1
|
Fang D, Wang R, Fan X, Li M, Qian C, Cao B, Yu J, Liu H, Lou Y, Wan K. Recombinant BCG vaccine expressing multistage antigens of Mycobacterium tuberculosis provides long-term immunity against tuberculosis in BALB/c mice. Hum Vaccin Immunother 2024; 20:2299607. [PMID: 38258510 PMCID: PMC10807470 DOI: 10.1080/21645515.2023.2299607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
Tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) persistently kills nearly 1.5 million lives per year in the world, whereas the only licensed TB vaccine BCG exhibits unsatisfactory efficacy in adults. Taking BCG as a vehicle to express Mtb antigens is a promising way to enhance its efficacy against Mtb infection. In this study, the immune efficacy of recombination BCG (rBCG-ECD003) expressing specific antigens ESAT-6, CFP-10, and nDnaK was evaluated at different time points after immunizing BALB/c mice. The results revealed that rBCG-ECD003 induced multiple Th1 cytokine secretion including IFN-γ, TNF-α, IL-2, and IL-12 when compared to the parental BCG. Under the action of PPD or ECD003, rBCG-ECD003 immunization resulted in a significant increase in the proportion of IL-2+ and IFN-γ+IL-2+ CD4+T cells. Importantly, rBCG-ECD003 induced a stronger long-term humoral immune response without compromising the safety of the parental BCG vaccine. By means of the protective efficacy assay in vitro, rBCG-ECD003 showed a greater capacity to inhibit Mtb growth in the long term. Collectively, these features of rBCG-ECD003 indicate long-term protection and the promising effect of controlling Mtb infection.
Collapse
Affiliation(s)
- Danang Fang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ruihuan Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xueting Fan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Machao Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Chenyu Qian
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Bin Cao
- School of Public Health, University of South China, Hengyang, China
| | - Jinjie Yu
- School of Public Health, University of South China, Hengyang, China
| | - Haican Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yongliang Lou
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Kanglin Wan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
2
|
Vergara EJ, Tran AC, Paul MJ, Harrison T, Cooper A, Reljic R. A modified mycobacterial growth inhibition assay for the functional assessment of vaccine-mediated immunity. NPJ Vaccines 2024; 9:123. [PMID: 38956057 PMCID: PMC11219912 DOI: 10.1038/s41541-024-00906-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/07/2024] [Indexed: 07/04/2024] Open
Abstract
The Mycobacterial growth inhibition assay (MGIA) is an ex-vivo assay used to measure the overall functional immune response elicited by infection or vaccination. In tuberculosis (TB) vaccine development, MGIA is a potentially important tool for preclinical evaluation of early-stage vaccine candidates to complement existing assays, and to potentially reduce the need for lengthy and costly pathogenic Mycobacterium tuberculosis (Mtb) animal challenge experiments. The conventional method of MGIA in mice entails directly infecting mixed cell cultures, most commonly splenocytes, from immunised mice with mycobacteria. However, this direct infection of mixed cell populations may yield unreliable results and lacks sufficient sensitivity to discriminate well between different vaccines due to the low number of mycobacteria-permissive cells. Here, we modified the assay by inclusion of mycobacteria-infected congenic murine macrophage cell lines as the target cells, and by measuring the total number of killed cells rather than the relative reduction between different groups. Thus, using splenocytes from Mycobacterium bovis BCG immunised mice, and J774 and MH-S (BALB/c background) or BL/6-M (C57Bl/6 background) macrophage cell lines, we demonstrated that the modified assay resulted in at least 26-fold greater mycobacterial killing per set quantity of splenocytes as compared to the conventional method. This increased sensitivity of measuring mycobacterial killing was confirmed using both the standard culture forming unit (CFU) assay and luminescence readings of luciferase-tagged virulent and avirulent mycobacteria. We propose that the modified MGIA can be used as a highly calibrated tool for quantitating the killing capacity of immune cells in preclinical evaluation of vaccine candidates for TB.
Collapse
Affiliation(s)
- Emil Joseph Vergara
- Institute for Infection and Immunity, St. George's University of London, London, UK
| | - Andy Cano Tran
- Institute for Infection and Immunity, St. George's University of London, London, UK
| | - Matthew J Paul
- Institute for Infection and Immunity, St. George's University of London, London, UK
| | - Thomas Harrison
- Institute for Infection and Immunity, St. George's University of London, London, UK
| | - Andrea Cooper
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | - Rajko Reljic
- Institute for Infection and Immunity, St. George's University of London, London, UK.
| |
Collapse
|
3
|
Painter H, Willcocks S, Zelmer A, Reljic R, Tanner R, Fletcher H. Demonstrating the utility of the ex vivo murine mycobacterial growth inhibition assay (MGIA) for high-throughput screening of tuberculosis vaccine candidates against multiple Mycobacterium tuberculosis complex strains. Tuberculosis (Edinb) 2024; 146:102494. [PMID: 38367368 DOI: 10.1016/j.tube.2024.102494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/05/2024] [Accepted: 02/11/2024] [Indexed: 02/19/2024]
Abstract
Human tuberculosis (TB) is caused by various members of the Mycobacterium tuberculosis (Mtb) complex. Differences in host response to infection have been reported, illustrative of a need to evaluate efficacy of novel vaccine candidates against multiple strains in preclinical studies. We previously showed that the murine lung and spleen direct mycobacterial growth inhibition assay (MGIA) can be used to assess control of ex vivo mycobacterial growth by host cells. The number of mice required for the assay is significantly lower than in vivo studies, facilitating testing of multiple strains and/or the incorporation of other cellular analyses. Here, we provide proof-of-concept that the murine MGIA can be applied to evaluate vaccine-induced protection against multiple Mtb clinical isolates. Using an ancient and modern strain of the Mtb complex, we demonstrate that ex vivo bacillus Calmette-Guérin (BCG)-mediated mycobacterial growth inhibition recapitulates protection observed in the lung and spleen following in vivo infection of mice. Further, we provide the first report of cellular and transcriptional correlates of BCG-induced growth inhibition in the lung MGIA. The ex vivo MGIA represents a promising platform to gain early insight into vaccine performance against a collection of Mtb strains and improve preclinical evaluation of TB vaccine candidates.
Collapse
Affiliation(s)
- Hannah Painter
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK.
| | - Sam Willcocks
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Andrea Zelmer
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Rajko Reljic
- Institute of Infection and Immunity, St George's University of London, Cranmer Terrrace, London, SW17 0RE, UK
| | - Rachel Tanner
- Department of Biology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Helen Fletcher
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| |
Collapse
|
4
|
Painter H, Harriss E, Fletcher HA, McShane H, Tanner R. Development and application of the direct mycobacterial growth inhibition assay: a systematic review. Front Immunol 2024; 15:1355983. [PMID: 38380319 PMCID: PMC10877019 DOI: 10.3389/fimmu.2024.1355983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/17/2024] [Indexed: 02/22/2024] Open
Abstract
Introduction First described by Wallis et al. in 2001 for the assessment of TB drugs, the direct mycobacterial growth inhibition assay (MGIA) offers a tractable ex vivo tool measuring the combined influences of host immunity, strain virulence and intervention effects. Over the past 13 years, we have led efforts to adapt the direct MGIA for the assessment of TB vaccines including optimisation, harmonisation and validation of BCG vaccine-induced responses as a benchmark, as well as assay transfer to institutes worldwide. Methods We have performed a systematic review on the primary published literature describing the development and applications of the direct MGIA from 2001 to June 2023 in accordance with the PRISMA reporting guidelines. Results We describe 63 studies in which the direct MGIA has been applied across species for the evaluation of TB drugs and novel TB vaccine candidates, the study of clinical cohorts including those with comorbidities, and to further understanding of potential immune correlates of protection from TB. We provide a comprehensive update on progress of the assay since its conception and critically evaluate current findings and evidence supporting its utility, highlighting priorities for future directions. Discussion While further standardisation and validation work is required, significant advancements have been made in the past two decades. The direct MGIA provides a potentially valuable tool for the early evaluation of TB drug and vaccine candidates, clinical cohorts, and immune mechanisms of mycobacterial control. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42023423491.
Collapse
Affiliation(s)
- Hannah Painter
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Eli Harriss
- Bodleian Health Care Libraries, University of Oxford, Oxford, United Kingdom
| | - Helen A. Fletcher
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Helen McShane
- Nuffield Department of Medicine, Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Rachel Tanner
- Department of Biology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
5
|
Asai M, Li Y, Newton SM, Robertson BD, Langford PR. Galleria mellonella-intracellular bacteria pathogen infection models: the ins and outs. FEMS Microbiol Rev 2023; 47:fuad011. [PMID: 36906279 PMCID: PMC10045907 DOI: 10.1093/femsre/fuad011] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/13/2023] Open
Abstract
Galleria mellonella (greater wax moth) larvae are used widely as surrogate infectious disease models, due to ease of use and the presence of an innate immune system functionally similar to that of vertebrates. Here, we review G. mellonella-human intracellular bacteria pathogen infection models from the genera Burkholderia, Coxiella, Francisella, Listeria, and Mycobacterium. For all genera, G. mellonella use has increased understanding of host-bacterial interactive biology, particularly through studies comparing the virulence of closely related species and/or wild-type versus mutant pairs. In many cases, virulence in G. mellonella mirrors that found in mammalian infection models, although it is unclear whether the pathogenic mechanisms are the same. The use of G. mellonella larvae has speeded up in vivo efficacy and toxicity testing of novel antimicrobials to treat infections caused by intracellular bacteria: an area that will expand since the FDA no longer requires animal testing for licensure. Further use of G. mellonella-intracellular bacteria infection models will be driven by advances in G. mellonella genetics, imaging, metabolomics, proteomics, and transcriptomic methodologies, alongside the development and accessibility of reagents to quantify immune markers, all of which will be underpinned by a fully annotated genome.
Collapse
Affiliation(s)
- Masanori Asai
- Section of Paediatric Infectious Disease, Department of Infectious Disease, St Mary’s campus, Imperial College London, London W2 1PG, United Kingdom
| | - Yanwen Li
- Section of Paediatric Infectious Disease, Department of Infectious Disease, St Mary’s campus, Imperial College London, London W2 1PG, United Kingdom
| | - Sandra M Newton
- Section of Paediatric Infectious Disease, Department of Infectious Disease, St Mary’s campus, Imperial College London, London W2 1PG, United Kingdom
| | - Brian D Robertson
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, South Kensington campus, Imperial College London, London SW7 2AZ, United Kingdom
| | - Paul R Langford
- Section of Paediatric Infectious Disease, Department of Infectious Disease, St Mary’s campus, Imperial College London, London W2 1PG, United Kingdom
| |
Collapse
|
6
|
Khatri B, Keeble J, Dagg B, Kaveh DA, Hogarth PJ, Ho MM. Efficacy and immunogenicity of different BCG doses in BALB/c and CB6F1 mice when challenged with H37Rv or Beijing HN878. Sci Rep 2021; 11:23308. [PMID: 34857776 PMCID: PMC8639814 DOI: 10.1038/s41598-021-02442-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/10/2021] [Indexed: 11/23/2022] Open
Abstract
Two strains of mice (BALB/c and CB6F1) were vaccinated with a range of Bacille Calmette-Guérin (BCG) Danish doses from 3 × 105 to 30 CFU/mouse, followed by aerosol infection with Mtb (H37Rv or West-Beijing HN878 strain). The results indicated that both strains of mice when infected with HN878 exhibited significant protection in their lungs with BCG doses at 3 × 105-3000 CFU (BALB/c) and 3 × 105-300 CFU (CB6F1). Whereas, a significant protection was seen in both strains of mice with BCG doses at 3 × 105-300 CFU when infected with H37Rv. A significant increase in the frequencies of BCG-specific IFNγ+ IL2+ TNFα+ CD4 T cells in the BCG doses at 3 × 105-3000 CFU (BALB/c) and 3 × 105-300 CFU (CB6F1) was seen. The IFNγ+ IL2+ TNFα+ CD4 T cells correlated with the Mtb burden in the lungs of HN878 infected mice (BALB/c and CB6F1) whereas, IFNγ+ TNFα+ CD4 T cells correlated with the BALB/c mice infected with H37Rv or HN878. The BCG dose at 3000 CFU (an equivalent single human dose in the mice by body weight) is protective in both strains of mice infected with H37Rv or HN878 and may serve an interesting dose to test new TB vaccine in a preclinical animal model.
Collapse
Affiliation(s)
- Bhagwati Khatri
- Bacteriology Division, National Institute for Biological Standards and Control, South Mimms, Potters Bar, Hertfordshire, EN6 3QG, UK.
| | - James Keeble
- Bacteriology Division, National Institute for Biological Standards and Control, South Mimms, Potters Bar, Hertfordshire, EN6 3QG, UK
| | - Belinda Dagg
- Bacteriology Division, National Institute for Biological Standards and Control, South Mimms, Potters Bar, Hertfordshire, EN6 3QG, UK
| | - Daryan A Kaveh
- Department of Bacteriology, Animal and Plant Health Agency, Addlestone, Surrey, KT15 3NB, UK
| | - Philip J Hogarth
- Department of Bacteriology, Animal and Plant Health Agency, Addlestone, Surrey, KT15 3NB, UK
| | - Mei Mei Ho
- Bacteriology Division, National Institute for Biological Standards and Control, South Mimms, Potters Bar, Hertfordshire, EN6 3QG, UK
| |
Collapse
|
7
|
Tanner R, Hoogkamer E, Bitencourt J, White A, Boot C, Sombroek CC, Harris SA, O'Shea MK, Wright D, Wittenberg R, Sarfas C, Satti I, Verreck FA, Sharpe SA, Fletcher HA, McShane H. The in vitro direct mycobacterial growth inhibition assay (MGIA) for the early evaluation of TB vaccine candidates and assessment of protective immunity: a protocol for non-human primate cells. F1000Res 2021; 10:257. [PMID: 33976866 PMCID: PMC8097740 DOI: 10.12688/f1000research.51640.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/17/2021] [Indexed: 04/04/2024] Open
Abstract
The only currently available approach to early efficacy testing of tuberculosis (TB) vaccine candidates is in vivo preclinical challenge models. These typically include mice, guinea pigs and non-human primates (NHPs), which must be exposed to virulent M.tb in a 'challenge' experiment following vaccination in order to evaluate protective efficacy. This procedure results in disease development and is classified as 'Moderate' in severity under EU legislation and UK ASPA licensure. Furthermore, experiments are relatively long and animals must be maintained in high containment level facilities, making them relatively costly. We describe an in vitro protocol for the direct mycobacterial growth inhibition assay (MGIA) for use in the macaque model of TB vaccine development with the aim of overcoming some of these limitations. Importantly, using an in vitro assay in place of in vivo M.tb challenge represents a significant refinement to the existing procedure for early vaccine efficacy testing. Peripheral blood mononuclear cell and autologous serum samples collected from vaccinated and unvaccinated control animals are co-cultured with mycobacteria in a 48-well plate format for 96 hours. Adherent monocytes are then lysed to release intracellular mycobacteria which is quantified using the BACTEC MGIT system and colony-forming units determined relative to an inoculum control and stock standard curve. We discuss related optimisation and characterisation experiments, and review evidence that the direct NHP MGIA provides a biologically relevant model of vaccine-induced protection. The potential end-users of the NHP MGIA are academic and industry organisations that conduct the assessment of TB vaccine candidates and associated protective immunity using the NHP model. This approach aims to provide a method for high-throughput down-selection of vaccine candidates going forward to in vivo efficacy testing, thus expediting the development of a more efficacious TB vaccine and offering potential refinement and reduction to the use of NHPs for this purpose.
Collapse
Affiliation(s)
- Rachel Tanner
- Nuffield Department of Medicine, The Jenner Institute, Oxford, OX3 7DQ, UK
| | - Emily Hoogkamer
- Nuffield Department of Medicine, The Jenner Institute, Oxford, OX3 7DQ, UK
- Public Health England, Salisbury, SP4 0JG, UK
| | - Julia Bitencourt
- Nuffield Department of Medicine, The Jenner Institute, Oxford, OX3 7DQ, UK
- Gonҫalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, 40296-710, Brazil
| | | | - Charelle Boot
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, 2288 GJ, The Netherlands
| | - Claudia C. Sombroek
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, 2288 GJ, The Netherlands
| | | | - Matthew K. O'Shea
- Nuffield Department of Medicine, The Jenner Institute, Oxford, OX3 7DQ, UK
- Institute of Immunology and Immunotherapy, University of Birmingham, UK, Birmingham, B15 2TH, UK
| | - Daniel Wright
- Nuffield Department of Medicine, The Jenner Institute, Oxford, OX3 7DQ, UK
| | - Rachel Wittenberg
- Nuffield Department of Medicine, The Jenner Institute, Oxford, OX3 7DQ, UK
| | | | - Iman Satti
- Nuffield Department of Medicine, The Jenner Institute, Oxford, OX3 7DQ, UK
| | - Frank A.W. Verreck
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, 2288 GJ, The Netherlands
| | | | - Helen A. Fletcher
- Nuffield Department of Medicine, The Jenner Institute, Oxford, OX3 7DQ, UK
- London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Helen McShane
- Nuffield Department of Medicine, The Jenner Institute, Oxford, OX3 7DQ, UK
| |
Collapse
|
8
|
Tanner R, Hoogkamer E, Bitencourt J, White A, Boot C, Sombroek CC, Harris SA, O'Shea MK, Wright D, Wittenberg R, Sarfas C, Satti I, Verreck FAW, Sharpe SA, Fletcher HA, McShane H. The in vitro direct mycobacterial growth inhibition assay (MGIA) for the early evaluation of TB vaccine candidates and assessment of protective immunity: a protocol for non-human primate cells. F1000Res 2021; 10:257. [PMID: 33976866 PMCID: PMC8097740.2 DOI: 10.12688/f1000research.51640.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/15/2021] [Indexed: 11/29/2022] Open
Abstract
The only currently available approach to early efficacy testing of tuberculosis (TB) vaccine candidates is in vivo preclinical challenge models. These typically include mice, guinea pigs and non-human primates (NHPs), which must be exposed to virulent M.tb in a 'challenge' experiment following vaccination in order to evaluate protective efficacy. This procedure results in disease development and is classified as 'Moderate' in severity under EU legislation and UK ASPA licensure. Furthermore, experiments are relatively long and animals must be maintained in high containment level facilities, making them relatively costly. We describe an in vitro protocol for the direct mycobacterial growth inhibition assay (MGIA) for use in the macaque model of TB vaccine development with the aim of overcoming some of these limitations. Importantly, using an in vitro assay in place of in vivo M.tb challenge represents a significant refinement to the existing procedure for early vaccine efficacy testing. Peripheral blood mononuclear cell and autologous serum samples collected from vaccinated and unvaccinated control animals are co-cultured with mycobacteria in a 48-well plate format for 96 hours. Adherent monocytes are then lysed to release intracellular mycobacteria which is quantified using the BACTEC MGIT system and colony-forming units determined relative to an inoculum control and stock standard curve. We discuss related optimisation and characterisation experiments, and review evidence that the direct NHP MGIA provides a biologically relevant model of vaccine-induced protection. The potential end-users of the NHP MGIA are academic and industry organisations that conduct the assessment of TB vaccine candidates and associated protective immunity using the NHP model. This approach aims to provide a method for high-throughput down-selection of vaccine candidates going forward to in vivo efficacy testing, thus expediting the development of a more efficacious TB vaccine and offering potential refinement and reduction to the use of NHPs for this purpose.
Collapse
Affiliation(s)
- Rachel Tanner
- Nuffield Department of Medicine, The Jenner Institute, Oxford, OX3 7DQ, UK
| | - Emily Hoogkamer
- Nuffield Department of Medicine, The Jenner Institute, Oxford, OX3 7DQ, UK
- Public Health England, Salisbury, SP4 0JG, UK
| | - Julia Bitencourt
- Nuffield Department of Medicine, The Jenner Institute, Oxford, OX3 7DQ, UK
- Gonҫalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, 40296-710, Brazil
| | | | - Charelle Boot
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, 2288 GJ, The Netherlands
| | - Claudia C Sombroek
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, 2288 GJ, The Netherlands
| | - Stephanie A Harris
- Nuffield Department of Medicine, The Jenner Institute, Oxford, OX3 7DQ, UK
| | - Matthew K O'Shea
- Nuffield Department of Medicine, The Jenner Institute, Oxford, OX3 7DQ, UK
- Institute of Immunology and Immunotherapy, University of Birmingham, UK, Birmingham, B15 2TH, UK
| | - Daniel Wright
- Nuffield Department of Medicine, The Jenner Institute, Oxford, OX3 7DQ, UK
| | - Rachel Wittenberg
- Nuffield Department of Medicine, The Jenner Institute, Oxford, OX3 7DQ, UK
| | | | - Iman Satti
- Nuffield Department of Medicine, The Jenner Institute, Oxford, OX3 7DQ, UK
| | - Frank A W Verreck
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, 2288 GJ, The Netherlands
| | | | - Helen A Fletcher
- Nuffield Department of Medicine, The Jenner Institute, Oxford, OX3 7DQ, UK
- London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Helen McShane
- Nuffield Department of Medicine, The Jenner Institute, Oxford, OX3 7DQ, UK
| |
Collapse
|
9
|
Asai M, Sheehan G, Li Y, Robertson BD, Kavanagh K, Langford PR, Newton SM. Innate Immune Responses of Galleria mellonella to Mycobacterium bovis BCG Challenge Identified Using Proteomic and Molecular Approaches. Front Cell Infect Microbiol 2021; 11:619981. [PMID: 33634038 PMCID: PMC7900627 DOI: 10.3389/fcimb.2021.619981] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/04/2021] [Indexed: 01/10/2023] Open
Abstract
The larvae of the insect Galleria mellonella, have recently been established as a non-mammalian infection model for the Mycobacterium tuberculosis complex (MTBC). To gain further insight into the potential of this model, we applied proteomic (label-free quantification) and transcriptomic (gene expression) approaches to characterise the innate immune response of G. mellonella to infection with Mycobacterium bovis BCG lux over a 168 h time course. Proteomic analysis of the haemolymph from infected larvae revealed distinct changes in the proteome at all time points (4, 48, 168 h). Reverse transcriptase quantitative PCR confirmed induction of five genes (gloverin, cecropin, IMPI, hemolin, and Hdd11), which encoded proteins found to be differentially abundant from the proteomic analysis. However, the trend between gene expression and protein abundance were largely inconsistent (20%). Overall, the data are in agreement with previous phenotypic observations such as haemocyte internalization of mycobacterial bacilli (hemolin/β-actin), formation of granuloma-like structures (Hdd11), and melanization (phenoloxidase activating enzyme 3 and serpins). Furthermore, similarities in immune expression in G. mellonella, mouse, zebrafish and in vitro cell-line models of tuberculosis infection were also identified for the mechanism of phagocytosis (β-actin). Cecropins (antimicrobial peptides), which share the same α-helical motif as a highly potent peptide expressed in humans (h-CAP-18), were induced in G. mellonella in response to infection, giving insight into a potential starting point for novel antimycobacterial agents. We believe that these novel insights into the innate immune response further contribute to the validation of this cost-effective and ethically acceptable insect model to study members of the MTBC.
Collapse
Affiliation(s)
- Masanori Asai
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Gerard Sheehan
- SSPC Pharma Research Centre, Department of Biology, Maynooth University, Maynooth, Ireland.,Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Yanwen Li
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Brian D Robertson
- MRC Centre for Molecular Bacteriology and Infection, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Kevin Kavanagh
- SSPC Pharma Research Centre, Department of Biology, Maynooth University, Maynooth, Ireland
| | - Paul R Langford
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Sandra M Newton
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, United Kingdom
| |
Collapse
|
10
|
A non-human primate in vitro functional assay for the early evaluation of TB vaccine candidates. NPJ Vaccines 2021; 6:3. [PMID: 33397986 PMCID: PMC7782578 DOI: 10.1038/s41541-020-00263-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/23/2020] [Indexed: 01/29/2023] Open
Abstract
We present a non-human primate mycobacterial growth inhibition assay (MGIA) using in vitro blood or cell co-culture with the aim of refining and expediting early tuberculosis vaccine testing. We have taken steps to optimise the assay using cryopreserved peripheral blood mononuclear cells, transfer it to end-user institutes, and assess technical and biological validity. Increasing cell concentration or mycobacterial input and co-culturing in static 48-well plates compared with rotating tubes improved intra-assay repeatability and sensitivity. Standardisation and harmonisation efforts resulted in high consistency agreements, with repeatability and intermediate precision <10% coefficient of variation (CV) and inter-site reproducibility <20% CV; although some systematic differences were observed. As proof-of-concept, we demonstrated ability to detect a BCG vaccine-induced improvement in growth inhibition in macaque samples, and a correlation between MGIA outcome and measures of protection from in vivo disease development following challenge with either intradermal BCG or aerosol/endobronchial Mycobacterium tuberculosis (M.tb) at a group and individual animal level.
Collapse
|