1
|
Herath Mudiyanselage H, Ali A, Mohmoud ME, Farooq M, Isham IM, Ghaffar A, Jovel J, Gomis SM, Niu D, Abdul-Careem MF. Delmarva (DMV1639) infectious bronchitis virus infection alters the microbiome of gastrointestinal and respiratory tracts of broiler chickens. Virology 2025; 604:110428. [PMID: 39881467 DOI: 10.1016/j.virol.2025.110428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 01/19/2025] [Accepted: 01/22/2025] [Indexed: 01/31/2025]
Abstract
Infectious bronchitis virus (IBV) is known to cause significant alterations in tracheal microbial flora in broiler chickens 5 days post-infection (dpi) and our focus is to understand the changes in both respiratory and gastrointestinal microbiome in broilers over a period of time following IBV infection. A study was conducted to characterize the tracheal and cecal microbiome in IBV infected and control broiler chickens at 6, 9 and 15 dpi. IBV genome in trachea, lung and cecal tonsils could be observed in the infected group at all the time points. Immune response parameters and histopathological lesion scores were significantly higher in IBV infected trachea and cecal tonsils at 6, 9 and 15 dpi compared to the controls. We observed that cecal microbial diversity (alpha diversity) was increased in the IBV infected group at 6 and 15 dpi. On the other hand, diversity (alpha diversity) of tracheal microbiome was elevated only at 9 dpi in the IBV infected group. Moreover, significant shift of microbial communities (beta diversity), in both cecum and trachea was observed following IBV infection. Enzyme and metabolic pathway analyses of cecum indicated an upregulation of DNA replication and cell wall synthesis pathways and a downregulation of pathways related to short chain fatty acid (SCFA) production in the IBV infected group compared to the controls. Analysis of tracheal metabolic pathways suggested initial adaptation to the infection stress and gradually shifting to enhanced microbial growth and stability. The study outcome adds to the understanding of microbiome changes secondary to histological changes and immune response following IBV infection in broiler chickens.
Collapse
Affiliation(s)
| | - Ahmed Ali
- Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada; Department of Pathology, Faculty of Veterinary Medicine, Beni-Suef University, Beni Suef, 62521, Egypt
| | - Motamed Elsayed Mohmoud
- Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada; Department of Animal Husbandry, Faculty of Veterinary Medicine, Sohag University, Sohag, 84524, Egypt
| | - Muhammad Farooq
- Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Ishara M Isham
- Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Awais Ghaffar
- Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Juan Jovel
- Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Susantha M Gomis
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada
| | - Dongyan Niu
- Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Mohamed Faizal Abdul-Careem
- Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
2
|
Gao Z, Zheng C, Mao Z, Zheng J, Xu G, Liu D. A comprehensive study of liver-gut microbiota and antioxidant enzyme activity mediated regulation of late-laying hens by high and low residual feed intake. Int J Biol Macromol 2025; 298:139938. [PMID: 39824417 DOI: 10.1016/j.ijbiomac.2025.139938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/29/2024] [Accepted: 01/14/2025] [Indexed: 01/20/2025]
Abstract
Residual feed intake (RFI) is a better indicator of feed efficiency than feed conversion ratio (FCR). It is frequently used to evaluate the efficacy of poultry and livestock feed consumption. Generally, Low RFI (LRFI) is associated with better feed conversion efficiency, whereas high RFI (HRFI) suggests poorer feed conversion efficiency. The study examined the association between microorganisms, tissue and organ functions. The results demonstrated that in contrast to the HRFI group, the LRFI group revealed higher length measurements, the digestive organs' mass, and chest width. The antioxidant indices revealed that the enzymatic activities (catalase and glutathione peroxidase) in the LRFI group were significantly higher than those in the HRFI group. The serum levels of HDLC, AST, and ACTH were identified as potential markers that could affect RFI. The variations between high and low RFI and the function of the liver and cecum microbiota of hens during late laying period were systematically investigated by multiple omics techniques. Through 16S, the most common beneficial microbial population in the gut of LRFI groups, such as Oscillospirales, Ruminococcaceae, and Butyricicoccaceae, has been detected via a microbiome-metabolome association analysis. Through multi-omics analysis, we found that FABP1 and ACSS2 are important regulatory genes affecting RFI. These findings will provide a basis for comprehending the role of gut microbiota in regulating RFI and the molecular mechanism behind the phenotypic changes observed in late-laying hens.
Collapse
Affiliation(s)
- Zhouyang Gao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | | | - Zhiqiong Mao
- Beinongda Technology Co., Ltd., Beijing 100083, China
| | - Jiangxia Zheng
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Guiyun Xu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Dan Liu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
3
|
Glendinning L, Wu Z, Vervelde L, Watson M, Balic A. Infectious bronchitis virus vaccination, but not the presence of XCR1, is correlated with large differences in chicken caecal microbiota. Microb Genom 2024; 10:001289. [PMID: 39222347 PMCID: PMC11541229 DOI: 10.1099/mgen.0.001289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
The chicken immune system and microbiota play vital roles in maintaining gut homeostasis and protecting against pathogens. In mammals, XCR1+ conventional dendritic cells (cDCs) are located in the gut-draining lymph nodes and play a major role in gut homeostasis. These cDCs sample antigens in the gut luminal contents and limit the inflammatory response to gut commensal microbes by generating appropriate regulatory and effector T-cell responses. We hypothesized that these cells play similar roles in sustaining gut homeostasis in chickens, and that chickens lacking XCR1 were likely to contain a dysbiotic caecal microbiota. Here we compare the caecal microbiota of chickens that were either heterozygous or homozygous XCR1 knockouts, that had or had not been vaccinated for infectious bronchitis virus (IBV). We used short-read (Illumina) and long-read (PacBio HiFi) metagenomic sequencing to reconstruct 670 high-quality, strain-level metagenome assembled genomes. We found no significant differences between alpha diversity or the abundance of specific microbial taxa between genotypes. However, IBV vaccination was found to correlate with significant differences in the richness and beta diversity of the microbiota, and to the abundance of 40 bacterial genera. In conclusion, we found that a lack of XCR1 was not correlated with significant changes in the chicken microbiota, but IBV vaccination was.
Collapse
Affiliation(s)
| | - Zhiguang Wu
- The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Lonneke Vervelde
- The Roslin Institute, University of Edinburgh, Edinburgh, UK
- Royal GD Animal Health, Deventer, Netherlands
| | - Mick Watson
- Centre for Digital Innovation, DSM Biotechnology Centre, Delft, Netherlands
- Scotland’s Rural College, Peter Wilson Building, King’s Buildings, Edinburgh, UK
| | - Adam Balic
- The Roslin Institute, University of Edinburgh, Edinburgh, UK
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
4
|
Chen H, Shi J, Tang C, Xu J, Li B, Wang J, Zhou Y, Yang Y, Yang H, Huang Q, Yu W, Wang H, Wu D, Hu Y, Zhou H, Sun Q, Lu S. CHIKV infection drives shifts in the gastrointestinal microbiome and metabolites in rhesus monkeys. MICROBIOME 2024; 12:161. [PMID: 39223641 PMCID: PMC11367899 DOI: 10.1186/s40168-024-01895-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 07/30/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Many studies have demonstrated the association between intestinal microbiota and joint diseases. The "gut-joint axis" also has potential roles in chikungunya virus (CHIKV) infection. Pro-inflammatory arthritis after CHIKV infection might disrupt host homeostasis and lead to dysbacteriosis. This study investigated the characteristics of fecal and gut microbiota, intestinal metabolites, and the changes in gene regulation of intestinal tissues after CHIKV infection using multi-omics analysis to explore the involvement of gut microbiota in the pathogenesis of CHIKV infection. RESULTS CHIKV infection increases the systemic burden of inflammation in the GI system of infected animals. Moreover, infection-induced alterations in GI microbiota and metabolites may be indirectly involved in the modulation of GI and bone inflammation after CHIKV infection, including the modulation of inflammasomes and interleukin-17 inflammatory cytokine levels. CONCLUSION Our results suggest that the GI tract and its microbes are involved in the modulation of CHIKV infection, which could serve as an indicator for the adjuvant treatment of CHIKV infection. Video Abstract.
Collapse
Affiliation(s)
- Hongyu Chen
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College (IMBCAMS&PUMC), 935 Jiaoling Road, Kunming, Yunnan, 650118, China
| | - Jiandong Shi
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College (IMBCAMS&PUMC), 935 Jiaoling Road, Kunming, Yunnan, 650118, China
| | - Cong Tang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College (IMBCAMS&PUMC), 935 Jiaoling Road, Kunming, Yunnan, 650118, China
| | - Jingwen Xu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College (IMBCAMS&PUMC), 935 Jiaoling Road, Kunming, Yunnan, 650118, China
| | - Bai Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College (IMBCAMS&PUMC), 935 Jiaoling Road, Kunming, Yunnan, 650118, China
| | - Junbin Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College (IMBCAMS&PUMC), 935 Jiaoling Road, Kunming, Yunnan, 650118, China
| | - Yanan Zhou
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College (IMBCAMS&PUMC), 935 Jiaoling Road, Kunming, Yunnan, 650118, China
| | - Yun Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College (IMBCAMS&PUMC), 935 Jiaoling Road, Kunming, Yunnan, 650118, China
| | - Hao Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College (IMBCAMS&PUMC), 935 Jiaoling Road, Kunming, Yunnan, 650118, China
| | - Qing Huang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College (IMBCAMS&PUMC), 935 Jiaoling Road, Kunming, Yunnan, 650118, China
| | - Wenhai Yu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College (IMBCAMS&PUMC), 935 Jiaoling Road, Kunming, Yunnan, 650118, China
| | - Haixuan Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College (IMBCAMS&PUMC), 935 Jiaoling Road, Kunming, Yunnan, 650118, China
| | - Daoju Wu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College (IMBCAMS&PUMC), 935 Jiaoling Road, Kunming, Yunnan, 650118, China
| | - Yunzhang Hu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College (IMBCAMS&PUMC), 935 Jiaoling Road, Kunming, Yunnan, 650118, China.
| | - Hongning Zhou
- Yunnan Provincial Key Laboratory of Insect-Borne Infectious Diseases Control & Yunan International Joint Laboratory of Tropical Infectious Diseases of Yunnan Institute of Parasitic Diseases, Puer, Yunnan, 665000, China.
| | - Qingming Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College (IMBCAMS&PUMC), 935 Jiaoling Road, Kunming, Yunnan, 650118, China.
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China.
- State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, China.
| | - Shuaiyao Lu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College (IMBCAMS&PUMC), 935 Jiaoling Road, Kunming, Yunnan, 650118, China.
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China.
- State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, China.
| |
Collapse
|
5
|
Khan S, McWhorter AR, Andrews DM, Underwood GJ, Moore RJ, Van TTH, Gast RK, Chousalkar KK. A live attenuated Salmonella Typhimurium vaccine dose and diluent have minimal effects on the caecal microbiota of layer chickens. Front Vet Sci 2024; 11:1364731. [PMID: 38686027 PMCID: PMC11057240 DOI: 10.3389/fvets.2024.1364731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/06/2024] [Indexed: 05/02/2024] Open
Abstract
Among the Salmonella reduction strategies in poultry production, one option is to use a Salmonella vaccine. The aim of vaccinating layer flocks is to reduce the shedding of wild-type Salmonella in the poultry environment, thereby reducing the contamination of poultry products (eggs and meat). Nutritive diluent and a higher dose of vaccine may enhance its colonization potential in the gut of chickens. In this study, a commercially available live attenuated vaccine (Vaxsafe® ST) was reconstituted in different media and delivered orally to day-old chicks at three different doses (107, 108, and 109 CFU/chick). Gut colonization of the vaccine strain and the effects of vaccination on gut microbiota were assessed in commercial-layer chickens. The vaccine diluent and dosage minimally affected microbiota alpha diversity. Microbiota beta diversity was significantly different (P < 0.05) based on the vaccine diluent and dose, which indicated that the vaccinated and unvaccinated chickens had different gut microbial communities. Differences were noted in the abundance of several genera, including Blautia, Colidextribacter, Dickeya, Enterococcus, Lactobacillus, Pediococcus, and Sellimonas. The abundance of Colidextribacter was significantly lower in chickens that received vaccine reconstituted in Marek's and water diluents, while Lactobacillus abundance was significantly lower in the water group. The highest vaccine dose (109 CFU/chick) did not significantly alter (P > 0.05) the abundance of microbial genera. Chicken age affected the microbiota composition more significantly than the vaccine dose and diluent. The abundance of Lactobacillus, Blautia, Caproiciproducens, Pediococcus, and Colidextribacter was significantly higher on day 14 compared with day 7 post-vaccination. The Salmonella Typhimurium vaccine load in the caeca was not significantly affected by diluent and vaccine dose; however, it was significantly lower (P < 0.0001) on day 14 compared with day 7 post-vaccination. Overall, the S. Typhimurium vaccine minimally affected the gut microbiota structure of layer chicks, whereas changes in microbiota were more significant with chicken age.
Collapse
Affiliation(s)
- Samiullah Khan
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| | - Andrea R. McWhorter
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| | | | | | - Robert J. Moore
- School of Science, RMIT University, Bundoora, VIC, Australia
| | - Thi Thu Hao Van
- School of Science, RMIT University, Bundoora, VIC, Australia
| | - Richard K. Gast
- U. S. National Poultry Research Center, USDA Agricultural Research Service, Athens, GA, United States
| | - Kapil K. Chousalkar
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| |
Collapse
|
6
|
Chen H, Wang J, Ding K, Xu J, Yang Y, Tang C, Zhou Y, Yu W, Wang H, Huang Q, Li B, Kuang D, Wu D, Luo Z, Gao J, Zhao Y, Liu J, Peng X, Lu S, Liu H. Gastrointestinal microbiota and metabolites possibly contribute to distinct pathogenicity of SARS-CoV-2 proto or its variants in rhesus monkeys. Gut Microbes 2024; 16:2334970. [PMID: 38563680 PMCID: PMC10989708 DOI: 10.1080/19490976.2024.2334970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 03/21/2024] [Indexed: 04/04/2024] Open
Abstract
Gastrointestinal (GI) infection is evidenced with involvement in COVID-19 pathogenesis caused by SARS-CoV-2. However, the correlation between GI microbiota and the distinct pathogenicity of SARS-CoV-2 Proto and its emerging variants remains unclear. In this study, we aimed to determine if GI microbiota impacted COVID-19 pathogenesis and if the effect varied between SARS-CoV-2 Proto and its variants. We performed an integrative analysis of histopathology, microbiomics, and transcriptomics on the GI tract fragments from rhesus monkeys infected with SARS-CoV-2 proto or its variants. Based on the degree of pathological damage and microbiota profile in the GI tract, five of SARS-CoV-2 strains were classified into two distinct clusters, namely, the clusters of Alpha, Beta and Delta (ABD), and Proto and Omicron (PO). Notably, the abundance of potentially pathogenic microorganisms increased in ABD but not in the PO-infected rhesus monkeys. Specifically, the high abundance of UCG-002, UCG-005, and Treponema in ABD virus-infected animals positively correlated with interleukin, integrins, and antiviral genes. Overall, this study revealed that infection-induced alteration of GI microbiota and metabolites could increase the systemic burdens of inflammation or pathological injury in infected animals, especially in those infected with ABD viruses. Distinct GI microbiota and metabolite profiles may be responsible for the differential pathological phenotypes of PO and ABD virus-infected animals. These findings improve our understanding the roles of the GI microbiota in SARS-CoV-2 infection and provide important information for the precise prevention, control, and treatment of COVID-19.
Collapse
Affiliation(s)
- Hongyu Chen
- Institute of Medical biology, Chinese Academy of Medical Sciences and Peking Union Medical School (IMBCAMS & PUMC), Kunming, Yunnan, China
| | - Junbin Wang
- Institute of Medical biology, Chinese Academy of Medical Sciences and Peking Union Medical School (IMBCAMS & PUMC), Kunming, Yunnan, China
| | - Kaiyun Ding
- Institute of Medical biology, Chinese Academy of Medical Sciences and Peking Union Medical School (IMBCAMS & PUMC), Kunming, Yunnan, China
| | - Jingwen Xu
- Institute of Medical biology, Chinese Academy of Medical Sciences and Peking Union Medical School (IMBCAMS & PUMC), Kunming, Yunnan, China
| | - Yun Yang
- Institute of Medical biology, Chinese Academy of Medical Sciences and Peking Union Medical School (IMBCAMS & PUMC), Kunming, Yunnan, China
| | - Cong Tang
- Institute of Medical biology, Chinese Academy of Medical Sciences and Peking Union Medical School (IMBCAMS & PUMC), Kunming, Yunnan, China
| | - Yanan Zhou
- Institute of Medical biology, Chinese Academy of Medical Sciences and Peking Union Medical School (IMBCAMS & PUMC), Kunming, Yunnan, China
| | - Wenhai Yu
- Institute of Medical biology, Chinese Academy of Medical Sciences and Peking Union Medical School (IMBCAMS & PUMC), Kunming, Yunnan, China
| | - Haixuan Wang
- Institute of Medical biology, Chinese Academy of Medical Sciences and Peking Union Medical School (IMBCAMS & PUMC), Kunming, Yunnan, China
| | - Qing Huang
- Institute of Medical biology, Chinese Academy of Medical Sciences and Peking Union Medical School (IMBCAMS & PUMC), Kunming, Yunnan, China
| | - Bai Li
- Institute of Medical biology, Chinese Academy of Medical Sciences and Peking Union Medical School (IMBCAMS & PUMC), Kunming, Yunnan, China
| | - Dexuan Kuang
- Institute of Medical biology, Chinese Academy of Medical Sciences and Peking Union Medical School (IMBCAMS & PUMC), Kunming, Yunnan, China
| | - Daoju Wu
- Institute of Medical biology, Chinese Academy of Medical Sciences and Peking Union Medical School (IMBCAMS & PUMC), Kunming, Yunnan, China
| | - Zhiwu Luo
- Institute of Medical biology, Chinese Academy of Medical Sciences and Peking Union Medical School (IMBCAMS & PUMC), Kunming, Yunnan, China
| | - Jiahong Gao
- Institute of Medical biology, Chinese Academy of Medical Sciences and Peking Union Medical School (IMBCAMS & PUMC), Kunming, Yunnan, China
| | - Yuan Zhao
- Institute of Medical biology, Chinese Academy of Medical Sciences and Peking Union Medical School (IMBCAMS & PUMC), Kunming, Yunnan, China
| | - Jiansheng Liu
- Institute of Medical biology, Chinese Academy of Medical Sciences and Peking Union Medical School (IMBCAMS & PUMC), Kunming, Yunnan, China
| | - Xiaozhong Peng
- Institute of Medical biology, Chinese Academy of Medical Sciences and Peking Union Medical School (IMBCAMS & PUMC), Kunming, Yunnan, China
- Institute of Laboratory Animal Sciences, IMBCAMS & PUMC, Beijing, China
- Institute of Basic Medical Sciences, IMBCAMS & PUMC, Beijing, China
| | - Shuaiyao Lu
- Institute of Medical biology, Chinese Academy of Medical Sciences and Peking Union Medical School (IMBCAMS & PUMC), Kunming, Yunnan, China
| | - Hongqi Liu
- Institute of Medical biology, Chinese Academy of Medical Sciences and Peking Union Medical School (IMBCAMS & PUMC), Kunming, Yunnan, China
| |
Collapse
|
7
|
Tian G, Huang C, Li Z, Lu Z, Feng C, Zhuang Y, Li G, Liu P, Hu G, Gao X, Guo X. Baicalin mitigates nephropathogenic infectious bronchitis virus infection-induced spleen injury via modulation of mitophagy and macrophage polarization in Hy-Line chick. Vet Microbiol 2023; 286:109891. [PMID: 37866328 DOI: 10.1016/j.vetmic.2023.109891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/14/2023] [Accepted: 10/12/2023] [Indexed: 10/24/2023]
Abstract
Nephropathogenic infectious bronchitis virus (NIBV) infections continue to pose a significant hazard in the poultry industry. Baicalin is a natural flavonoid that has been reported to have antiviral activity, but its function in NIBV infection largely remains unclear. In this study, the antiviral mechanism of baicalin in the spleen of NIBV-infected chicks was mainly elucidated in mitophagy and macrophage polarization. 28-day-old Hy-Line brown chicks were randomly divided into four groups: the group of chicks was treated intranasally (in) with normal saline (0.2 mL) and subsequently divided into two groups: the Con group (basic diet), the Con+BA group (basic diet+10 mg/kg Baicalin); another group of chicks was intranasally infected with SX9 (10-5/0.2 mL) and subsequently divided into two groups: the Dis group (basic diet), the Dis+BA group (basic diet+10 mg/kg Baicalin). Spleen tissues were collected at 3, 7, and 11 days post infection (dpi). NIBV copy number was strikingly decreased in the spleens under BA treatment with infectious time. Histopathological examination showed enlarged and hemorrhagic white pulp and no clearly defined boundary between white pulp and red pulp in the Dis group, which could be improved by BA treatment. Meanwhile, the loss of cristae structure and vacuolization in mitochondria caused by NIBV infection was repaired in the Dis+BA group by ultrastructure observation. In addition, BA treatment inhibited the induction of mitophagy by NIBV infection. BA treatment also promoted innate immunity by enhancing type I IFN levels. Moreover, BA treatment up-regulated M1-related cytokines (iNOS, TNF-α, IL-1β, IL-6) and inhibited M2-related cytokines (ARG2, IL-4, IL-10, Pparg) at the mRNA and protein levels. However, the results from the splenic tissues at 11 dpi are opposite results from 3 and 7 dpi. Immunofluorescence analysis for M1 macrophage marker iNOS and M2 macrophage marker CD163 further validated this result. Collectively, BA inhibited mitophagy and triggered IFN activation, and M1 polarization, which contributed to the inhibition of NIBV infection.
Collapse
Affiliation(s)
- Guanming Tian
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, PR China
| | - Cheng Huang
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, PR China
| | - Zhengqing Li
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, PR China
| | - Zhihua Lu
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, PR China
| | - Chenlu Feng
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, PR China
| | - Yu Zhuang
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, PR China
| | - Guyue Li
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, PR China
| | - Ping Liu
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, PR China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, PR China
| | - Xiaona Gao
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, PR China.
| | - Xiaoquan Guo
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, PR China.
| |
Collapse
|
8
|
Yang H, Yu C, Yin Z, Guan P, Jin S, Wang Y, Feng X. Curcumin: a potential exogenous additive for the prevention of LPS-induced duck ileitis by the alleviation of inflammation and oxidative stress. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1550-1560. [PMID: 36208473 DOI: 10.1002/jsfa.12252] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/20/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Lipopolysaccharides (LPS) are the main pathogenic substances in Gram-negative bacteria. The aim of this study was to investigate the preventive effects of dietary curcumin (CUR) on LPS toxicity in the duck ileum. The duck diet was supplemented with CUR (0.5 g kg-1 ) for 28 days, while the birds were injected with LPS (0.5 mg kg-1 body weight per injection, administered as seven injections in the last week of the experimental period). RESULTS LPS significantly decreased the ileal villus-to-crypt ratio in the non-supplemented CUR group. Dietary CUR alleviated LPS-induced morphological damage to the ileum. Moreover, dietary CUR alleviated oxidative stress by increasing the levels of total superoxide dismutase (T-SOD) (P < 0.05) and glutathione S-transferase (GST) (P < 0.05) and decreasing the production of malonic dialdehyde (MDA) (P < 0.05) in control ducks and LPS-challenged ducks. Dietary CUR significantly inhibited the LPS-induced massive production of inflammatory factors (IL-1β, IL-6, and TNF-α) (P < 0.05). CUR induced the inhibition of TLR4 and activation of Nrf2 to reduce the expression of inflammation-related genes (TLR4, NF-κB, IKK, TXNIP, NLRP3, caspase-1, IL-1β, IL-6, and TNF-α). Moreover, dietary CUR ameliorated the decrease in claudin-1 and occludin expression (P < 0.05) and improved ZO-1 expression in the duck ileum (P < 0.05). CONCLUSION In conclusion, dietary CUR has beneficial effects on LPS-induced ileal damage, oxidative damage, and inflammatory response by inhibiting the TLR/NF-κB and activating the Nrf2 signaling pathways in ducks. This study provides valuable information regarding the therapeutic uses of CUR in duck ileitis. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hao Yang
- Laboratory of Molecular Nutrition, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Chunting Yu
- Laboratory of Molecular Nutrition, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Zesheng Yin
- Laboratory of Molecular Nutrition, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Peiyue Guan
- Laboratory of Molecular Nutrition, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Sanjun Jin
- Laboratory of Molecular Nutrition, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Yingjie Wang
- Laboratory of Molecular Nutrition, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Xingjun Feng
- Laboratory of Molecular Nutrition, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| |
Collapse
|
9
|
Gut Microbiota, Intestinal Morphometric Characteristics, and Gene Expression in Relation to the Growth Performance of Chickens. Animals (Basel) 2022; 12:ani12243474. [PMID: 36552394 PMCID: PMC9774407 DOI: 10.3390/ani12243474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/04/2022] [Accepted: 11/14/2022] [Indexed: 12/13/2022] Open
Abstract
this study aimed to investigate the growth mechanism in a local breed of chickens by comparing the highest weight (HW) and the lowest weight in their microbiota, histological characteristics, and gene expression. Golden Montazah chickens, an Egyptian breed, were reared until they were 49 days old. All of the birds were fed ad libitum by a starter diet from day 1 until day 21, followed by a grower diet from day 21 to the end of the study. At 49 days old, the forty-eight birds with the heaviest body weight (HW) and the lightest body weight (LW) were chosen. Blood biochemical and histological morphometric parameters, electron microscopy, and intestinal nutrient transporter gene expression were studied in the sampled jejunum. The microbial composition and functions of the content and mucosa in HW and LW chickens were studied using 16S rRNA gene sequencing. The histological morphometric parameters were all more significantly (p < 0.05) increased in the HW chickens than in the LW chickens. Total protein, albumin, and triglycerides in serum were significantly higher (p < 0.05) in the HW chickens than in the LW chickens. The microbiome profile in the gut showed that Microbacterium and Sphingomonas were positively correlated with the body weights. In the local breed, there were significant differences in the intestinal microstructure which could enhance the growth mechanism and body weight. Our findings showed that some microbial components were significantly associated with body weight and their interactions with the host could be inferred to explain why these interactions might alter the host’s metabolic responses. Further investigation into combining bioinformatics with lab experiments in chickens will help us to understand how gut bacteria can change the host’s metabolism by special metabolic features in the gastrointestinal system.
Collapse
|
10
|
Gut Microbiome Studies in Livestock: Achievements, Challenges, and Perspectives. Animals (Basel) 2022; 12:ani12233375. [PMID: 36496896 PMCID: PMC9736591 DOI: 10.3390/ani12233375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/16/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
The variety and makeup of the gut microbiome are frequently regarded as the primary determinants of health and production performances in domestic animals. High-throughput DNA/RNA sequencing techniques (NGS) have recently gained popularity and permitted previously unheard-of advancements in the study of gut microbiota, particularly for determining the taxonomic composition of such complex communities. Here, we summarize the existing body of knowledge on livestock gut microbiome, discuss the state-of-the-art in sequencing techniques, and offer predictions for next research. We found that the enormous volumes of available data are biased toward a small number of globally distributed and carefully chosen varieties, while local breeds (or populations) are frequently overlooked despite their demonstrated resistance to harsh environmental circumstances. Furthermore, the bulk of this research has mostly focused on bacteria, whereas other microbial components such as protists, fungi, and viruses have received far less attention. The majority of these data were gathered utilizing traditional metabarcoding techniques that taxonomically identify the gut microbiota by analyzing small portions of their genome (less than 1000 base pairs). However, to extend the coverage of microbial genomes for a more precise and thorough characterization of microbial communities, a variety of increasingly practical and economical shotgun techniques are currently available.
Collapse
|
11
|
Yin HC, Liu ZD, Zhang WW, Yang QZ, Yu TF, Jiang XJ. Chicken intestinal microbiota modulation of resistance to nephropathogenic infectious bronchitis virus infection through IFN-I. MICROBIOME 2022; 10:162. [PMID: 36192807 PMCID: PMC9527382 DOI: 10.1186/s40168-022-01348-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 08/13/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Mammalian intestinal microbiomes are necessary for antagonizing systemic viral infections. However, very few studies have identified whether poultry commensal bacteria play a crucial role in protecting against systemic viral infections. Nephropathogenic infectious bronchitis virus (IBV) is a pathogenic coronavirus that causes high morbidity and multiorgan infection tropism in chickens. RESULTS In this study, we used broad-spectrum oral antibiotics (ABX) to treat specific pathogen free (SPF) chickens to deplete the microbiota before infection with nephropathogenic IBV to analyze the impact of microbiota on IBV infections in vivo. Depletion of the SPF chicken microbiota increases pathogenicity and viral burden following IBV infection. The gnotobiotic chicken infection model further demonstrated that intestinal microbes are resistant to nephropathogenic IBV infection. In addition, ABX-treated chickens showed a severe reduction in macrophage activation, impaired type I IFN production, and IFN-stimulated gene expression in peripheral blood mononuclear cells and the spleen. Lactobacillus isolated from SPF chickens could restore microbiota-depleted chicken macrophage activation and the IFNAR-dependent type I IFN response to limit IBV infection. Furthermore, exopolysaccharide metabolites of Lactobacillus spp. could induce IFN-β. CONCLUSIONS This study revealed the resistance mechanism of SPF chicken intestinal microbiota to nephropathogenic IBV infection, providing new ideas for preventing and controlling nephropathogenic IBV. Video abstract.
Collapse
Affiliation(s)
- Hai-Chang Yin
- College of Life Science and Agriculture Forestry, Qiqihar University, Qiqihar, 161006, Heilongjiang, China
| | - Zhen-Dong Liu
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China
| | - Wei-Wei Zhang
- College of Life Science and Agriculture Forestry, Qiqihar University, Qiqihar, 161006, Heilongjiang, China
| | - Qing-Zhu Yang
- College of Life Science and Agriculture Forestry, Qiqihar University, Qiqihar, 161006, Heilongjiang, China
| | - Tian-Fei Yu
- College of Life Science and Agriculture Forestry, Qiqihar University, Qiqihar, 161006, Heilongjiang, China.
| | - Xin-Jie Jiang
- College of Life Science and Agriculture Forestry, Qiqihar University, Qiqihar, 161006, Heilongjiang, China.
| |
Collapse
|
12
|
The 16S rRNA Gene Sequencing of Gut Microbiota in Chickens Infected with Different Virulent Newcastle Disease Virus Strains. Animals (Basel) 2022; 12:ani12192558. [PMID: 36230299 PMCID: PMC9559583 DOI: 10.3390/ani12192558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Newcastle disease (ND), which is caused by virulent Newcastle disease virus (NDV), is one of the most important viral diseases for chickens and birds. However, the intestinal pathogenesis of NDV is still poorly understood. To preliminarily investigate its intestinal pathogenesis mechanisms from the aspect of gut microbiota, the 16S rRNA gene sequencing technology was used to evaluate the gut microbiota composition changes post different virulent NDV infection. Results showed that different virulent NDV infection resulted in a different alteration of the gut microbiota in chickens, including a loss of probiotic bacteria and an expansion of some pathogenic bacteria. The above results suggest that NDV strains with different virulence have different impacts on chicken gut microbiota. Abstract Newcastle disease virus (NDV) which is pathogenic to chickens is characterized by dyspnea, diarrhea, nervous disorder and hemorrhages. However, the influence of different virulent NDV strain infection on the host gut microbiota composition is still poorly understood. In this study, twenty 21-day-old specific pathogen free (SFP) chickens were inoculated with either the velogenic Herts33 NDV strain, lentogenic La Sota NDV strain or sterile phosphate buffer solution (PBS). Subsequently, the fecal samples of each group were collected for 16S rRNA sequencing. The results showed that the gut microbiota were mainly dominated by Firmicutes, Bacteroidetes and Proteobacteria in both healthy and NDV infected chickens. NDV infection altered the structure and composition of gut microbiota. As compared to the PBS group, phylum Firmicutes were remarkably reduced, whereas Proteobacteria was significantly increased in the velogenic NDV infected group; the gut community structure had no significant differences between the lentogenic NDV infected group and the PBS group at phylum level. At genus level, Escherichia-Shigella was significantly increased in both the velogenic and lentogenic NDV infected groups, but the lactobacillus was only remarkably decreased in the velogenic NDV infected group. Collectively, different virulent strain NDV infection resulted in a different alteration of the gut microbiota in chickens, including a loss of probiotic bacteria and an expansion of some pathogenic bacteria. These results indicated that NDV strains with different virulence have different impacts on chicken gut microbiota and may provide new insights into the intestinal pathogenesis of NDV.
Collapse
|
13
|
Wu Z, Fang H, Xu Z, Lian J, Xie Z, Wang Z, Qin J, Huang B, Feng K, Zhang X, Lin W, Li H, Chen W, Xie Q. Molecular Characterization Analysis of Prevalent Infectious Bronchitis Virus and Pathogenicity Assessment of Recombination Strain in China. Front Vet Sci 2022; 9:842179. [PMID: 35942113 PMCID: PMC9356287 DOI: 10.3389/fvets.2022.842179] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 06/17/2022] [Indexed: 11/29/2022] Open
Abstract
Avian coronavirus infectious bronchitis virus (IBV) is a respiratory pathogen of chickens, resulting in severe economic losses in the poultry industry. This study aimed to monitor and isolate the molecular identity of IBV in broiler flocks with respiratory symptoms in eight provinces of China. In total, 910 samples (oropharyngeal and cloacal mixed swabs) from broiler flocks showed IBV positive rates of 17.6% (160/910) using PCR assay. Phylogenetic analysis of the complete S1 genes of 160 IBV isolates was performed and revealed that QX-type (GI-19), TW-type (GI-7), 4/91-type (GI-13), HN08-type (GI-22),TC07-2-type (GVI-1), and LDT3-type (GI-28) exhibited IBV positive rates of 58.15, 25, 8.12, 1.86, 5.62, and 1.25%. In addition, recombination analyses revealed that the four newly IBV isolates presented different recombination patterns. The CK/CH/JS/YC10-3 isolate likely originated from recombination events between strain YX10 (QX-type) and strain TW2575-98 (TW-type), the pathogenicity of which was assessed, comparing it with strain GZ14 (TW-type) and strain CK/CH/GD/JR07-7 (QX-type). The complete S1 gene data from these isolates indicate that IBV has consistently evolved through genetic recombination or mutation, more likely changing the viral pathogenicity and leading to larger outbreaks in chick populations, in China.
Collapse
Affiliation(s)
- Zhiqiang Wu
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Huanxin Fang
- Wen's Group Academy, Wen's Foodstuffs Group Co., Ltd., Xinxing, China
| | - Zhouyi Xu
- Wen's Group Academy, Wen's Foodstuffs Group Co., Ltd., Xinxing, China
| | - Jiamin Lian
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China
| | - Zi Xie
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China
| | - Zhanxin Wang
- Wen's Group Academy, Wen's Foodstuffs Group Co., Ltd., Xinxing, China
| | - Jianpin Qin
- Wen's Group Academy, Wen's Foodstuffs Group Co., Ltd., Xinxing, China
| | - Benli Huang
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China
| | - Keyu Feng
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China
| | - Xinheng Zhang
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Wencheng Lin
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Hongxin Li
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Weiguo Chen
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qingmei Xie
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, College of Animal Science, South China Agricultural University, Guangzhou, China
- *Correspondence: Qingmei Xie
| |
Collapse
|
14
|
Dai X, Gu Y, Guo J, Huang L, Cheng G, Peng D, Hao H. Clinical Breakpoint of Apramycin to Swine Salmonella and Its Effect on Ileum Flora. Int J Mol Sci 2022; 23:ijms23031424. [PMID: 35163350 PMCID: PMC8835974 DOI: 10.3390/ijms23031424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 02/01/2023] Open
Abstract
The purpose of this study was to establish the clinical breakpoint (CBP) of apramycin (APR) against Salmonella in swine and evaluate its effect on intestinal microbiota. The CBP was established based on three cutoff values of wild-type cutoff value (COWT), pharmacokinetic-pharmadynamic (PK/PD) cutoff value (COPD) and clinical cutoff value (COCL). The effect of the optimized dose regimen based on ex vivo PK/PD study. The evolution of the ileum flora was determined by the 16rRNA gene sequencing and bioinformatics. This study firstly established the COWT, COPD in ileum, and COCL of APR against swine Salmonella, the value of these cutoffs were 32 µg/mL, 32 µg/mL and 8 µg/mL, respectively. According to the guiding principle of the Clinical Laboratory Standards Institute (CLSI), the final CBP in ileum was 32 µg/mL. Our results revealed the main evolution route in the composition of ileum microbiota of diarrheic piglets treated by APR. The change of the abundances of Bacteroidetes and Euryarchaeota was the most obvious during the evolution process. Methanobrevibacter, Prevotella, S24-7 and Ruminococcaceae were obtained as the highest abundance genus. The abundance of Methanobrevibacter increased significantly when APR treatment carried and decreased in cure and withdrawal period groups. The abundance of Prevotella in the tested groups was significantly lower than that in the healthy group. A decreased of abundance in S24-7 was observed after Salmonella infection and increased slightly after cure. Ruminococcaceae increased significantly after Salmonella infection and decreased significantly after APR treatment. In addition, the genera of Methanobrevibacter and Prevotella were defined as the key node. Valine, leucine and isoleucine biosynthesis, D-Glutamine and D-glutamate metabolism, D-Alanine metabolism, Peptidoglycan and amino acids biosynthesis were the top five Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways in the ileum microbiota of piglets during the Salmonella infection and APR treatment process. Our study extended the understanding of dynamic shift of gut microbes during diarrheic piglets treated by APR.
Collapse
Affiliation(s)
- Xinyu Dai
- National Reference Laboratory of Veterinary Drug Residues and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; (X.D.); (Y.G.); (J.G.); (L.H.); (G.C.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
| | - Yufeng Gu
- National Reference Laboratory of Veterinary Drug Residues and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; (X.D.); (Y.G.); (J.G.); (L.H.); (G.C.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinli Guo
- National Reference Laboratory of Veterinary Drug Residues and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; (X.D.); (Y.G.); (J.G.); (L.H.); (G.C.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
| | - Lingli Huang
- National Reference Laboratory of Veterinary Drug Residues and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; (X.D.); (Y.G.); (J.G.); (L.H.); (G.C.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
| | - Guyue Cheng
- National Reference Laboratory of Veterinary Drug Residues and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; (X.D.); (Y.G.); (J.G.); (L.H.); (G.C.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
| | - Dapeng Peng
- National Reference Laboratory of Veterinary Drug Residues and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; (X.D.); (Y.G.); (J.G.); (L.H.); (G.C.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence: (D.P.); (H.H.); Tel.: +86-027-87287140 (ext. 8115) (H.H.)
| | - Haihong Hao
- National Reference Laboratory of Veterinary Drug Residues and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; (X.D.); (Y.G.); (J.G.); (L.H.); (G.C.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence: (D.P.); (H.H.); Tel.: +86-027-87287140 (ext. 8115) (H.H.)
| |
Collapse
|
15
|
Afridi OK, Ali J, Chang JH. Next-Generation Sequencing Based Gut Resistome Profiling of Broiler Chickens Infected with Multidrug-Resistant Escherichia coli. Animals (Basel) 2020; 10:ani10122350. [PMID: 33317082 PMCID: PMC7764233 DOI: 10.3390/ani10122350] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/05/2020] [Accepted: 12/06/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Antimicrobial resistance acquired an endemic status in the Pakistan poultry sector. A cross-sectional study was designed to investigate the fecal microbiome and resistome of broiler chickens infected with multidrug-resistant Escherichia coli using next-generation sequencing. Results show the widespread presence of diverse antibiotic resistance genes, virulence-associated genes, plasmid replicon types, and dysbiotic fecal microbial communities. Results indicate that antibiotic resistance altered the fecal microbial community structure of broiler chickens. The use of next-generation sequencing in this study documents a robust and cost-effective approach to study the fecal microbiome and resistome diversities of broiler chickens. Abstract The study was designed to investigate the fecal microbiome and resistome of broiler chickens infected with multidrug-resistant (MDR) Escherichia coli (E. coli). Fecal samples (n = 410) from broiler chickens were collected from thirteen randomly selected sites of Khyber Pakhtunkhwa and screened for the presence of MDR E. coli. Upon initial screening, thirteen (13) MDR E. coli isolates were then subjected to shotgun metagenome next-generation sequencing (NGS). NGS based resistome analysis identified the multidrug efflux pump system-related genes at the highest prevalence (36%) followed by aminoglycoside (26.1%), tetracycline (15.9%), macrolide-lincosamide-streptogramin (9.6%), beta-lactam (6.6%), rifampin (2%), sulphonamide (1.3%), phenicol (0.91%), vancomycin (0.62%), trimethoprim (0.34%), colistin (0.30%), and quinolone (0.33%). The most abundant virulence-associated genes (VAGs) identified were iroN, iutA, iss, and iucA. NGS based taxonomic profiling at the phylum level revealed the predominance of Proteobacteria (38.9%) followed by Firmicutes (36.4%), Bacteroidetes (15.8%), and Tenericutes (8.9%). Furthermore, pathobionts such as E. coli, Salmonella enterica, Klebsiella pneumoniae, and Shigella flexneri belonging to the family Enterobacteriaceae were predominantly found. This study revealed the widespread presence of MDR genes, diverse VAGs, and a dysbiotic gut in the broiler chickens infected with MDR E. coli of Khyber Pakhtunkhwa for the first time using NGS.
Collapse
Affiliation(s)
- Ome Kalsoom Afridi
- Department of Biology Education, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Korea;
| | - Johar Ali
- Center for Genome Sciences, Rehman Medical College, Hayatabad, Peshawar, Khyber Pakhtunkhwa 25000, Pakistan
- Executive Development Center, Sukkur Institute of Business Administration University, Sindh 65200, Pakistan
- Correspondence: (J.A.); (J.H.C.)
| | - Jeong Ho Chang
- Department of Biology Education, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Korea;
- Correspondence: (J.A.); (J.H.C.)
| |
Collapse
|