennett
- Section of Cardiorespiratory Medicine, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
17
|
|
18
|
Carpenter HJ, Ghayesh MH, Zander AC, Li J, Di Giovanni G, Psaltis PJ. Automated Coronary Optical Coherence Tomography Feature Extraction with Application to Three-Dimensional Reconstruction. Tomography 2022; 8:1307-1349. [PMID: 35645394 PMCID: PMC9149962 DOI: 10.3390/tomography8030108] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/03/2022] [Accepted: 05/10/2022] [Indexed: 11/16/2022] Open
Abstract
Coronary optical coherence tomography (OCT) is an intravascular, near-infrared light-based imaging modality capable of reaching axial resolutions of 10-20 µm. This resolution allows for accurate determination of high-risk plaque features, such as thin cap fibroatheroma; however, visualization of morphological features alone still provides unreliable positive predictive capability for plaque progression or future major adverse cardiovascular events (MACE). Biomechanical simulation could assist in this prediction, but this requires extracting morphological features from intravascular imaging to construct accurate three-dimensional (3D) simulations of patients' arteries. Extracting these features is a laborious process, often carried out manually by trained experts. To address this challenge, numerous techniques have emerged to automate these processes while simultaneously overcoming difficulties associated with OCT imaging, such as its limited penetration depth. This systematic review summarizes advances in automated segmentation techniques from the past five years (2016-2021) with a focus on their application to the 3D reconstruction of vessels and their subsequent simulation. We discuss four categories based on the feature being processed, namely: coronary lumen; artery layers; plaque characteristics and subtypes; and stents. Areas for future innovation are also discussed as well as their potential for future translation.
Collapse
Affiliation(s)
- Harry J. Carpenter
- School of Mechanical Engineering, University of Adelaide, Adelaide, SA 5005, Australia;
| | - Mergen H. Ghayesh
- School of Mechanical Engineering, University of Adelaide, Adelaide, SA 5005, Australia;
| | - Anthony C. Zander
- School of Mechanical Engineering, University of Adelaide, Adelaide, SA 5005, Australia;
| | - Jiawen Li
- School of Electrical Electronic Engineering, University of Adelaide, Adelaide, SA 5005, Australia;
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, The University of Adelaide, Adelaide, SA 5005, Australia
- Institute for Photonics and Advanced Sensing, University of Adelaide, Adelaide, SA 5005, Australia
| | - Giuseppe Di Giovanni
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA 5000, Australia; (G.D.G.); (P.J.P.)
| | - Peter J. Psaltis
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA 5000, Australia; (G.D.G.); (P.J.P.)
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
- Department of Cardiology, Central Adelaide Local Health Network, Adelaide, SA 5000, Australia
| |
Collapse
|
19
|
Zhang R, Fan Y, Qi W, Wang A, Tang X, Gao T. Current research and future prospects of IVOCT imaging-based detection of the vascular lumen and vulnerable plaque. JOURNAL OF BIOPHOTONICS 2022; 15:e202100376. [PMID: 35139263 DOI: 10.1002/jbio.202100376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/17/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Intravascular optical coherence tomography (IVOCT) is an imaging method that has developed rapidly in recent years and is useful in coronary atherosclerosis diagnosis. It is widely used in the assessment of vulnerable plaque. This review summarizes the main research methods used in recent years for blood vessel lumen boundary detection and segmentation and vulnerable plaque segmentation and classification. This article aims to comprehensively and systematically introduce the research progress on internal tissues of blood vessels based on IVOCT images. The characteristics and advantages of various methods have been summarized to provide theoretical ideas and methods for the reference of relevant researchers and scholars.
Collapse
Affiliation(s)
- Ruolin Zhang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yingwei Fan
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Wenliu Qi
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Ancong Wang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Xiaoying Tang
- School of Life Science, Beijing Institute of Technology, Beijing, China
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Tianxin Gao
- School of Life Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
20
|
He Y, Northrup H, Le H, Cheung AK, Berceli SA, Shiu YT. Medical Image-Based Computational Fluid Dynamics and Fluid-Structure Interaction Analysis in Vascular Diseases. Front Bioeng Biotechnol 2022; 10:855791. [PMID: 35573253 PMCID: PMC9091352 DOI: 10.3389/fbioe.2022.855791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 04/08/2022] [Indexed: 01/17/2023] Open
Abstract
Hemodynamic factors, induced by pulsatile blood flow, play a crucial role in vascular health and diseases, such as the initiation and progression of atherosclerosis. Computational fluid dynamics, finite element analysis, and fluid-structure interaction simulations have been widely used to quantify detailed hemodynamic forces based on vascular images commonly obtained from computed tomography angiography, magnetic resonance imaging, ultrasound, and optical coherence tomography. In this review, we focus on methods for obtaining accurate hemodynamic factors that regulate the structure and function of vascular endothelial and smooth muscle cells. We describe the multiple steps and recent advances in a typical patient-specific simulation pipeline, including medical imaging, image processing, spatial discretization to generate computational mesh, setting up boundary conditions and solver parameters, visualization and extraction of hemodynamic factors, and statistical analysis. These steps have not been standardized and thus have unavoidable uncertainties that should be thoroughly evaluated. We also discuss the recent development of combining patient-specific models with machine-learning methods to obtain hemodynamic factors faster and cheaper than conventional methods. These critical advances widen the use of biomechanical simulation tools in the research and potential personalized care of vascular diseases.
Collapse
Affiliation(s)
- Yong He
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, FL, United States
| | - Hannah Northrup
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States
| | - Ha Le
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States
| | - Alfred K. Cheung
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States
- Veterans Affairs Salt Lake City Healthcare System, Salt Lake City, UT, United States
| | - Scott A. Berceli
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, FL, United States
- Vascular Surgery Section, Malcom Randall Veterans Affairs Medical Center, Gainesville, FL, United States
| | - Yan Tin Shiu
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States
- Veterans Affairs Salt Lake City Healthcare System, Salt Lake City, UT, United States
- *Correspondence: Yan Tin Shiu,
| |
Collapse
|
21
|
Liu MH, Zhao C, Wang S, Jia H, Yu B. Artificial Intelligence—A Good Assistant to Multi-Modality Imaging in Managing Acute Coronary Syndrome. Front Cardiovasc Med 2022; 8:782971. [PMID: 35252367 PMCID: PMC8888682 DOI: 10.3389/fcvm.2021.782971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 12/29/2021] [Indexed: 11/19/2022] Open
Abstract
Acute coronary syndrome is the leading cause of cardiac death and has a significant impact on patient prognosis. Early identification and proper management are key to ensuring better outcomes and have improved significantly with the development of various cardiovascular imaging modalities. Recently, the use of artificial intelligence as a method of enhancing the capability of cardiovascular imaging has grown. AI can inform the decision-making process, as it enables existing modalities to perform more efficiently and make more accurate diagnoses. This review demonstrates recent applications of AI in cardiovascular imaging to facilitate better patient care.
Collapse
Affiliation(s)
- Ming-hao Liu
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Chen Zhao
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Shengfang Wang
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Haibo Jia
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
- *Correspondence: Haibo Jia
| | - Bo Yu
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
- Bo Yu
| |
Collapse
|
22
|
Olender ML, Niu Y, Marlevi D, Edelman ER, Nezami FR. Impact and Implications of Mixed Plaque Class in Automated Characterization of Complex Atherosclerotic Lesions. Comput Med Imaging Graph 2022; 97:102051. [DOI: 10.1016/j.compmedimag.2022.102051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 12/19/2021] [Accepted: 02/17/2022] [Indexed: 01/16/2023]
|
23
|
Lee J, Kim JN, Pereira GTR, Gharaibeh Y, Kolluru C, Zimin VN, Dallan LAP, Motairek IK, Hoori A, Guagliumi G, Bezerra HG, Wilson DL. Automatic microchannel detection using deep learning in intravascular optical coherence tomography images. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2022; 12034:120340S. [PMID: 36465096 PMCID: PMC9718371 DOI: 10.1117/12.2612697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Microchannel formation is known to be a significant marker of plaque vulnerability, plaque rupture, and intraplaque hemorrhage, which are responsible for plaque progression. We developed a fully-automated method for detecting microchannels in intravascular optical coherence tomography (IVOCT) images using deep learning. A total of 3,075 IVOCT image frames across 41 patients having 62 microchannel segments were analyzed. Microchannel was manually annotated by expert cardiologists, according to previously established criteria. In order to improve segmentation performance, pre-processing including guidewire detection/removal, lumen segmentation, pixel-shifting, and noise filtering was applied to the raw (r,θ) IVOCT image. We used the DeepLab-v3 plus deep learning model with the Xception backbone network for identifying microchannel candidates. After microchannel candidate detection, each candidate was classified as either microchannel or no-microchannel using a convolutional neural network (CNN) classification model. Our method provided excellent segmentation of microchannel with a Dice coefficient of 0.811, sensitivity of 92.4%, and specificity of 99.9%. We found that pre-processing and data augmentation were very important to improve results. In addition, a CNN classification step was also helpful to rule out false positives. Furthermore, automated analysis missed only 3% of frames having microchannels and showed no false positives. Our method has great potential to enable highly automated, objective, repeatable, and comprehensive evaluations of vulnerable plaques and treatments. We believe that this method is promising for both research and clinical applications.
Collapse
Affiliation(s)
- Juhwan Lee
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Justin N. Kim
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Gabriel T. R. Pereira
- Cardiovascular Imaging Core Laboratory, Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
| | - Yazan Gharaibeh
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Chaitanya Kolluru
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Vladislav N. Zimin
- Cardiovascular Imaging Core Laboratory, Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
| | - Luis A. P. Dallan
- Cardiovascular Imaging Core Laboratory, Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
| | - Issam K. Motairek
- Cardiovascular Imaging Core Laboratory, Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
| | - Ammar Hoori
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Giulio Guagliumi
- Cardiovascular Department, Ospedale Papa Giovanni XXIII, Bergamo, Italy
| | - Hiram G. Bezerra
- Interventional Cardiology Center, Heart and Vascular Institute, University of South Florida, Tampa, FL, 33606, USA
| | - David L. Wilson
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
- Case Western Reserve University, Department of Radiology, Cleveland, OH, 44106, USA
| |
Collapse
|
24
|
Schwartz D, Sawyer TW, Thurston N, Barton J, Ditzler G. Ovarian cancer detection using optical coherence tomography and convolutional neural networks. Neural Comput Appl 2022; 34:8977-8987. [PMID: 35095211 PMCID: PMC8785933 DOI: 10.1007/s00521-022-06920-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 01/04/2022] [Indexed: 11/18/2022]
Abstract
Ovarian cancer has the sixth-largest fatality rate in the United States among all cancers. A non-surgical assay capable of detecting ovarian cancer with acceptable sensitivity and specificity has yet to be developed. However, such a discovery would profoundly impact the pace of the treatment and improvement to patients' quality of life. Achieving such a solution requires high-quality imaging, image processing, and machine learning to support an acceptably robust automated diagnosis. In this work, we propose an automated framework that learns to identify ovarian cancer in transgenic mice from optical coherence tomography (OCT) recordings. Classification is accomplished using a neural network that perceives spatially ordered sequences of tomograms. We present three neural network-based approaches, namely a VGG-supported feed-forward network, a 3D convolutional neural network, and a convolutional LSTM (Long Short-Term Memory) network. Our experimental results show that our models achieve a favorable performance with no manual tuning or feature crafting, despite the challenging noise inherent in OCT images. Specifically, our best performing model, the convolutional LSTM-based neural network, achieves a mean AUC (± standard error) of 0.81 ± 0.037. To the best of the authors' knowledge, no application of machine learning to analyze depth-resolved OCT images of whole ovaries has been documented in the literature. A significant broader impact of this research is the potential transferability of the proposed diagnostic system from transgenic mice to human organs, which would enable medical intervention from early detection of an extremely deadly affliction.
Collapse
Affiliation(s)
- David Schwartz
- University of Arizona, 1230 E Speedway Blvd, Tucson, AZ 85721 USA
| | - Travis W. Sawyer
- University of Arizona, 1230 E Speedway Blvd, Tucson, AZ 85721 USA
| | - Noah Thurston
- University of Arizona, 1230 E Speedway Blvd, Tucson, AZ 85721 USA
| | - Jennifer Barton
- University of Arizona, 1230 E Speedway Blvd, Tucson, AZ 85721 USA
| | - Gregory Ditzler
- University of Arizona, 1230 E Speedway Blvd, Tucson, AZ 85721 USA
| |
Collapse
|
25
|
Holmberg O, Lenz T, Koch V, Alyagoob A, Utsch L, Rank A, Sabic E, Seguchi M, Xhepa E, Kufner S, Cassese S, Kastrati A, Marr C, Joner M, Nicol P. Histopathology-Based Deep-Learning Predicts Atherosclerotic Lesions in Intravascular Imaging. Front Cardiovasc Med 2021; 8:779807. [PMID: 34970608 PMCID: PMC8713728 DOI: 10.3389/fcvm.2021.779807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/11/2021] [Indexed: 11/18/2022] Open
Abstract
Background: Optical coherence tomography is a powerful modality to assess atherosclerotic lesions, but detecting lesions in high-resolution OCT is challenging and requires expert knowledge. Deep-learning algorithms can be used to automatically identify atherosclerotic lesions, facilitating identification of patients at risk. We trained a deep-learning algorithm (DeepAD) with co-registered, annotated histopathology to predict atherosclerotic lesions in optical coherence tomography (OCT). Methods: Two datasets were used for training DeepAD: (i) a histopathology data set from 7 autopsy cases with 62 OCT frames and co-registered histopathology for high quality manual annotation and (ii) a clinical data set from 51 patients with 222 OCT frames in which manual annotations were based on clinical expertise only. A U-net based deep convolutional neural network (CNN) ensemble was employed as an atherosclerotic lesion prediction algorithm. Results were analyzed using intersection over union (IOU) for segmentation. Results: DeepAD showed good performance regarding the prediction of atherosclerotic lesions, with a median IOU of 0.68 ± 0.18 for segmentation of atherosclerotic lesions. Detection of calcified lesions yielded an IOU = 0.34. When training the algorithm without histopathology-based annotations, a performance drop of >0.25 IOU was observed. The practical application of DeepAD was evaluated retrospectively in a clinical cohort (n = 11 cases), showing high sensitivity as well as specificity and similar performance when compared to manual expert analysis. Conclusion: Automated detection of atherosclerotic lesions in OCT is improved using a histopathology-based deep-learning algorithm, allowing accurate detection in the clinical setting. An automated decision-support tool based on DeepAD could help in risk prediction and guide interventional treatment decisions.
Collapse
Affiliation(s)
- Olle Holmberg
- Institute of Computational Biology, German Research Center for Environmental Health, Helmholtz Zentrum München, Oberschleißheim, Germany
- School of Life Sciences Weihenstephan, Technische Universität München, Munich, Germany
| | - Tobias Lenz
- Klinik für Herz- und Kreislauferkrankungen, Deutsches Herzzentrum München, Technische Universität München, Munich, Germany
| | - Valentin Koch
- Institute of AI for Health, German Research Center for Environmental Health, Helmholtz Zentrum München, Oberschleißheim, Germany
- TUM Department of Informatics, Technische Universität München, Munich, Germany
| | - Aseel Alyagoob
- Klinik für Herz- und Kreislauferkrankungen, Deutsches Herzzentrum München, Technische Universität München, Munich, Germany
| | - Léa Utsch
- Klinik für Herz- und Kreislauferkrankungen, Deutsches Herzzentrum München, Technische Universität München, Munich, Germany
| | - Andreas Rank
- Klinik für Herz- und Kreislauferkrankungen, Deutsches Herzzentrum München, Technische Universität München, Munich, Germany
| | - Emina Sabic
- Klinik für Herz- und Kreislauferkrankungen, Deutsches Herzzentrum München, Technische Universität München, Munich, Germany
| | - Masaru Seguchi
- Klinik für Herz- und Kreislauferkrankungen, Deutsches Herzzentrum München, Technische Universität München, Munich, Germany
| | - Erion Xhepa
- Klinik für Herz- und Kreislauferkrankungen, Deutsches Herzzentrum München, Technische Universität München, Munich, Germany
| | - Sebastian Kufner
- Klinik für Herz- und Kreislauferkrankungen, Deutsches Herzzentrum München, Technische Universität München, Munich, Germany
| | - Salvatore Cassese
- Klinik für Herz- und Kreislauferkrankungen, Deutsches Herzzentrum München, Technische Universität München, Munich, Germany
| | - Adnan Kastrati
- Klinik für Herz- und Kreislauferkrankungen, Deutsches Herzzentrum München, Technische Universität München, Munich, Germany
- Deutsches Zentrum für Herz- und Kreislauf-Forschung (DZHK) e.V. (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Carsten Marr
- Institute of Computational Biology, German Research Center for Environmental Health, Helmholtz Zentrum München, Oberschleißheim, Germany
- Institute of AI for Health, German Research Center for Environmental Health, Helmholtz Zentrum München, Oberschleißheim, Germany
| | - Michael Joner
- Klinik für Herz- und Kreislauferkrankungen, Deutsches Herzzentrum München, Technische Universität München, Munich, Germany
- Deutsches Zentrum für Herz- und Kreislauf-Forschung (DZHK) e.V. (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Philipp Nicol
- Klinik für Herz- und Kreislauferkrankungen, Deutsches Herzzentrum München, Technische Universität München, Munich, Germany
| |
Collapse
|
26
|
An inverse method for mechanical characterization of heterogeneous diseased arteries using intravascular imaging. Sci Rep 2021; 11:22540. [PMID: 34795350 PMCID: PMC8602310 DOI: 10.1038/s41598-021-01874-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 10/27/2021] [Indexed: 11/08/2022] Open
Abstract
The increasing prevalence of finite element (FE) simulations in the study of atherosclerosis has spawned numerous inverse FE methods for the mechanical characterization of diseased tissue in vivo. Current approaches are however limited to either homogenized or simplified material representations. This paper presents a novel method to account for tissue heterogeneity and material nonlinearity in the recovery of constitutive behavior using imaging data acquired at differing intravascular pressures by incorporating interfaces between various intra-plaque tissue types into the objective function definition. Method verification was performed in silico by recovering assigned material parameters from a pair of vessel geometries: one derived from coronary optical coherence tomography (OCT); one generated from in silico-based simulation. In repeated tests, the method consistently recovered 4 linear elastic (0.1 ± 0.1% error) and 8 nonlinear hyperelastic (3.3 ± 3.0% error) material parameters. Method robustness was also highlighted in noise sensitivity analysis, where linear elastic parameters were recovered with average errors of 1.3 ± 1.6% and 8.3 ± 10.5%, at 5% and 20% noise, respectively. Reproducibility was substantiated through the recovery of 9 material parameters in two more models, with mean errors of 3.0 ± 4.7%. The results highlight the potential of this new approach, enabling high-fidelity material parameter recovery for use in complex cardiovascular computational studies.
Collapse
|
27
|
Recent Trends in Artificial Intelligence-Assisted Coronary Atherosclerotic Plaque Characterization. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph181910003. [PMID: 34639303 PMCID: PMC8508413 DOI: 10.3390/ijerph181910003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/12/2021] [Accepted: 09/17/2021] [Indexed: 01/21/2023]
Abstract
Coronary artery disease is a major cause of morbidity and mortality worldwide. Its underlying histopathology is the atherosclerotic plaque, which comprises lipid, fibrous and—when chronic—calcium components. Intravascular ultrasound (IVUS) and intravascular optical coherence tomography (IVOCT) performed during invasive coronary angiography are reference standards for characterizing the atherosclerotic plaque. Fine image spatial resolution attainable with contemporary coronary computed tomographic angiography (CCTA) has enabled noninvasive plaque assessment, including identifying features associated with vulnerable plaques known to presage acute coronary events. Manual interpretation of IVUS, IVOCT and CCTA images demands scarce physician expertise and high time cost. This has motivated recent research into and development of artificial intelligence (AI)-assisted methods for image processing, feature extraction, plaque identification and characterization. We performed parallel searches of the medical and technical literature from 1995 to 2021 focusing respectively on human plaque characterization using various imaging modalities and the use of AI-assisted computer aided diagnosis (CAD) to detect and classify atherosclerotic plaques, including their composition and the presence of high-risk features denoting vulnerable plaques. A total of 122 publications were selected for evaluation and the analysis was summarized in terms of data sources, methods—machine versus deep learning—and performance metrics. Trends in AI-assisted plaque characterization are detailed and prospective research challenges discussed. Future directions for the development of accurate and efficient CAD systems to characterize plaque noninvasively using CCTA are proposed.
Collapse
|
28
|
Automatic Classification of A-Lines in Intravascular OCT Images Using Deep Learning and Estimation of Attenuation Coefficients. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11167412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Intravascular Optical Coherence Tomography (IVOCT) images provide important insight into every aspect of atherosclerosis. Specifically, the extent of plaque and its type, which are indicative of the patient’s condition, are better assessed by OCT images in comparison to other in vivo modalities. A large amount of imaging data per patient require automatic methods for rapid results. An effective step towards automatic plaque detection and plaque characterization is axial lines (A-lines) based classification into normal and various plaque types. In this work, a novel automatic method for A-line classification is proposed. The method employed convolutional neural networks (CNNs) for classification in its core and comprised the following pre-processing steps: arterial wall segmentation and an OCT-specific (depth-resolved) transformation and a post-processing step based on the majority of classifications. The important step was the OCT-specific transformation, which was based on the estimation of the attenuation coefficient in every pixel of the OCT image. The dataset used for training and testing consisted of 183 images from 33 patients. In these images, four different plaque types were delineated. The method was evaluated by cross-validation. The mean values of accuracy, sensitivity and specificity were 74.73%, 87.78%, and 61.45%, respectively, when classifying into plaque and normal A-lines. When plaque A-lines were classified into fibrolipidic and fibrocalcific, the overall accuracy was 83.47% for A-lines of OCT-specific transformed images and 74.94% for A-lines of original images. This large improvement in accuracy indicates the advantage of using attenuation coefficients when characterizing plaque types. The proposed automatic deep-learning pipeline constitutes a positive contribution to the accurate classification of A-lines in intravascular OCT images.
Collapse
|
29
|
Saba L, Sanagala SS, Gupta SK, Koppula VK, Johri AM, Khanna NN, Mavrogeni S, Laird JR, Pareek G, Miner M, Sfikakis PP, Protogerou A, Misra DP, Agarwal V, Sharma AM, Viswanathan V, Rathore VS, Turk M, Kolluri R, Viskovic K, Cuadrado-Godia E, Kitas GD, Sharma N, Nicolaides A, Suri JS. Multimodality carotid plaque tissue characterization and classification in the artificial intelligence paradigm: a narrative review for stroke application. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1206. [PMID: 34430647 PMCID: PMC8350643 DOI: 10.21037/atm-20-7676] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/25/2021] [Indexed: 12/12/2022]
Abstract
Cardiovascular disease (CVD) is one of the leading causes of morbidity and mortality in the United States of America and globally. Carotid arterial plaque, a cause and also a marker of such CVD, can be detected by various non-invasive imaging modalities such as magnetic resonance imaging (MRI), computer tomography (CT), and ultrasound (US). Characterization and classification of carotid plaque-type in these imaging modalities, especially into symptomatic and asymptomatic plaque, helps in the planning of carotid endarterectomy or stenting. It can be challenging to characterize plaque components due to (I) partial volume effect in magnetic resonance imaging (MRI) or (II) varying Hausdorff values in plaque regions in CT, and (III) attenuation of echoes reflected by the plaque during US causing acoustic shadowing. Artificial intelligence (AI) methods have become an indispensable part of healthcare and their applications to the non-invasive imaging technologies such as MRI, CT, and the US. In this narrative review, three main types of AI models (machine learning, deep learning, and transfer learning) are analyzed when applied to MRI, CT, and the US. A link between carotid plaque characteristics and the risk of coronary artery disease is presented. With regard to characterization, we review tools and techniques that use AI models to distinguish carotid plaque types based on signal processing and feature strengths. We conclude that AI-based solutions offer an accurate and robust path for tissue characterization and classification for carotid artery plaque imaging in all three imaging modalities. Due to cost, user-friendliness, and clinical effectiveness, AI in the US has dominated the most.
Collapse
Affiliation(s)
- Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (AOU), Cagliari, Italy
| | - Skandha S Sanagala
- CSE Department, CMR College of Engineering & Technology, Hyderabad, India.,CSE Department, Bennett University, Greater Noida, UP, India
| | - Suneet K Gupta
- CSE Department, Bennett University, Greater Noida, UP, India
| | - Vijaya K Koppula
- CSE Department, CMR College of Engineering & Technology, Hyderabad, India
| | - Amer M Johri
- Department of Medicine, Division of Cardiology, Queen's University, Kingston, Ontario, Canada
| | - Narendra N Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi, India
| | - Sophie Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Center, Athens, Greece
| | - John R Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, CA, USA
| | - Gyan Pareek
- Minimally Invasive Urology Institute, Brown University, Providence, Rhode Island, USA
| | - Martin Miner
- Men's Health Center, Miriam Hospital Providence, Rhode Island, USA
| | - Petros P Sfikakis
- Rheumatology Unit, National Kapodistrian University of Athens, Greece
| | - Athanasios Protogerou
- Department of Cardiovascular Prevention, National and Kapodistrian University of Athens, Athens, Greece
| | - Durga P Misra
- Department of Clinical Immunology and Rheumatology, SGPGIMS, Lucknow, India
| | - Vikas Agarwal
- Department of Clinical Immunology and Rheumatology, SGPGIMS, Lucknow, India
| | - Aditya M Sharma
- Division of Cardiovascular Medicine, University of Virginia, VA, USA
| | - Vijay Viswanathan
- MV Hospital for Diabetes & Professor M Viswanathan Diabetes Research Centre, Chennai, India
| | - Vijay S Rathore
- Nephrology Department, Kaiser Permanente, Sacramento, CA, USA
| | - Monika Turk
- The Hanse-Wissenschaftskolleg Institute for Advanced Study, Delmenhorst, Germany
| | | | | | | | - George D Kitas
- R & D Academic Affairs, Dudley Group NHS Foundation Trust, Dudley, UK
| | - Neeraj Sharma
- Department of Biomedical Engineering, IIT-BHU, Banaras, UP, India
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre, University of Nicosia, Nicosia, Cyprus
| | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA
| |
Collapse
|
30
|
Shimamura K, Kubo T, Akasaka T. Evaluation of coronary plaques and atherosclerosis using optical coherence tomography. Expert Rev Cardiovasc Ther 2021; 19:379-386. [PMID: 33823735 DOI: 10.1080/14779072.2021.1914588] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Introduction: Coronary angiography (CAG) is the standard modality for assessing coronary stenosis; however, it has limitations in assessing coronary plaque morphology. Optical coherence tomography (OCT) is a high-resolution (10-20 μm) light-based intravascular imaging technique that can identify more detailed coronary plaque morphology compared to other intravascular imaging modalities. OCT is remarkable for characterizing fibrous, fibrocalcific, and lipid-rich plaques. The capabilities of OCT are well suited for discriminating three types of unstable plaque morphologies underlying coronary thrombosis, such as plaque rupture, erosion, and calcified nodules. The high resolution of OCT makes it possible to identify important features of vulnerable plaques, such as thin-cap (<65 μm thick) fibroatheroma, macrophages, vasa vasorum, and cholesterol crystals.Areas covered: This review summarizes the clinical impact of OCT and its efficacy in identifying plaque components and morphological features associated with plaque vulnerability.Expertopinion: The unique properties of OCT as a tool for investigating high-risk lesions have greatly contributed to a better understanding of plaque vulnerability. Consequently, OCT has led to significant changes in medical treatment and percutaneous coronary intervention strategies for acute coronary syndrome. Further development and investigation of OCT are necessary to better predict and manage acute coronary events in the future.
Collapse
Affiliation(s)
- Kunihiro Shimamura
- Department of Cardiovascular Medicine, Wakayama Medical University, Wakayama, Japan
| | - Takashi Kubo
- Department of Cardiovascular Medicine, Wakayama Medical University, Wakayama, Japan
| | - Takashi Akasaka
- Department of Cardiovascular Medicine, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
31
|
Kolluru C, Lee J, Gharaibeh Y, Bezerra HG, Wilson DL. Learning With Fewer Images via Image Clustering: Application to Intravascular OCT Image Segmentation. IEEE ACCESS : PRACTICAL INNOVATIONS, OPEN SOLUTIONS 2021; 9:37273-37280. [PMID: 33828934 PMCID: PMC8023588 DOI: 10.1109/access.2021.3058890] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Deep learning based methods are routinely used to segment various structures of interest in varied medical imaging modalities. Acquiring annotations for a large number of images requires a skilled analyst, and the process is both time consuming and challenging. Our approach to reduce effort is to reduce the number of images needing detailed annotation. For intravascular optical coherence tomography (IVOCT) image pullbacks, we tested 10% to 100% of training images derived from two schemes: equally-spaced image subsampling and deep-learning- based image clustering. The first strategy involves selecting images at equally spaced intervals from the volume, accounting for the high spatial correlation between neighboring images. In clustering, we used an autoencoder to create a deep feature space representation, performed k-medoids clustering, and then used the cluster medians for training. For coronary calcifications, a baseline U-net model was trained on all images from volumes of interest (VOIs) and compared with fewer images from the sub-sampling strategies. For a given sampling ratio, the clustering based method performed better or similar as compared to the equally spaced sampling approach (e.g., with 10% of images, mean F1 score for calcific class increased from 0.52 to 0.63, with equal spacing and with clustering, respectively). Additionally, for a fixed number of training images, sampling images from more VOIs performed better than otherwise. In conclusion, we recommend the clustering based approach to annotate a small fraction of images, creating a baseline model, which potentially can be improved further by annotating images selected using methods described in active learning research.
Collapse
Affiliation(s)
- Chaitanya Kolluru
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Juhwan Lee
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Yazan Gharaibeh
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Hiram G Bezerra
- Interventional Cardiology Center, Heart and Vascular Institute, The University of South Florida, Tampa, FL 33606, USA
| | - David L Wilson
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
32
|
Quer G, Arnaout R, Henne M, Arnaout R. Machine Learning and the Future of Cardiovascular Care: JACC State-of-the-Art Review. J Am Coll Cardiol 2021; 77:300-313. [PMID: 33478654 PMCID: PMC7839163 DOI: 10.1016/j.jacc.2020.11.030] [Citation(s) in RCA: 183] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/14/2022]
Abstract
The role of physicians has always been to synthesize the data available to them to identify diagnostic patterns that guide treatment and follow response. Today, increasingly sophisticated machine learning algorithms may grow to support clinical experts in some of these tasks. Machine learning has the potential to benefit patients and cardiologists, but only if clinicians take an active role in bringing these new algorithms into practice. The aim of this review is to introduce clinicians who are not data science experts to key concepts in machine learning that will allow them to better understand the field and evaluate new literature and developments. The current published data in machine learning for cardiovascular disease is then summarized, using both a bibliometric survey, with code publicly available to enable similar analysis for any research topic of interest, and select case studies. Finally, several ways that clinicians can and must be involved in this emerging field are presented.
Collapse
Affiliation(s)
- Giorgio Quer
- Scripps Research Translational Institute, La Jolla, California, USA. https://twitter.com/giorgioquer
| | - Ramy Arnaout
- Division of Clinical Pathology, Department of Pathology, Beth Israel Deaconess Medical Center, Beth Israel Lahey Health, Boston, Massachusetts, USA
| | - Michael Henne
- Department of Medicine, Division of Cardiology, University of California, San Francisco, California, USA
| | - Rima Arnaout
- Department of Medicine, Division of Cardiology, Bakar Computational Health Sciences Institute, Center for Intelligent Imaging, University of California, San Francisco, California, USA.
| |
Collapse
|
33
|
Lee J, Gharaibeh Y, Kolluru C, Zimin VN, Dallan LAP, Kim JN, Bezerra HG, Wilson DL. Segmentation of Coronary Calcified Plaque in Intravascular OCT Images Using a Two-Step Deep Learning Approach. IEEE ACCESS : PRACTICAL INNOVATIONS, OPEN SOLUTIONS 2020; 8:225581-225593. [PMID: 33598377 PMCID: PMC7885992 DOI: 10.1109/access.2020.3045285] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We developed a fully automated, two-step deep learning approach for characterizing coronary calcified plaque in intravascular optical coherence tomography (IVOCT) images. First, major calcification lesions were detected from an entire pullback using a 3D convolutional neural network (CNN). Second, a SegNet deep learning model with the Tversky loss function was used to segment calcified plaques in the major calcification lesions. The fully connected conditional random field and the frame interpolation of the missing calcification frames were used to reduce classification errors. We trained/tested the networks on a large dataset comprising 8,231 clinical images from 68 patients with 68 vessels and 4,320 ex vivo cadaveric images from 4 hearts with 4 vessels. The 3D CNN model detected major calcifications with high sensitivity (97.7%), specificity (87.7%), and F1 score (0.922). Compared to the standard one-step approach, our two-step deep learning approach significantly improved sensitivity (from 77.5% to 86.2%), precision (from 73.5% to 75.8%), and F1 score (from 0.749 to 0.781). We investigated segmentation performance for varying numbers of training samples; at least 3,900 images were required to obtain stable segmentation results. We also found very small differences in calcification attributes (e.g., angle, thickness, and depth) and identical calcium scores on repetitive pullbacks, indicating excellent reproducibility. Applied to new clinical pullbacks, our method has implications for real-time treatment planning and imaging research.
Collapse
Affiliation(s)
- Juhwan Lee
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Yazan Gharaibeh
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Chaitanya Kolluru
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Vladislav N Zimin
- Cardiovascular Imaging Core Laboratory, Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Luis Augusto Palma Dallan
- Cardiovascular Imaging Core Laboratory, Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Justin Namuk Kim
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Hiram G Bezerra
- Interventional Cardiology Center, Heart and Vascular Institute, University of South Florida, Tampa, FL 33606, USA
| | - David L Wilson
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Radiology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
34
|
Oosterveer TTM, van der Meer SM, Scherptong RWC, Jukema JW. Optical Coherence Tomography: Current Applications for the Assessment of Coronary Artery Disease and Guidance of Percutaneous Coronary Interventions. Cardiol Ther 2020; 9:307-321. [PMID: 32564339 PMCID: PMC7584694 DOI: 10.1007/s40119-020-00185-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Indexed: 01/07/2023] Open
Abstract
INTRODUCTION Coronary angiography (CAG) is the standard modality for assessment of coronary stenoses and intraprocedural guidance of percutaneous coronary interventions (PCI). However, the limitations of CAG are well recognized. Intracoronary imaging (ICI) can potentially overcome these limitations. Intravascular ultrasound (IVUS) and optical coherence tomography (OCT) are the main ICI techniques utilized in clinical practice. AIM This narrative literature review addresses the current clinical applications of OCT in relation to IVUS and CAG in patients with coronary artery disease (CAD). Items reviewed are: technical implications of OCT and IVUS, lesion characterization and decision-making, stent optimization criteria, post-stenting results, safety in terms of procedural complications, clinical outcomes, and indications. MAIN FINDINGS OCT is able to reveal more detail than IVUS due to its higher resolution. However, this higher resolution comes at the cost of a lower penetration depth. Pre-stenting OCT results in procedural change in more than 50% of the cases in terms of stent length and diameter. Post-stenting OCT resulting in stent optimization is reported in at least 27% of the cases. Malapposition and under-expansion are treated with post-dilatations, while edge dissections are treated with additional stent placement. Stent expansion, stent apposition, distal stent edge dissections, and reference lumen areas seem to be the most important stent optimization criteria for both decision-making and for reducing the risk of adverse events during follow-up. Both OCT and IVUS are superior in terms of post-stenting results compared with CAG alone. However, there is no consensus about whether OCT guidance results in better stent expansion than IVUS guidance. OCT, IVUS, and CAG are safe procedures with few reported procedural complications. In general, OCT guidance seems to contribute to favorable clinical outcomes compared with CAG guidance only. However, OCT guidance results in similar clinical outcomes as with IVUS guidance. OCT could be considered for lumen assessment and stent-related morphology in more complex cases in which CAG interpretation remains uncertain. Since OCT and IVUS have distinct characteristics, these techniques are complementary and should be considered carefully for each patient case based on the benefits and limitations of both techniques.
Collapse
Affiliation(s)
- Timo T M Oosterveer
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
35
|
Dong P, Ye G, Kaya M, Gu L. Simulation-Driven Machine Learning for Predicting Stent Expansion in Calcified Coronary Artery. APPLIED SCIENCES (BASEL, SWITZERLAND) 2020; 10:5820. [PMID: 35903558 PMCID: PMC9328568 DOI: 10.3390/app10175820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this work, we integrated finite element (FE) method and machine learning (ML) method to predict the stent expansion in a calcified coronary artery. The stenting procedure was captured in a patient-specific artery model, reconstructed based on optical coherence tomography images. Following FE simulation, eight geometrical features in each of 120 cross sections in the pre-stenting artery model, as well as the corresponding post-stenting lumen area, were extracted for training and testing the ML models. A linear regression model and a support vector regression (SVR) model with three different kernels (linear, polynomial, and radial basis function kernels) were adopted in this work. Two subgroups of the eight features, i.e., stretch features and calcification features, were further assessed for the prediction capacity. The influence of the neighboring cross sections on the prediction accuracy was also investigated by averaging each feature over eight neighboring cross sections. Results showed that the SVR models provided better predictions than the linear regression model in terms of bias. In addition, the inclusion of stretch features based on mechanistic understanding could provide a better prediction, compared with the calcification features only. However, there were no statistically significant differences between neighboring cross sections and individual ones in terms of the prediction bias and range of error. The simulation-driven machine learning framework in this work could enhance the mechanistic understanding of stenting in calcified coronary artery lesions, and also pave the way toward precise prediction of stent expansion.
Collapse
Affiliation(s)
| | | | | | - Linxia Gu
- Correspondence: ; Tel.: +1-321-6748447
| |
Collapse
|
36
|
He C, Wang J, Yin Y, Li Z. Automated classification of coronary plaque calcification in OCT pullbacks with 3D deep neural networks. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:JBO-200088R. [PMID: 32914606 PMCID: PMC7481437 DOI: 10.1117/1.jbo.25.9.095003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 08/24/2020] [Indexed: 05/07/2023]
Abstract
SIGNIFICANCE Detection and characterization of coronary atherosclerotic plaques often need reviews of a large number of optical coherence tomography (OCT) imaging slices to make a clinical decision. However, it is a challenge to manually review all the slices and consider the interrelationship between adjacent slices. APPROACH Inspired by the recent success of deep convolutional network on the classification of medical images, we proposed a ResNet-3D network for classification of coronary plaque calcification in OCT pullbacks. The ResNet-3D network was initialized with a trained ResNet-50 network and a three-dimensional convolution filter filled with zeros padding and non-zeros padding with a convolutional filter. To retrain ResNet-50, we used a dataset of ∼4860 OCT images, derived by 18 entire pullbacks from different patients. In addition, we investigated a two-phase training method to address the data imbalance. For an improved performance, we evaluated different input sizes for the ResNet-3D network, such as 3, 5, and 7 OCT slices. Furthermore, we integrated all ResNet-3D results by majority voting. RESULTS A comparative analysis proved the effectiveness of the proposed ResNet-3D networks against ResNet-2D network in the OCT dataset. The classification performance (F1-scores = 94 % for non-zeros padding and F1-score = 96 % for zeros padding) demonstrated the potential of convolutional neural networks (CNNs) in classifying plaque calcification. CONCLUSIONS This work may provide a foundation for further work in extending the CNN to voxel segmentation, which may lead to a supportive diagnostic tool for assessment of coronary plaque vulnerability.
Collapse
Affiliation(s)
- Chunliu He
- Southeast University, School of Biological Science and Medical Engineering, Nanjing, China
| | - Jiaqiu Wang
- Queensland University of Technology, School of Mechanical, Medical and Process Engineering, Brisbane, Australia
| | - Yifan Yin
- Southeast University, School of Biological Science and Medical Engineering, Nanjing, China
| | - Zhiyong Li
- Southeast University, School of Biological Science and Medical Engineering, Nanjing, China
- Queensland University of Technology, School of Mechanical, Medical and Process Engineering, Brisbane, Australia
| |
Collapse
|
37
|
Gharaibeh Y, Lee J, Prabhu D, Dong P, Zimin VN, Dallan LA, Bezerra H, Gu L, Wilson D. Co-registration of pre- and post-stent intravascular OCT images for validation of finite element model simulation of stent expansion. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2020; 11317:1131717. [PMID: 35291699 PMCID: PMC8920319 DOI: 10.1117/12.2550212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Intravascular optical coherence tomography (IVOCT) provides high-resolution images of coronary calcifications and detailed measurements of acute stent deployment following stent implantation. Since pre- and post-stent IVOCT image "pull-back" acquisitions start from different locations, registration of corresponding pullbacks is needed for assessing treatment outcomes. In particular, we are interested in assessing finite element model (FEM) prediction of lumen gain following stenting, requiring registration. We used deep learning to segment calcifications in corresponding pre- and post-stent IVOCT pullbacks. We created 1D representations of calcium thickness as a function of the angle of the helical IVOCT scans. Registration of two scans was done by maximizing the cross correlation of these two 1D representations. Registration was accurate, as determined by visual comparisons of 2D image frames. We used our pre-stent calcification segmentations to create a lesion-specific FEM, which took into account balloon size, balloon pressure, and stent measurements. We then compared simulated lumen gain from FEM analysis to actual stent deployment results. Actual lumen gain across ~200 registered pre and post-stent images was 1.52 ± 0.51, while FEM prediction was 1.43 ± 0.41. Comparison between actual and FEM results showed no significant difference (p < 0.001), suggesting accurate prediction of FEM modeling. Registered image data showed good visual agreement regarding lumen gain and stent strut malapposition. Hence, we have developed a platform for evaluation of FEM prediction of lumen gain. This platform can be used to guide development of FEM prediction software, which could ultimately help physicians with stent treatment planning of calcified lesions.
Collapse
Affiliation(s)
- Yazan Gharaibeh
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA 44106
| | - Juhwan Lee
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA 44106
| | - David Prabhu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA 44106
| | - Pengfei Dong
- Department of Mechanical and Materials Engineering, University of Nebraska–Lincoln, Lincoln, NE, USA 68588
- Department of Biomedical and Chemical Engineering, Florida Institute of Technology, Melbourne, FL, USA 32901
| | - Vladislav N. Zimin
- University Hospitals, Harrington Heart and Vascular Institute, Cardiovascular Imaging Core Laboratory, Cleveland, OH, USA, 44106
| | - Luis A. Dallan
- University Hospitals, Harrington Heart and Vascular Institute, Cardiovascular Imaging Core Laboratory, Cleveland, OH, USA, 44106
| | - Hiram Bezerra
- University Hospitals, Harrington Heart and Vascular Institute, Cardiovascular Imaging Core Laboratory, Cleveland, OH, USA, 44106
| | - Linxia Gu
- Department of Mechanical and Materials Engineering, University of Nebraska–Lincoln, Lincoln, NE, USA 68588
- Department of Biomedical and Chemical Engineering, Florida Institute of Technology, Melbourne, FL, USA 32901
| | - David Wilson
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA 44106
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA 44106
| |
Collapse
|
38
|
Lee J, Kolluru C, Gharaibeh Y, Prabhu D, Zimin VN, Bezerra H, Wilson D. Automatic A-line coronary plaque classification using combined deep learning and textural features in intravascular OCT images. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2020; 11315:1131513. [PMID: 35291576 PMCID: PMC8920332 DOI: 10.1117/12.2549066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We developed a fully automated method for classifying A-line coronary plaques in intravascular optical coherence tomography images using combined deep learning and textural features. The proposed method was trained on 4,292 images from 48 pullbacks giving 80 manually labeled, volumes of interest. Preprocessing steps including guidewire/shadow removal, lumen boundary detection, pixel shifting, and noise reduction were employed. We built a convolutional neural network to extract the deep learning features from the preprocessed image. Traditional textural features were also extracted and combined with deep learning features. Feature selection was performed using the minimum redundancy maximum relevance method. Combined features were utilized as inputs for a random forest classifier. After classification, conditional random field (CRF) method was used for classification noise cleaning. We determined a sub-feature set with the most predictive power. With CRF noise cleaning, sensitivities/specificities were 82.2%/90.8% and 82.4%/89.2% for fibrolipidic and fibrocalcific classes, respectively, with good Dice coefficients. The classification noise cleaning step improved performance metrics by nearly 10-15%. The predicted en face classification maps of entire pullbacks agreed favorably to the manually labeled counterparts. Both assessments suggested that our automated measurements gave clinically relevant results. The proposed method is very promising with regards to both clinical treatment planning and research applications.
Collapse
Affiliation(s)
- Juhwan Lee
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA 44106
| | - Chaitanya Kolluru
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA 44106
| | - Yazan Gharaibeh
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA 44106
| | - David Prabhu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA 44106
| | - Vladislav N Zimin
- Cardiovascular Imaging Core Laboratory, Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA 44106
| | - Hiram Bezerra
- Cardiovascular Imaging Core Laboratory, Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA 44106
| | - David Wilson
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA 44106
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA 44106
| |
Collapse
|