1
|
Kaspersky U, Levy R, Nashef A, Iraqi FA, Gabet Y. A study of the influence of genetic variance and sex on the density and thickness of the calvarial bone in collaborative cross mice. Animal Model Exp Med 2023; 6:355-361. [PMID: 37448168 PMCID: PMC10486330 DOI: 10.1002/ame2.12319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/13/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Bone microarchitecture is affected by multiple genes, each having a small effect on the external appearance. It is thus challenging to characterize the genes and their specific effect on bone thickness and porosity. The purpose of this study was to assess the heritability and the genetic variation effect, as well as the sex effect on the calvarial bone thickness (Ca.Th) and calvarial porosity (%PoV) using the Collaborative Cross (CC) mouse population. METHODS In the study we examined the parietal bones of 56 mice from 9 lines of CC mice. Morphometric parameters were evaluated using microcomputed tomography (μCT) and included Ca.Th and %PoV. We then evaluated heritability, genetic versus environmental variance and the sex effect for these parameters. RESULTS Our morphometric analysis showed that Ca.Th and %PoV are both significantly different among the CC lines with a broad sense heritability of 0.78 and 0.90, respectively. The sex effect within the lines was significant in line IL111 and showed higher values of Ca.Th and %PoV in females compared to males. In line IL19 there was a borderline sex effect in Ca.Th in which males showed higher values than females. CONCLUSIONS These results stress the complexity of sex and genotype interactions controlling Ca.Th and %PoV, as the skeletal sexual dimorphism was dependent on the genetic background. This study also shows that the CC population is a powerful tool for establishing the genetic effect on these traits.
Collapse
Affiliation(s)
- Uriel Kaspersky
- Department of Anatomy and AnthropologyTel Aviv UniversityTel AvivIsrael
| | - Roei Levy
- Department of Anatomy and AnthropologyTel Aviv UniversityTel AvivIsrael
| | - Aysar Nashef
- Department of Clinical Microbiology and Immunology, Sackler Faculty of MedicineTel Aviv UniversityTel Aviv69978Israel
- Department of Oral and Maxillofacial SurgeryBaruch Padeh medical centerPoriyaIsrael
| | - Fuad A. Iraqi
- Department of Clinical Microbiology and Immunology, Sackler Faculty of MedicineTel Aviv UniversityTel Aviv69978Israel
| | - Yankel Gabet
- Department of Anatomy and AnthropologyTel Aviv UniversityTel AvivIsrael
| |
Collapse
|
2
|
Moran MM, Ko FC, Mesner LD, Calabrese GM, Al-Barghouthi BM, Farber CR, Sumner DR. Intramembranous bone regeneration in diversity outbred mice is heritable. Bone 2022; 164:116524. [PMID: 36028119 PMCID: PMC9798271 DOI: 10.1016/j.bone.2022.116524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/12/2022] [Accepted: 08/14/2022] [Indexed: 12/31/2022]
Abstract
There are over one million cases of failed bone repair in the U.S. annually, resulting in substantial patient morbidity and societal costs. Multiple candidate genes affecting bone traits such as bone mineral density have been identified in human subjects and animal models using genome-wide association studies (GWAS). This approach for understanding the genetic factors affecting bone repair is impractical in human subjects but could be performed in a model organism if there is sufficient variability and heritability in the bone regeneration response. Diversity Outbred (DO) mice, which have significant genetic diversity and have been used to examine multiple intact bone traits, would be an excellent possibility. Thus, we sought to evaluate the phenotypic distribution of bone regeneration, sex effects and heritability of intramembranous bone regeneration on day 7 following femoral marrow ablation in 47 12-week old DO mice (23 males, 24 females). Compared to a previous study using 4 inbred mouse strains, we found similar levels of variability in the amount of regenerated bone (coefficient of variation of 86 % v. 88 %) with approximately the same degree of heritability (0.42 v. 0.49). There was a trend toward more bone regeneration in males than females. The amount of regenerated bone was either weakly or not correlated with bone mass at intact sites, suggesting that the genetic factors responsible for bone regeneration and intact bone phenotypes are at least partially independent. In conclusion, we demonstrate that DO mice exhibit variation and heritability of intramembranous bone regeneration that will be suitable for future GWAS.
Collapse
Affiliation(s)
- Meghan M Moran
- Department of Anatomy & Cell Biology, Rush University Medical Center, Chicago, IL, USA; Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL, USA.
| | - Frank C Ko
- Department of Anatomy & Cell Biology, Rush University Medical Center, Chicago, IL, USA; Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Larry D Mesner
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Gina M Calabrese
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Basel M Al-Barghouthi
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Charles R Farber
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA, USA; Departments of Public Health Sciences and Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - D Rick Sumner
- Department of Anatomy & Cell Biology, Rush University Medical Center, Chicago, IL, USA; Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
3
|
Busschers E, Ahmad N, Sun L, Iben JR, Walkey CJ, Rusin A, Yuen T, Rosen CJ, Willis IM, Zaidi M, Johnson DL. MAF1, a repressor of RNA polymerase III-dependent transcription, regulates bone mass. eLife 2022; 11:74740. [PMID: 35611941 PMCID: PMC9212997 DOI: 10.7554/elife.74740] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 04/26/2022] [Indexed: 11/25/2022] Open
Abstract
MAF1, a key repressor of RNA polymerase (pol) III-mediated transcription, has been shown to promote mesoderm formation in vitro. Here, we show that MAF1 plays a critical role in regulating osteoblast differentiation and bone mass. Global deletion of MAF1 (Maf1-/- mice) produced a high bone mass phenotype. However, osteoblasts isolated from Maf1-/- mice showed reduced osteoblastogenesis ex vivo. Therefore, we determined the phenotype of mice overexpressing MAF1 in cells from the mesenchymal lineage (Prx1-Cre;LSL-MAF1 mice). These mice showed increased bone mass. Ex vivo, cells from these mice showed enhanced osteoblastogenesis concordant with their high bone mass phenotype. Thus, the high bone mass phenotype in Maf1-/- mice is likely due to confounding effects from the global absence of MAF1. MAF1 overexpression promoted osteoblast differentiation of ST2 cells while MAF1 downregulation inhibited differentiation, indicating MAF1 enhances osteoblast formation. However, other perturbations used to repress RNA pol III transcription, inhibited osteoblast differentiation. However, decreasing RNA pol III transcription through these perturbations enhanced adipogenesis in ST2 cells. RNA-seq analyzed the basis for these opposing actions on osteoblast differentiation. The different modalities used to perturb RNA pol III transcription resulted in distinct gene expression changes, indicating that this transcription process is highly sensitive and triggers diverse gene expression programs and phenotypic outcomes. Specifically, MAF1 induced genes known to promote osteoblast differentiation. Furthermore, genes that are induced during osteoblast differentiation displayed codon bias. Together, these results reveal a novel role for MAF1 and RNA pol III-mediated transcription in osteoblast fate determination, differentiation, and bone mass regulation.
Collapse
Affiliation(s)
- Ellen Busschers
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, United States
| | - Naseer Ahmad
- Department of Medicine, Ican School of Medicine at Mount Sinai, New York, United States
| | - Li Sun
- Department of Medicine, Ican School of Medicine at Mount Sinai, New York, United States
| | - James R Iben
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, United States
| | - Christopher J Walkey
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, United States
| | - Aleksandra Rusin
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, United States
| | - Tony Yuen
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Clifford J Rosen
- Maine Medical Center Research Institute, Scarborough, United States
| | - Ian M Willis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, United States
| | - Mone Zaidi
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Deborah L Johnson
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, United States
| |
Collapse
|
4
|
Rauner M, Foessl I, Formosa MM, Kague E, Prijatelj V, Lopez NA, Banerjee B, Bergen D, Busse B, Calado Â, Douni E, Gabet Y, Giralt NG, Grinberg D, Lovsin NM, Solan XN, Ostanek B, Pavlos NJ, Rivadeneira F, Soldatovic I, van de Peppel J, van der Eerden B, van Hul W, Balcells S, Marc J, Reppe S, Søe K, Karasik D. Perspective of the GEMSTONE Consortium on Current and Future Approaches to Functional Validation for Skeletal Genetic Disease Using Cellular, Molecular and Animal-Modeling Techniques. Front Endocrinol (Lausanne) 2021; 12:731217. [PMID: 34938269 PMCID: PMC8686830 DOI: 10.3389/fendo.2021.731217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 09/30/2021] [Indexed: 12/26/2022] Open
Abstract
The availability of large human datasets for genome-wide association studies (GWAS) and the advancement of sequencing technologies have boosted the identification of genetic variants in complex and rare diseases in the skeletal field. Yet, interpreting results from human association studies remains a challenge. To bridge the gap between genetic association and causality, a systematic functional investigation is necessary. Multiple unknowns exist for putative causal genes, including cellular localization of the molecular function. Intermediate traits ("endophenotypes"), e.g. molecular quantitative trait loci (molQTLs), are needed to identify mechanisms of underlying associations. Furthermore, index variants often reside in non-coding regions of the genome, therefore challenging for interpretation. Knowledge of non-coding variance (e.g. ncRNAs), repetitive sequences, and regulatory interactions between enhancers and their target genes is central for understanding causal genes in skeletal conditions. Animal models with deep skeletal phenotyping and cell culture models have already facilitated fine mapping of some association signals, elucidated gene mechanisms, and revealed disease-relevant biology. However, to accelerate research towards bridging the current gap between association and causality in skeletal diseases, alternative in vivo platforms need to be used and developed in parallel with the current -omics and traditional in vivo resources. Therefore, we argue that as a field we need to establish resource-sharing standards to collectively address complex research questions. These standards will promote data integration from various -omics technologies and functional dissection of human complex traits. In this mission statement, we review the current available resources and as a group propose a consensus to facilitate resource sharing using existing and future resources. Such coordination efforts will maximize the acquisition of knowledge from different approaches and thus reduce redundancy and duplication of resources. These measures will help to understand the pathogenesis of osteoporosis and other skeletal diseases towards defining new and more efficient therapeutic targets.
Collapse
Affiliation(s)
- Martina Rauner
- Department of Medicine III, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- University Hospital Carl Gustav Carus, Dresden, Germany
| | - Ines Foessl
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Endocrine Lab Platform, Medical University of Graz, Graz, Austria
| | - Melissa M. Formosa
- Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, Msida, Malta
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Erika Kague
- School of Physiology, Pharmacology, and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Vid Prijatelj
- Department of Oral and Maxillofacial Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- The Generation R Study, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Nerea Alonso Lopez
- Rheumatology and Bone Disease Unit, CGEM, Institute of Genetics and Cancer (IGC), Edinburgh, United Kingdom
| | - Bodhisattwa Banerjee
- Musculoskeletal Genetics Laboratory, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Dylan Bergen
- School of Physiology, Pharmacology, and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
- Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ângelo Calado
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| | - Eleni Douni
- Department of Biotechnology, Agricultural University of Athens, Athens, Greece
- Institute for Bioinnovation, B.S.R.C. “Alexander Fleming”, Vari, Greece
| | - Yankel Gabet
- Department of Anatomy & Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Natalia García Giralt
- Musculoskeletal Research Group, IMIM (Hospital del Mar Medical Research Institute), Centro de Investigación Biomédica en Red en Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII, Barcelona, Spain
| | - Daniel Grinberg
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona, CIBERER, IBUB, IRSJD, Barcelona, Spain
| | - Nika M. Lovsin
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Xavier Nogues Solan
- Musculoskeletal Research Group, IMIM (Hospital del Mar Medical Research Institute), Centro de Investigación Biomédica en Red en Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII, Barcelona, Spain
| | - Barbara Ostanek
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Nathan J. Pavlos
- Bone Biology & Disease Laboratory, School of Biomedical Sciences, The University of Western Australia, Nedlands, WA, Australia
| | | | - Ivan Soldatovic
- Institute of Medical Statistics and Informatic, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Jeroen van de Peppel
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Bram van der Eerden
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Wim van Hul
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Susanna Balcells
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona, CIBERER, IBUB, IRSJD, Barcelona, Spain
| | - Janja Marc
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Sjur Reppe
- Unger-Vetlesen Institute, Lovisenberg Diaconal Hospital, Oslo, Norway
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Kent Søe
- Clinical Cell Biology, Department of Pathology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - David Karasik
- Azrieli Faculty of Medicine, Bar-Ilan University, Ramat Gan, Israel
- Marcus Research Institute, Hebrew SeniorLife, Boston, MA, United States
| |
Collapse
|
5
|
Iglesias-Carres L, Neilson AP. Utilizing preclinical models of genetic diversity to improve translation of phytochemical activities from rodents to humans and inform personalized nutrition. Food Funct 2021; 12:11077-11105. [PMID: 34672309 DOI: 10.1039/d1fo02782d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mouse models are an essential tool in different areas of research, including nutrition and phytochemical research. Traditional inbred mouse models have allowed the discovery of therapeutical targets and mechanisms of action and expanded our knowledge of health and disease. However, these models lack the genetic variability typically found in human populations, which hinders the translatability of the results found in mice to humans. The development of genetically diverse mouse models, such as the collaborative cross (CC) or the diversity outbred (DO) models, has been a useful tool to overcome this obstacle in many fields, such as cancer, immunology and toxicology. However, these tools have not yet been widely adopted in the field of phytochemical research. As demonstrated in other disciplines, use of CC and DO models has the potential to provide invaluable insights for translation of phytochemicals from rodents to humans, which are desperately needed given the challenges and numerous failed clinical trials in this field. These models may prove informative for personalized use of phytochemicals in humans, including: predicting interindividual variability in phytochemical bioavailability and efficacy, identifying genetic loci or genes governing response to phytochemicals, identifying phytochemical mechanisms of action and therapeutic targets, and understanding the impact of genetic variability on individual response to phytochemicals. Such insights would prove invaluable for personalized implementation of phytochemicals in humans. This review will focus on the current work performed with genetically diverse mouse populations, and the research opportunities and advantages that these models can offer to phytochemical research.
Collapse
Affiliation(s)
- Lisard Iglesias-Carres
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Kannapolis, NC, USA.
| | - Andrew P Neilson
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Kannapolis, NC, USA.
| |
Collapse
|
6
|
Milhem A, Abu Toamih‐Atamni HJ, Karkar L, Houri‐Haddad Y, Iraqi FA. Studying host genetic background effects on multimorbidity of intestinal cancer development, type 2 diabetes and obesity in response to oral bacterial infection and high-fat diet using the collaborative cross (CC) lines. Animal Model Exp Med 2021; 4:27-39. [PMID: 33738434 PMCID: PMC7954829 DOI: 10.1002/ame2.12151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/07/2021] [Indexed: 01/07/2023] Open
Abstract
Background Multimorbidity of intestinal cancer (IC), type 2 diabetes (T2D) and obesity is a complex set of diseases, affected by environmental and genetic risk factors. High-fat diet (HFD) and oral bacterial infection play important roles in the etiology of these diseases through inflammation and various biological mechanisms. Methods To study the complexity of this multimorbidity, we used the collaborative cross (CC) mouse genetics reference population. We aimed to study the multimorbidity of IC, T2D, and obesity using CC lines, measuring their responses to HFD and oral bacterial infection. The study used 63 mice of both sexes generated from two CC lines (IL557 and IL711). For 12 weeks, experimental mice were maintained on specific dietary regimes combined with co-infection with oral bacteria Porphyromonas gingivalis and Fusobacterium nucleatum, while control groups were not infected. Body weight (BW) and results of a intraperitoneal glucose tolerance test (IPGTT) were recorded at the end of 12 weeks, after which length and size of the intestines were assessed for polyp counts. Results Polyp counts ranged between 2 and 10 per CC line. The combination of HFD and infection significantly reduced (P < .01) the colon polyp size of IL557 females to 2.5 cm2, compared to the other groups. Comparing BW gain, IL557 males on HFD gained 18 g, while the females gained 10 g under the same conditions and showed the highest area under curve (AUC) values of 40 000-45 000 (min mg/dL) in the IPGTT. Conclusion The results show that mice from different genetic backgrounds respond differently to a high fat diet and oral infection in terms of polyp development and glucose tolerance, and this effect is gender related.
Collapse
Affiliation(s)
- Asal Milhem
- Department of Clinical Microbiology and ImmunologySackler Faculty of MedicineTel‐Aviv UniversityTel AvivIsrael
| | - Hanifa J. Abu Toamih‐Atamni
- Department of Clinical Microbiology and ImmunologySackler Faculty of MedicineTel‐Aviv UniversityTel AvivIsrael
| | - Luna Karkar
- Department of Clinical Microbiology and ImmunologySackler Faculty of MedicineTel‐Aviv UniversityTel AvivIsrael
| | - Yael Houri‐Haddad
- Department of ProsthodonticsDental SchoolThe Hebrew UniversityHadassah JerusalemIsrael
| | - Fuad A. Iraqi
- Department of Clinical Microbiology and ImmunologySackler Faculty of MedicineTel‐Aviv UniversityTel AvivIsrael
| |
Collapse
|
7
|
Fang R, Haxaire C, Otero M, Lessard S, Weskamp G, McIlwain DR, Mak TW, Lichtenthaler SF, Blobel CP. Role of iRhoms 1 and 2 in Endochondral Ossification. Int J Mol Sci 2020; 21:ijms21228732. [PMID: 33227998 PMCID: PMC7699240 DOI: 10.3390/ijms21228732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 12/18/2022] Open
Abstract
Growth of the axial and appendicular skeleton depends on endochondral ossification, which is controlled by tightly regulated cell–cell interactions in the developing growth plates. Previous studies have uncovered an important role of a disintegrin and metalloprotease 17 (ADAM17) in the normal development of the mineralized zone of hypertrophic chondrocytes during endochondral ossification. ADAM17 regulates EGF-receptor signaling by cleaving EGFR-ligands such as TGFα from their membrane-anchored precursor. The activity of ADAM17 is controlled by two regulatory binding partners, the inactive Rhomboids 1 and 2 (iRhom1, 2), raising questions about their role in endochondral ossification. To address this question, we generated mice lacking iRhom2 (iR2−/−) with floxed alleles of iRhom1 that were specifically deleted in chondrocytes by Col2a1-Cre (iR1∆Ch). The resulting iR2−/−iR1∆Ch mice had retarded bone growth compared to iR2−/− mice, caused by a significantly expanded zone of hypertrophic mineralizing chondrocytes in the growth plate. Primary iR2−/−iR1∆Ch chondrocytes had strongly reduced shedding of TGFα and other ADAM17-dependent EGFR-ligands. The enlarged zone of mineralized hypertrophic chondrocytes in iR2−/−iR1∆Ch mice closely resembled the abnormal growth plate in A17∆Ch mice and was similar to growth plates in Tgfα−/− mice or mice with EGFR mutations. These data support a model in which iRhom1 and 2 regulate bone growth by controlling the ADAM17/TGFα/EGFR signaling axis during endochondral ossification.
Collapse
Affiliation(s)
- Renpeng Fang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, China;
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery at Weill Cornell Medicine, New York, NY 10021, USA; (C.H.); (G.W.)
| | - Coline Haxaire
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery at Weill Cornell Medicine, New York, NY 10021, USA; (C.H.); (G.W.)
| | - Miguel Otero
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery at Weill Cornell Medicine, New York, NY 10021, USA; (M.O.); (S.L.)
| | - Samantha Lessard
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery at Weill Cornell Medicine, New York, NY 10021, USA; (M.O.); (S.L.)
| | - Gisela Weskamp
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery at Weill Cornell Medicine, New York, NY 10021, USA; (C.H.); (G.W.)
| | - David R. McIlwain
- Baxter Laboratory in Stem Cell Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA;
| | - Tak W. Mak
- Campbell Family Institute for Breast Cancer Research, Ontario Cancer Institute, University Health Network, Toronto, ON M5G 2M9, Canada;
| | - Stefan F. Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany;
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
- Institute for Advanced Study, Technische Universität München, 85748 Garching, Germany
| | - Carl P. Blobel
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery at Weill Cornell Medicine, New York, NY 10021, USA; (C.H.); (G.W.)
- Institute for Advanced Study, Technische Universität München, 85748 Garching, Germany
- Department of Medicine, Department of Biophysics, Physiology and Systems Biology, Weill Cornell Medicine, New York, NY 10021, USA
- Correspondence: ; Tel.: +212-606-1429; Fax: +212-774-2560
| |
Collapse
|
8
|
Adrain C, Cavadas M. The complex life of rhomboid pseudoproteases. FEBS J 2020; 287:4261-4283. [DOI: 10.1111/febs.15548] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/18/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Colin Adrain
- Instituto Gulbenkian de Ciência (IGC) Oeiras Portugal
- Centre for Cancer Research and Cell Biology Queen's University Belfast UK
| | | |
Collapse
|