1
|
Schertenleib FJ, Hochmuth S, Müller JA, Sandmann P, Radeloff A. High-Resolution EEG Amplifiers Are Feasible for Electrocochleography Without Time Restriction. Audiol Res 2025; 15:8. [PMID: 39997152 PMCID: PMC11851963 DOI: 10.3390/audiolres15010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/19/2024] [Accepted: 01/16/2025] [Indexed: 02/26/2025] Open
Abstract
OBJECTIVES The gold standard for electrocochleography (ECochG) is using dedicated recording devices for auditory evoked potentials. However, these have a very limited time window for recording. The aim of this study is to evaluate EEG amplifiers for ECochG, in particular for recording cochlear microphonics (CMs) without time restriction. METHODS Three high-resolution EEG amplifiers and different types of electrodes were analyzed and compared with a clinical system for recording auditory evoked potentials. For this, CMs were recorded after stimulation with various stimuli in a dummy and in human subjects. In the latter, recordings were made from the tympanic membrane and, during otosurgical procedures, from the promontory. Our evaluation focused on comparing signal amplifiers and electrode types, considering the signal-to-noise ratio, recording characteristics, and measurement reliability. RESULTS Using a dummy model, we observed significant differences among devices, electrode types, and stimulus frequencies. These findings were subsequently confirmed in human participant measurements. Nevertheless, EEG amplifiers proved to be feasible for ECochG recordings and offered a recording fidelity comparable to proprietary clinical methods. Importantly, with EEG amplifiers, we were able to record cochlear potentials in response to speech stimuli, revealing a strong correlation (r = 0.78) between recorded signals and the input stimulus. CONCLUSIONS Our findings indicate that high resolution EEG amplifiers are suitable for recording cochlear potentials, in particular, CMs. This allows for evaluating cochlear signals in response to extended stimuli, in particular, speech stimuli.
Collapse
Affiliation(s)
- Florian Josef Schertenleib
- Department of Otorhinolaryngology at Evangelisches Krankenhaus Oldenburg, University of Oldenburg, 26122 Oldenburg, Germany; (S.H.); (A.R.)
| | - Sabine Hochmuth
- Department of Otorhinolaryngology at Evangelisches Krankenhaus Oldenburg, University of Oldenburg, 26122 Oldenburg, Germany; (S.H.); (A.R.)
| | - Jana Annina Müller
- Department of Otorhinolaryngology at Evangelisches Krankenhaus Oldenburg, University of Oldenburg, 26122 Oldenburg, Germany; (S.H.); (A.R.)
| | - Pascale Sandmann
- Department of Otorhinolaryngology at Evangelisches Krankenhaus Oldenburg, University of Oldenburg, 26122 Oldenburg, Germany; (S.H.); (A.R.)
- Cluster of Excellence ‘Hearing4all’, University of Oldenburg, 26111 Oldenburg, Germany
- Research Center Neurosensory Science, University of Oldenburg, 26129 Oldenburg, Germany
| | - Andreas Radeloff
- Department of Otorhinolaryngology at Evangelisches Krankenhaus Oldenburg, University of Oldenburg, 26122 Oldenburg, Germany; (S.H.); (A.R.)
- Cluster of Excellence ‘Hearing4all’, University of Oldenburg, 26111 Oldenburg, Germany
- Research Center Neurosensory Science, University of Oldenburg, 26129 Oldenburg, Germany
| |
Collapse
|
2
|
Ergun O, Yildirim O, Bozyel I, Kaymak I, Gokcen D, Sennaroglu L. The hidden cochlear implant. J Laryngol Otol 2023; 137:1207-1214. [PMID: 36751901 DOI: 10.1017/s0022215123000130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
OBJECTIVE The hidden cochlear implant concept has two data transmission methods: Bluetooth low energy and transtympanic optical data transfer systems. This study aimed to present the hidden cochlear implant and compare the test results with the existing fully implanted cochlear implant. METHOD The Bluetooth low energy module was implanted into the implant bed. For the transtympanic optical data transfer tests, a receiver was passed through the posterior tympanotomy, and the transmitter was placed in the ear canal. RESULTS The Bluetooth low energy module range was 5.2-17.5 m. Transtympanic optical data transfer reached a rate of 1 Mbit/s and had 99.22 per cent accuracy. Despite various obstacles, the accuracy of the transtympanic optical data transfer was more than 99 per cent with a 250 Kbit/s rate. The average power consumption was 310 mW for the implanted Bluetooth low energy module and 41 mW for the transtympanic optical data transfer receiver. CONCLUSION Bluetooth low energy is suitable to be used transcutaneously. Transtympanic optical data transfer is an effective and promising technology. Hidden use cochlear implants aim to have the aesthetics of a fully implantable cochlear implant with higher reliability and a magnet-free design with smart device integration.
Collapse
Affiliation(s)
- O Ergun
- Department of Otorhinolaryngology Head and Neck Surgery, Baskent University Hospital, Ankara, Turkey
| | - O Yildirim
- Department of Electrical and Electronics Engineering, Faculty of Engineering, Hacettepe University, Ankara, Turkey
| | - I Bozyel
- Department of Electrical and Electronics Engineering, Faculty of Engineering, Hacettepe University, Ankara, Turkey
| | - I Kaymak
- Department of Electrical and Electronics Engineering, Faculty of Engineering, Hacettepe University, Ankara, Turkey
| | - D Gokcen
- Department of Electrical and Electronics Engineering, Faculty of Engineering, Hacettepe University, Ankara, Turkey
| | - L Sennaroglu
- Department of Otorhinolaryngology Head and Neck Surgery, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
3
|
DeFreese AJ, Lindquist NR, Shi L, Holder JT, Berg KA, Haynes DS, Gifford RH. The Impact of Daily Processor Use on Adult Cochlear Implant Outcomes: Reexamining the Roles of Duration of Deafness and Age at Implantation. Otol Neurotol 2023; 44:672-678. [PMID: 37367733 PMCID: PMC10524754 DOI: 10.1097/mao.0000000000003920] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
OBJECTIVE To quantify the roles and relationships between age at implantation, duration of deafness (DoD), and daily processor use via data logging on speech recognition outcomes for postlingually deafened adults with cochlear implants. STUDY DESIGN Retrospective case review. SETTING Cochlear implant (CI) program at a tertiary medical center. PATIENTS Six-hundred fourteen postlingually deafened adult ears with CIs (mean age, 63 yr; 44% female) were included. MAIN OUTCOME MEASURES A stepwise multiple regression analysis was completed to investigate the combined effects of age, DoD, and daily processor use on CI-aided speech recognition (Consonant-Nucleus-Consonant monosyllables and AzBio sentences). RESULTS Results indicated that only daily processor use was significantly related to Consonant-Nucleus-Consonant word scores ( R2 = 0.194, p < 0.001) and AzBio in quiet scores ( R2 = 0.198, p < 0.001), whereas neither age nor DoD was significantly related. In addition, there was no significant relationship between daily processor use, age at implantation, or DoD and AzBio sentences in noise ( R2 = 0.026, p = 0.005). CONCLUSIONS Considering the clinical factors of age at implantation, DoD, and daily processor use, only daily processor use significantly predicted the ~20% of variance in postoperative outcomes (CI-aided speech recognition) accounted for by these clinical factors.
Collapse
Affiliation(s)
- Andrea J DeFreese
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center
| | - Nathan R Lindquist
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Linjie Shi
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center
| | - Jourdan T Holder
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Katelyn A Berg
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center
| | - David S Haynes
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - René H Gifford
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center
| |
Collapse
|
4
|
Haggerty RA, Hutson KA, Riggs WJ, Brown KD, Pillsbury HC, Adunka OF, Buchman CA, Fitzpatrick DC. Assessment of cochlear synaptopathy by electrocochleography to low frequencies in a preclinical model and human subjects. Front Neurol 2023; 14:1104574. [PMID: 37483448 PMCID: PMC10361575 DOI: 10.3389/fneur.2023.1104574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 06/19/2023] [Indexed: 07/25/2023] Open
Abstract
Cochlear synaptopathy is the loss of synapses between the inner hair cells and the auditory nerve despite survival of sensory hair cells. The findings of extensive cochlear synaptopathy in animals after moderate noise exposures challenged the long-held view that hair cells are the cochlear elements most sensitive to insults that lead to hearing loss. However, cochlear synaptopathy has been difficult to identify in humans. We applied novel algorithms to determine hair cell and neural contributions to electrocochleographic (ECochG) recordings from the round window of animal and human subjects. Gerbils with normal hearing provided training and test sets for a deep learning algorithm to detect the presence of neural responses to low frequency sounds, and an analytic model was used to quantify the proportion of neural and hair cell contributions to the ECochG response. The capacity to detect cochlear synaptopathy was validated in normal hearing and noise-exposed animals by using neurotoxins to reduce or eliminate the neural contributions. When the analytical methods were applied to human surgical subjects with access to the round window, the neural contribution resembled the partial cochlear synaptopathy present after neurotoxin application in animals. This result demonstrates the presence of viable hair cells not connected to auditory nerve fibers in human subjects with substantial hearing loss and indicates that efforts to regenerate nerve fibers may find a ready cochlear substrate for innervation and resumption of function.
Collapse
Affiliation(s)
- Raymond A. Haggerty
- Department of Otolaryngology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kendall A. Hutson
- Department of Otolaryngology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - William J. Riggs
- Department of Otolaryngology, The Ohio State University, Columbus, OH, United States
| | - Kevin D. Brown
- Department of Otolaryngology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Harold C. Pillsbury
- Department of Otolaryngology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Oliver F. Adunka
- Department of Otolaryngology, The Ohio State University, Columbus, OH, United States
| | - Craig A. Buchman
- Department of Otolaryngology, Washington University in St. Louis, St. Louis, MO, United States
| | - Douglas C. Fitzpatrick
- Department of Otolaryngology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
5
|
Zhang S, Qin Y, Wang J, Yu Y, Wu L, Zhang T. Noninvasive Electrical Stimulation Neuromodulation and Digital Brain Technology: A Review. Biomedicines 2023; 11:1513. [PMID: 37371609 PMCID: PMC10295338 DOI: 10.3390/biomedicines11061513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
We review the research progress on noninvasive neural regulatory systems through system design and theoretical guidance. We provide an overview of the development history of noninvasive neuromodulation technology, focusing on system design. We also discuss typical cases of neuromodulation that use modern noninvasive electrical stimulation and the main limitations associated with this technology. In addition, we propose a closed-loop system design solution of the "time domain", "space domain", and "multi-electrode combination". For theoretical guidance, this paper provides an overview of the "digital brain" development process used for noninvasive electrical-stimulation-targeted modeling and the development of "digital human" programs in various countries. We also summarize the core problems of the existing "digital brain" used for noninvasive electrical-stimulation-targeted modeling according to the existing achievements and propose segmenting the tissue. For this, the tissue parameters of a multimodal image obtained from a fresh cadaver were considered as an index. The digital projection of the multimodal image of the brain of a living individual was implemented, following which the segmented tissues could be reconstructed to obtain a "digital twin brain" model with personalized tissue structure differences. The "closed-loop system" and "personalized digital twin brain" not only enable the noninvasive electrical stimulation of neuromodulation to achieve the visualization of the results and adaptive regulation of the stimulation parameters but also enable the system to have individual differences and more accurate stimulation.
Collapse
Affiliation(s)
- Shuang Zhang
- The School of Artificial Intelligence, Neijiang Normal University, Neijiang 641000, China
- The School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610056, China
- The NJNU-OMNISKY Smart Medical Engineering Applications Joint Laboratory, Neijiang Normal University, Neijiang 641004, China
- The High Field Magnetic Resonance Brain Imaging Laboratory of Sichuan, Chengdu 610056, China
| | - Yuping Qin
- The School of Artificial Intelligence, Neijiang Normal University, Neijiang 641000, China
- The NJNU-OMNISKY Smart Medical Engineering Applications Joint Laboratory, Neijiang Normal University, Neijiang 641004, China
| | - Jiujiang Wang
- The School of Artificial Intelligence, Neijiang Normal University, Neijiang 641000, China
- The NJNU-OMNISKY Smart Medical Engineering Applications Joint Laboratory, Neijiang Normal University, Neijiang 641004, China
| | - Yuanyu Yu
- The School of Artificial Intelligence, Neijiang Normal University, Neijiang 641000, China
- The NJNU-OMNISKY Smart Medical Engineering Applications Joint Laboratory, Neijiang Normal University, Neijiang 641004, China
| | - Lin Wu
- The School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610056, China
- The High Field Magnetic Resonance Brain Imaging Laboratory of Sichuan, Chengdu 610056, China
| | - Tao Zhang
- The School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610056, China
- The High Field Magnetic Resonance Brain Imaging Laboratory of Sichuan, Chengdu 610056, China
- The Sichuan Institute for Brain Science and Brain-Inspired Intelligence, Chengdu 610056, China
| |
Collapse
|
6
|
The remaining obstacles for a totally implantable cochlear implant. Curr Opin Otolaryngol Head Neck Surg 2022; 30:298-302. [PMID: 36004785 DOI: 10.1097/moo.0000000000000840] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF THE REVIEW For years, the development of a totally implantable cochlear implant (TICI) has faced several technical challenges hindering any prototypes from reaching full commercialization. This article aims to review the necessary specifications for a viable TICI. An overview of the remaining challenges when designing TICIs will be provided, focusing on energy supply and implantable microphones. RECENT FINDINGS The literature review highlights how research efforts to generate sufficient power to supply a fully implantable CI could take advantage of microelectromechanical systems (MEMS)-based energy harvesters incorporating piezoelectric materials. Using one of the various energy sources in the vicinity of the temporal bone would allow the development of a self-sufficient implant, overcoming the limitations of electrochemical batteries. Middle ear implantable microphones could also use similar fabrication techniques and transduction mechanisms to meet the sensor requirements for a TICI. SUMMARY Recent breakthroughs in power supply using MEMS-based energy harvesting technologies and piezoelectric implantable microphones may make TICIs become a more practical reality in the foreseeable future. Once available, TICIs will have major impact on our patients' quality of life and may help to make hearing rehabilitation a more appealing option to a greater proportion of those who fulfill our candidacy criteria.
Collapse
|
7
|
Characterizing Electrophysiological Response Properties of the Peripheral Auditory System Evoked by Phonemes in Normal and Hearing Impaired Ears. Ear Hear 2022; 43:1526-1539. [DOI: 10.1097/aud.0000000000001213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Yoo S, Lee J, Joo H, Sunwoo S, Kim S, Kim D. Wireless Power Transfer and Telemetry for Implantable Bioelectronics. Adv Healthc Mater 2021; 10:e2100614. [PMID: 34075721 DOI: 10.1002/adhm.202100614] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/07/2021] [Indexed: 12/14/2022]
Abstract
Implantable bioelectronic devices are becoming useful and prospective solutions for various diseases owing to their ability to monitor or manipulate body functions. However, conventional implantable devices (e.g., pacemaker and neurostimulator) are still bulky and rigid, which is mostly due to the energy storage component. In addition to mechanical mismatch between the bulky and rigid implantable device and the soft human tissue, another significant drawback is that the entire device should be surgically replaced once the initially stored energy is exhausted. Besides, retrieving physiological information across a closed epidermis is a tricky procedure. However, wireless interfaces for power and data transfer utilizing radio frequency (RF) microwave offer a promising solution for resolving such issues. While the RF interfacing devices for power and data transfer are extensively investigated and developed using conventional electronics, their application to implantable bioelectronics is still a challenge owing to the constraints and requirements of in vivo environments, such as mechanical softness, small module size, tissue attenuation, and biocompatibility. This work elucidates the recent advances in RF-based power transfer and telemetry for implantable bioelectronics to tackle such challenges.
Collapse
Affiliation(s)
- Seungwon Yoo
- Center for Nanoparticle Research Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological Engineering Institute of Chemical Processes Seoul National University Seoul 08826 Republic of Korea
| | - Jonghun Lee
- Department of Electronics and Information Convergence Engineering Kyung Hee University Yongin‐si 17104 Republic of Korea
- Institute for Wearable Convergence Electronics Kyung Hee University Yongin‐si 17104 Republic of Korea
| | - Hyunwoo Joo
- Center for Nanoparticle Research Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological Engineering Institute of Chemical Processes Seoul National University Seoul 08826 Republic of Korea
| | - Sung‐Hyuk Sunwoo
- Center for Nanoparticle Research Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological Engineering Institute of Chemical Processes Seoul National University Seoul 08826 Republic of Korea
| | - Sanghoek Kim
- Department of Electronics and Information Convergence Engineering Kyung Hee University Yongin‐si 17104 Republic of Korea
- Institute for Wearable Convergence Electronics Kyung Hee University Yongin‐si 17104 Republic of Korea
| | - Dae‐Hyeong Kim
- Center for Nanoparticle Research Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological Engineering Institute of Chemical Processes Seoul National University Seoul 08826 Republic of Korea
- Department of Materials Science and Engineering Seoul National University Seoul 08826 Republic of Korea
| |
Collapse
|