1
|
Phillips JE, Zheng Y, Pan D. Assembling a Hippo: the evolutionary emergence of an animal developmental signaling pathway. Trends Biochem Sci 2024; 49:681-692. [PMID: 38729842 PMCID: PMC11316659 DOI: 10.1016/j.tibs.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/25/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024]
Abstract
Decades of work in developmental genetics has given us a deep mechanistic understanding of the fundamental signaling pathways underlying animal development. However, little is known about how these pathways emerged and changed over evolutionary time. Here, we review our current understanding of the evolutionary emergence of the Hippo pathway, a conserved signaling pathway that regulates tissue size in animals. This pathway has deep evolutionary roots, emerging piece by piece in the unicellular ancestors of animals, with a complete core pathway predating the origin of animals. Recent functional studies in close unicellular relatives of animals and early-branching animals suggest an ancestral function of the Hippo pathway in cytoskeletal regulation, which was subsequently co-opted to regulate proliferation and animal tissue size.
Collapse
Affiliation(s)
- Jonathan E Phillips
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Yonggang Zheng
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Duojia Pan
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
2
|
Lin H, Deng H, Jiang Z, Hua P, Hu S, Ao H, Zhong M, Liu M, Guo G. Microarray analysis of tRNA-derived small RNA (tsRNA) in LPS-challenged macrophages treated with metformin. Gene 2024; 913:148399. [PMID: 38518902 DOI: 10.1016/j.gene.2024.148399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/08/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Metformin, a widely used anti-diabetic drug, has demonstrated its efficacy in addressing various inflammatory conditions. tRNA-derived small RNA (tsRNA), a novel type of small non-coding RNA, exhibits diverse regulatory functions and holds promise as both a diagnostic biomarker and a therapeutic target for various diseases. The purpose of this study is to investigate whether the abundance of tsRNAs changed in LPS versus LPS + metformin-treated cells, utilizing microarray technology. Firstly, we established an in vitro lipopolysaccharide (LPS)-induced inflammation model using RAW264.7 macrophages and assessed the protective effects of metformin against inflammatory damage. Subsequently, we extracted total RNA from both LPS-treated and metformin + LPS-treated cell samples for microarray analysis to identify differentially abundant tsRNAs (DA-tsRNAs). Furthermore, we conducted bioinformatics analysis to predict target genes for validated DA-tsRNAs and explore the biological functions and signaling pathways associated with DA-tsRNAs. Notably, metformin was found to inhibit the inflammatory response in RAW264.7 macrophages. The microarray results revealed a total of 247 DA-tsRNAs, with 58 upregulated and 189 downregulated tsRNAs in the Met + LPS group compared to the LPS group. The tsRNA-mRNA network was visualized, shedding light on potential interactions. The results of bioinformatics analysis suggested that these potential targets of specific tsRNAs were mainly related to inflammation and immunity. Our study provides compelling evidence that metformin exerts anti-inflammatory effects and modulates the abundance of tsRNAs in LPS-treated RAW264.7 macrophages. These findings establish a valuable foundation for using tsRNAs as potential biomarkers for metformin in the treatment of inflammatory conditions.
Collapse
Affiliation(s)
- Huan Lin
- Medical center of Burn plastic and wound repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Hongao Deng
- Medical center of Burn plastic and wound repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Zhengying Jiang
- Medical center of Burn plastic and wound repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Peng Hua
- Medical center of Burn plastic and wound repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Shiqiang Hu
- Medical center of Burn plastic and wound repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Haiyong Ao
- Jiangxi Key Laboratory of Nanobiomaterials & School of Materials Science and Engineering, East China Jiaotong University, Nanchang, China
| | - Meiling Zhong
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang, China
| | - Mingzhuo Liu
- Medical center of Burn plastic and wound repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| | - Guanghua Guo
- Medical center of Burn plastic and wound repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| |
Collapse
|
3
|
West KL, Kreiling N, Raney KD, Ghosal G, Leung JW. Autophosphorylation of the Tousled-like kinases TLK1 and TLK2 regulates recruitment to damaged chromatin via PCNA interaction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.22.590659. [PMID: 38712247 PMCID: PMC11071368 DOI: 10.1101/2024.04.22.590659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Tousled-like kinases 1 and 2 (TLK1 and 2) are cell cycle-regulated serine/threonine kinases that are involved in multiple biological processes. Mutation of TLK1 and 2 confer neurodegenerative diseases. Recent studies demonstrate that TLK1 and 2 are involved in DNA repair. However, there is no direct evidence that TLK1 and 2 function at DNA damage sites. Here, we show that both TLK1 and TLK2 are hyper-autophosphorylated at their N-termini, at least in part, mediated by their homo- or hetero-dimerization. We found that TLK1 and 2 hyper-autophosphorylation suppresses their recruitment to damaged chromatin. Furthermore, both TLK1 and 2 associate with PCNA specifically through their evolutionarily conserved non-canonical PCNA-interacting protein (PIP) box at the N-terminus, and mutation of the PIP-box abolishes their recruitment to DNA damage sites. Mechanistically, the TLK1 and 2 hyper-autophosphorylation masks the PIP-box and negatively regulates their recruitment to the DNA damage site. Overall, our study dissects the detailed genetic regulation of TLK1 and 2 at damaged chromatin, which provides important insights into their emerging roles in DNA repair.
Collapse
Affiliation(s)
- Kirk L. West
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Natasha Kreiling
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Kevin D. Raney
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Gargi Ghosal
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Justin W Leung
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
- Department of Radiation Oncology, University of Texas Health and Science Center, San Antonio, TX, 78229, USA
| |
Collapse
|
4
|
Abstract
The Hippo pathway is an evolutionarily conserved pathway with crucial roles in development, organ size control, tissue homeostasis and cancer. Over two decades of research have elucidated the core Hippo pathway kinase cascade, but its precise organization has not been fully understood. In this issue of The EMBO Journal, Qi et al (2023) report a new model of two modules for the Hippo kinase cascade, providing new insights into this long-standing question.
Collapse
Affiliation(s)
- Han Han
- Department of Developmental and Cell BiologyUniversity of California IrvineIrvineCAUSA
| | - Wenqi Wang
- Department of Developmental and Cell BiologyUniversity of California IrvineIrvineCAUSA
| |
Collapse
|
5
|
Yang L, Wang ZA, Geng R, Deng H, Niu S, Zuo H, Weng S, He J, Xu X. White Spot Syndrome Virus (WSSV) Inhibits Hippo Signaling and Activates Yki To Promote Its Infection in Penaeus vannamei. Microbiol Spectr 2023; 11:e0236322. [PMID: 36475933 PMCID: PMC9927087 DOI: 10.1128/spectrum.02363-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
White spot syndrome virus (WSSV) is a serious threat to shrimp aquaculture, especially Pacific white shrimp, Penaeus vannamei, the most farmed shrimp in the world. Activation of the Hippo-Yki signaling pathway, characterized by the intracellular Hippo-Wts kinase cascade reactions and the phosphorylation and cytoplasmic retention of Yki, is widely involved in various life activities. The current work established the fundamental structure and signal transduction profile of the Hippo-Yki pathway in P. vannamei and further investigated its role in viral infection. We demonstrated that WSSV promoted the dephosphorylation and nuclear translocation of Yki, suggesting that Hippo signaling is impaired and Yki is activated after WSSV infection in shrimp. In vivo, Yki gene silencing suppressed WSSV infection, while Hippo and Wts silencing promoted it, indicating a positive role of Hippo signaling in antiviral response. Further analyses showed that Yki suppressed Dorsal pathway activation and inhibited hemocyte apoptosis in WSSV-infected shrimp, while Hippo and Wts showed opposite effects, which contributed to the role of Hippo signaling in WSSV infection. Therefore, the current study suggests that WSSV annexes Yki to favor its infection in shrimp by inhibiting Hippo signaling. IMPORTANCE White spot syndrome virus (WSSV) is one of the most harmful viral pathogens to shrimp. The pathological mechanism of WSSV infection remains unclear to date. The Hippo-Yki signaling pathway is important for various biological processes and is extensively involved in mammalian immunity, but little is known about its role in infectious diseases in invertebrates. Based on revealing the fundamental structure of the shrimp Hippo pathway, this study investigated its implication in the pathogenesis of WSSV disease. We demonstrated that WSSV enhanced Yki activation by inhibiting Hippo signaling in shrimp. The activated Yki promoted WSSV infection by inhibiting hemocyte apoptosis and suppressing the activation of Dorsal, an NF-κB family member in shrimp that is critical for regulating antiviral response. Therefore, this study suggests that WSSV can hijack the Hippo-Yki signaling pathway to favor its infection in shrimp.
Collapse
Affiliation(s)
- Linwei Yang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, People’s Republic of China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Zi-Ang Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, People’s Republic of China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Ran Geng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, People’s Republic of China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Hengwei Deng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, People’s Republic of China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Shengwen Niu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, People’s Republic of China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Hongliang Zuo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, People’s Republic of China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Shaoping Weng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, People’s Republic of China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Jianguo He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, People’s Republic of China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Xiaopeng Xu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, People’s Republic of China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, People’s Republic of China
| |
Collapse
|
6
|
Ye G, Wang J, Yang W, Li J, Ye M, Jin X. The roles of KLHL family members in human cancers. Am J Cancer Res 2022; 12:5105-5139. [PMID: 36504893 PMCID: PMC9729911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/08/2022] [Indexed: 12/15/2022] Open
Abstract
The Kelch-like (KLHL) family members consist of three domains: bric-a-brac, tramtrack, broad complex/poxvirus and zinc finger domain, BACK domain and Kelch domain, which combine and interact with Cullin3 to form an E3 ubiquitin ligase. Research has indicated that KLHL family members ubiquitinate target substrates to regulate physiological and pathological processes, including tumorigenesis and progression. KLHL19, a member of the KLHL family, is associated with tumorigenesis and drug resistance. However, the regulation and cross talks of other KLHL family members, which also play roles in cancer, are still unclear. Our review mainly explores studies concerning the roles of other KLHL family members in tumor-related regulation to provide novel insights into KLHL family members.
Collapse
Affiliation(s)
- Ganghui Ye
- The Affiliated Hospital of Medical School, Ningbo UniversityNingbo 315020, Zhejiang, P. R. China,Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
| | - Jie Wang
- The Affiliated Hospital of Medical School, Ningbo UniversityNingbo 315020, Zhejiang, P. R. China,Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
| | - Weili Yang
- Yinzhou People’s Hospital of Medical School, Ningbo UniversityNingbo 315040, Zhejiang, P. R. China
| | - Jinyun Li
- The Affiliated Hospital of Medical School, Ningbo UniversityNingbo 315020, Zhejiang, P. R. China,Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
| | - Meng Ye
- The Affiliated Hospital of Medical School, Ningbo UniversityNingbo 315020, Zhejiang, P. R. China,Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
| | - Xiaofeng Jin
- The Affiliated Hospital of Medical School, Ningbo UniversityNingbo 315020, Zhejiang, P. R. China,Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
| |
Collapse
|
7
|
The YAP/TAZ Signaling Pathway in the Tumor Microenvironment and Carcinogenesis: Current Knowledge and Therapeutic Promises. Int J Mol Sci 2021; 23:ijms23010430. [PMID: 35008857 PMCID: PMC8745604 DOI: 10.3390/ijms23010430] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 12/14/2022] Open
Abstract
The yes-associated protein (YAP) and the transcriptional coactivator with PDZ-binding motif (TAZ) are transcriptional coactivators, members of the Hippo signaling pathway, which play a critical role in cell growth regulation, embryonic development, regeneration, proliferation, and cancer origin and progression. The mechanism involves the nuclear binding of the un-phosphorylated YAP/TAZ complex to release the transcriptional enhanced associate domain (TEAD) from its repressors. The active ternary complex is responsible for the aforementioned biological effects. Overexpression of YAP/TAZ has been reported in cancer stem cells and tumor resistance. The resistance involves chemotherapy, targeted therapy, and immunotherapy. This review provides an overview of YAP/TAZ pathways’ role in carcinogenesis and tumor microenvironment. Potential therapeutic alternatives are also discussed.
Collapse
|
8
|
Casati G, Giunti L, Iorio AL, Marturano A, Galli L, Sardi I. Hippo Pathway in Regulating Drug Resistance of Glioblastoma. Int J Mol Sci 2021; 22:ijms222413431. [PMID: 34948224 PMCID: PMC8705144 DOI: 10.3390/ijms222413431] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/30/2021] [Accepted: 12/09/2021] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) represents the most common and malignant tumor of the Central Nervous System (CNS), affecting both children and adults. GBM is one of the deadliest tumor types and it shows a strong multidrug resistance (MDR) and an immunosuppressive microenvironment which remain a great challenge to therapy. Due to the high recurrence of GBM after treatment, the understanding of the chemoresistance phenomenon and how to stimulate the antitumor immune response in this pathology is crucial. The deregulation of the Hippo pathway is involved in tumor genesis, chemoresistance and immunosuppressive nature of GBM. This pathway is an evolutionarily conserved signaling pathway with a kinase cascade core, which controls the translocation of YAP (Yes-Associated Protein)/TAZ (Transcriptional Co-activator with PDZ-binding Motif) into the nucleus, leading to regulation of organ size and growth. With this review, we want to highlight how chemoresistance and tumor immunosuppression work in GBM and how the Hippo pathway has a key role in them. We linger on the role of the Hippo pathway evaluating the effect of its de-regulation among different human cancers. Moreover, we consider how different pathways are cross-linked with the Hippo signaling in GBM genesis and the hypothetical mechanisms responsible for the Hippo pathway activation in GBM. Furthermore, we describe various drugs targeting the Hippo pathway. In conclusion, all the evidence described largely support a strong involvement of the Hippo pathway in gliomas progression, in the activation of chemoresistance mechanisms and in the development of an immunosuppressive microenvironment. Therefore, this pathway is a promising target for the treatment of high grade gliomas and in particular of GBM.
Collapse
Affiliation(s)
- Giacomo Casati
- Neuro-Oncology Unit, Department of Pediatric Oncology, Meyer Children’s Hospital, 50139 Florence, Italy; (L.G.); (A.L.I.); (A.M.); (I.S.)
- Correspondence:
| | - Laura Giunti
- Neuro-Oncology Unit, Department of Pediatric Oncology, Meyer Children’s Hospital, 50139 Florence, Italy; (L.G.); (A.L.I.); (A.M.); (I.S.)
| | - Anna Lisa Iorio
- Neuro-Oncology Unit, Department of Pediatric Oncology, Meyer Children’s Hospital, 50139 Florence, Italy; (L.G.); (A.L.I.); (A.M.); (I.S.)
| | - Arianna Marturano
- Neuro-Oncology Unit, Department of Pediatric Oncology, Meyer Children’s Hospital, 50139 Florence, Italy; (L.G.); (A.L.I.); (A.M.); (I.S.)
| | - Luisa Galli
- Infectious Disease Unit, Department of Health Sciences, University of Florence, 50139 Florence, Italy;
| | - Iacopo Sardi
- Neuro-Oncology Unit, Department of Pediatric Oncology, Meyer Children’s Hospital, 50139 Florence, Italy; (L.G.); (A.L.I.); (A.M.); (I.S.)
| |
Collapse
|
9
|
Delgado ILS, Tavares A, Francisco S, Santos D, Coelho J, Basto AP, Zúquete S, Müller J, Hemphill A, Meissner M, Soares H, Leitão A, Nolasco S. Characterization of a MOB1 Homolog in the Apicomplexan Parasite Toxoplasma gondii. BIOLOGY 2021; 10:biology10121233. [PMID: 34943148 PMCID: PMC8698288 DOI: 10.3390/biology10121233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 01/11/2023]
Abstract
Simple Summary Monopolar spindle One Binder1 (MOB1) proteins regulate key cellular functions, namely cell multiplication and cell division. The unicellular parasite Toxoplasma gondii transitions between several morphological stages, with the need to control the number of parasites in its cellular environment. We hypothesized that MOB1 proteins could participate in the regulation of the T. gondii life cycle, having identified one MOB1 protein (TgMOB1) coded in its genome. However, this study shows that TgMOB1 presents divergent features. While in organisms studied to date the lack of MOB1 has led to cell division defects, this did not occur in T. gondii in vitro cultures where mob1 was not an essential gene. Additionally, the identification of TgMOB1 proximity interacting partners detected novel MOB1 interactors. Still, TgMOB1 localizes to the region between the new-forming nuclei during cell division, and T. gondii parasites multiply slower with TgMOB1 overexpression and faster when there is a lack of TgMOB1, indicating an intricate role for TgMOB1 in T. gondii. This study uncovers new features of the T. gondii biology, a zoonotic parasite and model organism for the phylum Apicomplexa, and highlights the complex roles MOB1 proteins may assume, with possible implications for disease processes. Abstract Monopolar spindle One Binder1 (MOB1) proteins are conserved components of the tumor-suppressing Hippo pathway, regulating cellular processes such as cytokinesis. Apicomplexan parasites present a life cycle that relies on the parasites’ ability to differentiate between stages and regulate their proliferation; thus, Hippo signaling pathways could play an important role in the regulation of the apicomplexan life cycle. Here, we report the identification of one MOB1 protein in the apicomplexan Toxoplasma gondii. To characterize the function of MOB1, we generated gain-of-function transgenic lines with a ligand-controlled destabilization domain, and loss-of-function clonal lines obtained through CRISPR/Cas9 technology. Contrary to what has been characterized in other eukaryotes, MOB1 is not essential for cytokinesis in T. gondii. However, this picture is complex since we found MOB1 localized between the newly individualized daughter nuclei at the end of mitosis. Moreover, we detected a significant delay in the replication of overexpressing tachyzoites, contrasting with increased replication rates in knockout tachyzoites. Finally, using the proximity-biotinylation method, BioID, we identified novel members of the MOB1 interactome, a probable consequence of the observed lack of conservation of some key amino acid residues. Altogether, the results point to a complex evolutionary history of MOB1 roles in apicomplexans, sharing properties with other eukaryotes but also with divergent features, possibly associated with their complex life cycle.
Collapse
Affiliation(s)
- Inês L. S. Delgado
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal or (I.L.S.D.); (A.T.); (S.F.); (D.S.); (J.C.); (A.P.B.); (S.Z.); (A.L.)
- Faculdade de Medicina Veterinária, Universidade Lusófona, 1749-024 Lisboa, Portugal
| | - Alexandra Tavares
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal or (I.L.S.D.); (A.T.); (S.F.); (D.S.); (J.C.); (A.P.B.); (S.Z.); (A.L.)
| | - Samuel Francisco
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal or (I.L.S.D.); (A.T.); (S.F.); (D.S.); (J.C.); (A.P.B.); (S.Z.); (A.L.)
| | - Dulce Santos
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal or (I.L.S.D.); (A.T.); (S.F.); (D.S.); (J.C.); (A.P.B.); (S.Z.); (A.L.)
| | - João Coelho
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal or (I.L.S.D.); (A.T.); (S.F.); (D.S.); (J.C.); (A.P.B.); (S.Z.); (A.L.)
| | - Afonso P. Basto
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal or (I.L.S.D.); (A.T.); (S.F.); (D.S.); (J.C.); (A.P.B.); (S.Z.); (A.L.)
| | - Sara Zúquete
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal or (I.L.S.D.); (A.T.); (S.F.); (D.S.); (J.C.); (A.P.B.); (S.Z.); (A.L.)
| | - Joachim Müller
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, CH-3012 Bern, Switzerland; (J.M.); (A.H.)
| | - Andrew Hemphill
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, CH-3012 Bern, Switzerland; (J.M.); (A.H.)
| | - Markus Meissner
- Institute for Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität Munich, D-82152 Munich, Germany;
| | - Helena Soares
- Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, 1990-096 Lisboa, Portugal; or
- Centro de Química Estrutural–Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Alexandre Leitão
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal or (I.L.S.D.); (A.T.); (S.F.); (D.S.); (J.C.); (A.P.B.); (S.Z.); (A.L.)
| | - Sofia Nolasco
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal or (I.L.S.D.); (A.T.); (S.F.); (D.S.); (J.C.); (A.P.B.); (S.Z.); (A.L.)
- Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, 1990-096 Lisboa, Portugal; or
- Correspondence: or
| |
Collapse
|
10
|
Li D, Chen L, Zhang X, Wang Y, Huang C, Li J, He F, He W. miR‑125a‑5p reverses epithelial‑mesenchymal transition and restores drug sensitivity by negatively regulating TAFAZZIN signaling in breast cancer. Mol Med Rep 2021; 24:812. [PMID: 34549308 PMCID: PMC8477177 DOI: 10.3892/mmr.2021.12452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 07/16/2021] [Indexed: 01/04/2023] Open
Abstract
MicroRNA (miR)‑125a‑5p represses tafazzin phospholipid‑lysophospholipid transacylases (TAFAZZIN) expression and inhibits the epithelial‑mesenchymal transition (EMT) of ovarian cancer cells. EMT was found to have a crucial role in the acquisition of chemoresistance. Thus, the present study aimed to determine whether miR‑125a‑5p reverses EMT and restores drug sensitivity by negatively regulating TAFAZZIN in breast cancer. The expression of miR‑125a‑5p/TAFAZZIN and its association with chemotherapy response were determined in tissue samples from patients with breast cancer. Furthermore, the effects of miR‑125a‑5p on breast cancer cells were elucidated using cell proliferation and cell apoptosis assays. Then, the regulatory mechanism of miR‑125a‑5p in breast cancer was investigated by reverse transcription‑quantitative PCR, western blotting, dual‑luciferase reporter and RNA immunoprecipitation assays. The results demonstrated that miR‑125a‑5p inhibited the EMT of MCF‑7/adriamycin (Adr) breast cancer cells, as well as decreased the proliferation and increased the apoptosis of breast cancer cells treated with Adr/docetaxel. In addition, miR‑125a‑5p downregulated the expression levels of TAFAZZIN, Transglutaminase 2, phosphorylated‑AKT, N‑cadherin, vimentin and proliferating cell nuclear antigen, and significantly increased those of E‑cadherin, cleaved caspase-3 and Bax in MCF7/Adr cells. Similar results were obtained with small interfering RNA‑TAFAZZIN. Moreover, TAFAZZIN was identified as a direct target of miR‑125a‑5p in MCF7/Adr breast cancer cells. In addition, increased miR‑125a‑5p expression was observed in breast tumors from patients exhibiting a chemotherapy response, and TAFAZZIN mRNA expression was elevated in patients with no chemotherapy response. Hence, miR‑125a‑5p expression was negatively correlated with TAFAZZIN mRNA expression in breast cancer tissues. All these data suggested that miR‑125a‑5p reverses EMT and restores drug sensitivity by negatively regulating TAFAZZIN in breast cancer and, therefore, has potential as a novel therapeutic target for this disease.
Collapse
Affiliation(s)
- Dongmei Li
- Breast Cancer Center, The Affiliated Cancer Hospital of Nanchang University (Jiangxi Provincial Cancer Hospital), Nanchang, Jiangxi 330029, P.R. China
| | - Limei Chen
- Research Center for Differentiation and Development of TCM Basic Theory, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, P.R. China
| | - Xiaofang Zhang
- Breast Cancer Center, The Affiliated Cancer Hospital of Nanchang University (Jiangxi Provincial Cancer Hospital), Nanchang, Jiangxi 330029, P.R. China
| | - Yanhua Wang
- Breast Cancer Center, The Affiliated Cancer Hospital of Nanchang University (Jiangxi Provincial Cancer Hospital), Nanchang, Jiangxi 330029, P.R. China
| | - Chuansheng Huang
- Breast Cancer Center, The Affiliated Cancer Hospital of Nanchang University (Jiangxi Provincial Cancer Hospital), Nanchang, Jiangxi 330029, P.R. China
| | - Jianglong Li
- Breast Cancer Center, The Affiliated Cancer Hospital of Nanchang University (Jiangxi Provincial Cancer Hospital), Nanchang, Jiangxi 330029, P.R. China
| | - Feilong He
- Breast Cancer Center, The Affiliated Cancer Hospital of Nanchang University (Jiangxi Provincial Cancer Hospital), Nanchang, Jiangxi 330029, P.R. China
| | - Wenxing He
- Breast Cancer Center, The Affiliated Cancer Hospital of Nanchang University (Jiangxi Provincial Cancer Hospital), Nanchang, Jiangxi 330029, P.R. China
| |
Collapse
|
11
|
Wang M, Dai M, Wang D, Xiong W, Zeng Z, Guo C. The regulatory networks of the Hippo signaling pathway in cancer development. J Cancer 2021; 12:6216-6230. [PMID: 34539895 PMCID: PMC8425214 DOI: 10.7150/jca.62402] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/15/2021] [Indexed: 01/14/2023] Open
Abstract
The Hippo signaling pathway is a relatively young tumor-related signaling pathway. Although it was discovered lately, research on it developed rapidly. The Hippo signaling pathway is closely relevant to the occurrence and development of tumors and the maintenance of organ size and other biological processes. This manuscript focuses on YAP, the core molecule of the Hippo signaling pathway, and discussion the upstream and downstream regulatory networks of the Hippo signaling pathway during tumorigenesis and development. It also summarizes the relevant drugs involved in this signaling pathway, which may be helpful to the development of targeted drugs for cancer therapy.
Collapse
Affiliation(s)
- Maonan Wang
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Manli Dai
- Hunan Food and Drug Vocational College, Changsha 410036, China
| | - Dan Wang
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Can Guo
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| |
Collapse
|
12
|
Morciano G, Vezzani B, Missiroli S, Boncompagni C, Pinton P, Giorgi C. An Updated Understanding of the Role of YAP in Driving Oncogenic Responses. Cancers (Basel) 2021; 13:cancers13123100. [PMID: 34205830 PMCID: PMC8234554 DOI: 10.3390/cancers13123100] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/09/2021] [Accepted: 06/17/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary In 2020, the global cancer database GLOBOCAN estimated 19.3 million new cancer cases worldwide. The discovery of targeted therapies may help prognosis and outcome of the patients affected, but the understanding of the plethora of highly interconnected pathways that modulate cell transformation, proliferation, invasion, migration and survival remains an ambitious goal. Here we propose an updated state of the art of YAP as the key protein driving oncogenic response via promoting all those steps at multiple levels. Of interest, the role of YAP in immunosuppression is a field of evolving research and growing interest and this summary about the current pharmacological therapies impacting YAP serves as starting point for future studies. Abstract Yes-associated protein (YAP) has emerged as a key component in cancer signaling and is considered a potent oncogene. As such, nuclear YAP participates in complex and only partially understood molecular cascades that are responsible for the oncogenic response by regulating multiple processes, including cell transformation, tumor growth, migration, and metastasis, and by acting as an important mediator of immune and cancer cell interactions. YAP is finely regulated at multiple levels, and its localization in cells in terms of cytoplasm–nucleus shuttling (and vice versa) sheds light on interesting novel anticancer treatment opportunities and putative unconventional functions of the protein when retained in the cytosol. This review aims to summarize and present the state of the art knowledge about the role of YAP in cancer signaling, first focusing on how YAP differs from WW domain-containing transcription regulator 1 (WWTR1, also named as TAZ) and which upstream factors regulate it; then, this review focuses on the role of YAP in different cancer stages and in the crosstalk between immune and cancer cells as well as growing translational strategies derived from its inhibitory and synergistic effects with existing chemo-, immuno- and radiotherapies.
Collapse
|
13
|
Lysophosphatidic Acid Accelerates Bovine In Vitro-Produced Blastocyst Formation through the Hippo/YAP Pathway. Int J Mol Sci 2021; 22:ijms22115915. [PMID: 34072880 PMCID: PMC8198578 DOI: 10.3390/ijms22115915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/17/2021] [Accepted: 05/21/2021] [Indexed: 12/25/2022] Open
Abstract
The segregation of trophectoderm (TE) and inner cell mass in early embryos is driven primarily by the transcription factor CDX2. The signals that trigger CDX2 activation are, however, less clear. In mouse embryos, the Hippo-YAP signaling pathway is important for the activation of CDX2 expression; it is less clear whether this relationship is conserved in other mammals. Lysophosphatidic acid (LPA) has been reported to increase YAP levels by inhibiting its degradation. In this study, we cultured bovine embryos in the presence of LPA and examined changes in gene and protein expression. LPA was found to accelerate the onset of blastocyst formation on days 5 and 6, without changing the TE/inner cell mass ratio. We further observed that the expression of TAZ and TEAD4 was up-regulated, and YAP was overexpressed, in LPA-treated day 6 embryos. However, LPA-induced up-regulation of CDX2 expression was only evident in day 8 embryos. Overall, our data suggest that the Hippo signaling pathway is involved in the initiation of bovine blastocyst formation, but does not affect the cell lineage constitution of blastocysts.
Collapse
|
14
|
Delgado ILS, Carmona B, Nolasco S, Santos D, Leitão A, Soares H. MOB: Pivotal Conserved Proteins in Cytokinesis, Cell Architecture and Tissue Homeostasis. BIOLOGY 2020; 9:biology9120413. [PMID: 33255245 PMCID: PMC7761452 DOI: 10.3390/biology9120413] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 01/08/2023]
Abstract
The MOB family proteins are constituted by highly conserved eukaryote kinase signal adaptors that are often essential both for cell and organism survival. Historically, MOB family proteins have been described as kinase activators participating in Hippo and Mitotic Exit Network/ Septation Initiation Network (MEN/SIN) signaling pathways that have central roles in regulating cytokinesis, cell polarity, cell proliferation and cell fate to control organ growth and regeneration. In metazoans, MOB proteins act as central signal adaptors of the core kinase module MST1/2, LATS1/2, and NDR1/2 kinases that phosphorylate the YAP/TAZ transcriptional co-activators, effectors of the Hippo signaling pathway. More recently, MOBs have been shown to also have non-kinase partners and to be involved in cilia biology, indicating that its activity and regulation is more diverse than expected. In this review, we explore the possible ancestral role of MEN/SIN pathways on the built-in nature of a more complex and functionally expanded Hippo pathway, by focusing on the most conserved components of these pathways, the MOB proteins. We discuss the current knowledge of MOBs-regulated signaling, with emphasis on its evolutionary history and role in morphogenesis, cytokinesis, and cell polarity from unicellular to multicellular organisms.
Collapse
Affiliation(s)
- Inês L. S. Delgado
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal or (I.L.S.D.); or (S.N.); (D.S.); (A.L.)
- Faculdade de Medicina Veterinária, Universidade Lusófona de Humanidades e Tecnologias, 1749-024 Lisboa, Portugal
| | - Bruno Carmona
- Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, 1990-096 Lisboa, Portugal; or
- Centro de Química Estrutural–Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Sofia Nolasco
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal or (I.L.S.D.); or (S.N.); (D.S.); (A.L.)
- Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, 1990-096 Lisboa, Portugal; or
| | - Dulce Santos
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal or (I.L.S.D.); or (S.N.); (D.S.); (A.L.)
| | - Alexandre Leitão
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal or (I.L.S.D.); or (S.N.); (D.S.); (A.L.)
| | - Helena Soares
- Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, 1990-096 Lisboa, Portugal; or
- Centro de Química Estrutural–Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal
- Correspondence: or
| |
Collapse
|
15
|
Mesrouze Y, Bokhovchuk F, Meyerhofer M, Zimmermann C, Fontana P, Erdmann D, Chène P. Study of the TEAD-binding domain of the YAP protein from animal species. Protein Sci 2020; 30:339-349. [PMID: 33146905 PMCID: PMC7784741 DOI: 10.1002/pro.3988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/18/2020] [Accepted: 10/30/2020] [Indexed: 11/30/2022]
Abstract
The Hippo signaling pathway, which plays a central role in the control of organ size in animals, is well conserved in metazoans. The most downstream elements of this pathway are the TEAD transcription factors that are regulated by their association with the transcriptional coactivator YAP. Therefore, the creation of the binding interface that ensures the formation of the YAP:TEAD complex is a critical molecular recognition event essential for the development/survival of many living organisms. In this report, using the available structural information on the YAP:TEAD complex, we study the TEAD‐binding domain of YAP from different animal species. This analysis of more than 400 amino acid sequences reveals that the residues from YAP involved in the formation of the two main contact regions with TEAD are very well conserved. Therefore, the binding interface between YAP and TEAD, as found in humans, probably appeared at an early evolutionary stage in metazoans. We find that, in contrast to most other animal species, several Actinopterygii species possess YAP variants with a different TEAD‐binding domain. However, these variants bind to TEAD with a similar affinity. Our studies show that the protein identified as a YAP homolog in Caenorhabditis elegans does not contain the TEAD‐binding domain found in YAP of other metazoans. Finally, we do not identify in non‐metazoan species, amino acid sequences containing both a TEAD‐binding domain, as in metazoan YAP, and WW domain(s).
Collapse
Affiliation(s)
- Yannick Mesrouze
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Fedir Bokhovchuk
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Marco Meyerhofer
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Catherine Zimmermann
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Patrizia Fontana
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Dirk Erdmann
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Patrick Chène
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| |
Collapse
|