1
|
Guo T, Pei F, Zhang M, Yamada T, Feng J, Jing J, Ho TV, Chai Y. Vascular architecture regulates mesenchymal stromal cell heterogeneity via P53-PDGF signaling in the mouse incisor. Cell Stem Cell 2024; 31:904-920.e6. [PMID: 38703771 PMCID: PMC11162319 DOI: 10.1016/j.stem.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 02/17/2024] [Accepted: 04/15/2024] [Indexed: 05/06/2024]
Abstract
Mesenchymal stem cells (MSCs) reside in niches to maintain tissue homeostasis and contribute to repair and regeneration. Although the physiological functions of blood and lymphatic vasculature are well studied, their regulation of MSCs as niche components remains largely unknown. Using adult mouse incisors as a model, we uncover the role of Trp53 in regulating vascular composition through THBS2 to maintain mesenchymal tissue homeostasis. Loss of Trp53 in GLI1+ progeny increases arteries and decreases other vessel types. Platelet-derived growth factors from arteries deposit in the MSC region and interact with PDGFRA and PDGFRB. Significantly, PDGFRA+ and PDGFRB+ cells differentially contribute to defined cell lineages in the adult mouse incisor. Collectively, our results highlight Trp53's importance in regulating the vascular niche for MSCs. They also shed light on how different arterial cells provide unique cues to regulate MSC subpopulations and maintain their heterogeneity. Furthermore, they provide mechanistic insight into MSC-vasculature crosstalk.
Collapse
Affiliation(s)
- Tingwei Guo
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Fei Pei
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Mingyi Zhang
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Takahiko Yamada
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Jifan Feng
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Junjun Jing
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Thach-Vu Ho
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
2
|
Huysseune A, Witten PE. Continuous tooth replacement: what can teleost fish teach us? Biol Rev Camb Philos Soc 2024; 99:797-819. [PMID: 38151229 DOI: 10.1111/brv.13045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 12/29/2023]
Abstract
Most tooth-bearing non-mammalian vertebrates have the capacity to replace their teeth throughout life. This capacity was lost in mammals, which replace their teeth only once at most. Not surprisingly, continuous tooth replacement has attracted much attention. Classical morphological studies (e.g. to analyse patterns of replacement) are now being complemented by molecular studies that investigate the expression of genes involved in tooth formation. This review focuses on ray-finned fish (actinopterygians), which have teeth often distributed throughout the mouth and pharynx, and more specifically on teleost fish, the largest group of extant vertebrates. First we highlight the diversity in tooth distribution and in tooth replacement patterns. Replacement tooth formation can start from a distinct (usually discontinuous and transient) dental lamina, but also in the absence of a successional lamina, e.g. from the surface epithelium of the oropharynx or from the outer dental epithelium of a predecessor tooth. The relationship of a replacement tooth to its predecessor is closely related to whether replacement is the result of a prepattern or occurs on demand. As replacement teeth do not necessarily have the same molecular signature as first-generation teeth, the question of the actual trigger for tooth replacement is discussed. Much emphasis has been laid in the past on the potential role of epithelial stem cells in initiating tooth replacement. The outcome of such studies has been equivocal, possibly related to the taxa investigated, and the permanent or transient nature of the dental lamina. Alternatively, replacement may result from local proliferation of undifferentiated progenitors, stimulated by hitherto unknown, perhaps mesenchymal, factors. So far, the role of the neurovascular link in continuous tooth replacement has been poorly investigated, despite the presence of a rich vascularisation surrounding actinopterygian (as well as chondrichthyan) teeth and despite a complete arrest of tooth replacement after nerve resection. Lastly, tooth replacement is possibly co-opted as a process to expand the number of teeth in a dentition ontogenetically whilst conserving features of the primary dentition. That neither a dental lamina, nor stem cells appear to be required for tooth replacement places teleosts in an advantageous position as models for tooth regeneration in humans, where the dental lamina regresses and epithelial stem cells are considered lost.
Collapse
Affiliation(s)
- Ann Huysseune
- Research Group Evolutionary Developmental Biology, Biology Department, Ghent University, K.L. Ledeganckstraat 35, Ghent, B-9000, Belgium
- Department of Zoology, Faculty of Science, Charles University, Vinicna 7, Prague, 128 44, Czech Republic
| | - P Eckhard Witten
- Research Group Evolutionary Developmental Biology, Biology Department, Ghent University, K.L. Ledeganckstraat 35, Ghent, B-9000, Belgium
| |
Collapse
|
3
|
Zhu X, Li Y, Dong Q, Tian C, Gong J, Bai X, Ruan J, Gao J. Small Molecules Promote the Rapid Generation of Dental Epithelial Cells from Human-Induced Pluripotent Stem Cells. Int J Mol Sci 2024; 25:4138. [PMID: 38673725 PMCID: PMC11049943 DOI: 10.3390/ijms25084138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Human-induced pluripotent stem cells (hiPSCs) offer a promising source for generating dental epithelial (DE) cells. Whereas the existing differentiation protocols were time-consuming and relied heavily on growth factors, herein, we developed a three-step protocol to convert hiPSCs into DE cells in 8 days. In the first phase, hiPSCs were differentiated into non-neural ectoderm using SU5402 (an FGF signaling inhibitor). The second phase involved differentiating non-neural ectoderm into pan-placodal ectoderm and simultaneously inducing the formation of oral ectoderm (OE) using LDN193189 (a BMP signaling inhibitor) and purmorphamine (a SHH signaling activator). In the final phase, OE cells were differentiated into DE through the application of Purmorphamine, XAV939 (a WNT signaling inhibitor), and BMP4. qRT-PCR and immunostaining were performed to examine the expression of lineage-specific markers. ARS staining was performed to evaluate the formation of the mineralization nodule. The expression of PITX2, SP6, and AMBN, the emergence of mineralization nodules, and the enhanced expression of AMBN and AMELX in spheroid culture implied the generation of DE cells. This study delineates the developmental signaling pathways and uses small molecules to streamline the induction of hiPSCs into DE cells. Our findings present a simplified and quicker method for generating DE cells, contributing valuable insights for dental regeneration and dental disease research.
Collapse
Affiliation(s)
- Ximei Zhu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China; (X.Z.); (Y.L.); (Q.D.)
- Center of Oral Public Health, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China;
| | - Yue Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China; (X.Z.); (Y.L.); (Q.D.)
- Center of Oral Public Health, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China;
| | - Qiannan Dong
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China; (X.Z.); (Y.L.); (Q.D.)
- Center of Oral Public Health, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China;
| | - Chunli Tian
- Center of Oral Public Health, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China;
| | - Jing Gong
- Department of Pediatric Dentistry, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China; (J.G.); (X.B.)
| | - Xiaofan Bai
- Department of Pediatric Dentistry, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China; (J.G.); (X.B.)
| | - Jianping Ruan
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China; (X.Z.); (Y.L.); (Q.D.)
- Center of Oral Public Health, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China;
| | - Jianghong Gao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China; (X.Z.); (Y.L.); (Q.D.)
- Center of Oral Public Health, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China;
| |
Collapse
|
4
|
Shin M, Matsushima A, Nagao JI, Tanaka Y, Harada H, Okabe K, Bartlett JD. Mobility gene expression differences among wild-type, Mmp20 null and Mmp20 over-expresser mice plus visualization of 3D mouse ameloblast directional movement. Sci Rep 2023; 13:18829. [PMID: 37914726 PMCID: PMC10620228 DOI: 10.1038/s41598-023-44627-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/10/2023] [Indexed: 11/03/2023] Open
Abstract
Enamel forming ameloblasts move away from the dentino-enamel junction and also move relative to each other to establish enamel shape during the secretory stage of enamel development. Matrix metalloproteinase-20 (MMP20) is a tooth specific proteinase essential for proper enamel formation. We previously reported that MMP20 cleaves cadherins and may regulate ameloblast movement. Here, we used an Amelx promoter driven tdTomato reporter to label mouse ameloblasts. With these transgenic mice, we assessed ameloblast mobility group dynamics and gene expression. Three-dimensional imaging of mouse ameloblasts were observed in hemi-mandibles by using a tissue clearing technique. The three-dimensional ameloblast layer in Tg(Amelx-Mmp20) mice that overexpress MMP20 was uneven and the ameloblasts migrated away from this layer. Mouse ameloblast movement toward incisal tips was monitored by ex vivo time-lapse imaging. Gene expression related to cell migration and adhesion was analyzed in ameloblasts from wild-type mice, Mmp20-/- mice with no functional MMP20 and from Tg(Amelx-Mmp20) overexpressing mice. Gene expression was altered in Mmp20-/- and Tg(Amelx-Mmp20) mice compared to wild type. Among the genes assessed, those encoding laminins and a gap junction protein were upregulated in Mmp20-/- mice. New techniques and findings described in this study may lead to an improved understanding of ameloblast movement during enamel formation.
Collapse
Affiliation(s)
- Masashi Shin
- Section of Cellular Physiology, Department of Physiological Science and Molecular Biology, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka, 814-0193, Japan.
- Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan.
| | - Aya Matsushima
- Section of Cellular Physiology, Department of Physiological Science and Molecular Biology, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka, 814-0193, Japan
| | - Jun-Ichi Nagao
- Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan
- Section of Infection Biology, Department of Functional Bioscience, Fukuoka Dental College, Fukuoka, Japan
| | - Yoshihiko Tanaka
- Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan
- Section of Infection Biology, Department of Functional Bioscience, Fukuoka Dental College, Fukuoka, Japan
| | - Hidemitsu Harada
- Divison of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University, Iwate, Japan
| | - Koji Okabe
- Section of Cellular Physiology, Department of Physiological Science and Molecular Biology, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka, 814-0193, Japan
| | - John D Bartlett
- Division of Biosciences, College of Dentistry, Ohio State University, Columbus, OH, USA
| |
Collapse
|
5
|
Kim KH, Kim EJ, Kim HY, Li S, Jung HS. Fabrication of functional ameloblasts from hiPSCs for dental application. Front Cell Dev Biol 2023; 11:1164811. [PMID: 37457296 PMCID: PMC10339106 DOI: 10.3389/fcell.2023.1164811] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/15/2023] [Indexed: 07/18/2023] Open
Abstract
Tooth formation relies on two types of dental cell populations, namely, the dental epithelium and dental mesenchyme, and the interactions between these cell populations are important during tooth development. Although human-induced pluripotent stem cells (hiPSCs) can differentiate into dental epithelial and mesenchymal cells, organoid research on tooth development has not been established yet. This study focused on the hiPSC-derived human ameloblast organoid (hAO) using a three-dimensional (3D) culture system. hAOs had similar properties to ameloblasts, forming enamel in response to calcium and mineralization by interaction with the dental mesenchyme. hAOs simultaneously had osteogenic and odontogenic differentiation potential. Furthermore, hAOs demonstrated tooth regenerative potential upon interaction with the mouse dental mesenchyme. Our findings provide new insights into a suitable hiPSC-derived dental source and demonstrate that hAOs can be beneficial not only for tooth regeneration but also for the study of various dental diseases for which treatment has not been developed yet.
Collapse
Affiliation(s)
- Ka-Hwa Kim
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Eun-Jung Kim
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | | | - Shujin Li
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Han-Sung Jung
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, Republic of Korea
| |
Collapse
|
6
|
Hermans F, Hemeryck L, Bueds C, Torres Pereiro M, Hasevoets S, Kobayashi H, Lambrechts D, Lambrichts I, Bronckaers A, Vankelecom H. Organoids from mouse molar and incisor as new tools to study tooth-specific biology and development. Stem Cell Reports 2023; 18:1166-1181. [PMID: 37084723 DOI: 10.1016/j.stemcr.2023.03.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 04/23/2023] Open
Abstract
Organoid models provide powerful tools to study tissue biology and development in a dish. Presently, organoids have not yet been developed from mouse tooth. Here, we established tooth organoids (TOs) from early-postnatal mouse molar and incisor, which are long-term expandable, express dental epithelium stem cell (DESC) markers, and recapitulate key properties of the dental epithelium in a tooth-type-specific manner. TOs display in vitro differentiation capacity toward ameloblast-resembling cells, even more pronounced in assembloids in which dental mesenchymal (pulp) stem cells are combined with the organoid DESCs. Single-cell transcriptomics supports this developmental potential and reveals co-differentiation into junctional epithelium- and odontoblast-/cementoblast-like cells in the assembloids. Finally, TOs survive and show ameloblast-resembling differentiation also in vivo. The developed organoid models provide new tools to study mouse tooth-type-specific biology and development and gain deeper molecular and functional insights that may eventually help to achieve future human biological tooth repair and replacement.
Collapse
Affiliation(s)
- Florian Hermans
- Department of Morphology, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, 3590 Diepenbeek, Belgium; Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven (University of Leuven), 3000 Leuven, Belgium
| | - Lara Hemeryck
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven (University of Leuven), 3000 Leuven, Belgium
| | - Celine Bueds
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven (University of Leuven), 3000 Leuven, Belgium
| | - Marc Torres Pereiro
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven (University of Leuven), 3000 Leuven, Belgium
| | - Steffie Hasevoets
- Department of Morphology, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| | - Hiroto Kobayashi
- Department of Anatomy and Structural Science, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Diether Lambrechts
- Center for Cancer Biology, VIB, 3000 Leuven, Belgium; Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | - Ivo Lambrichts
- Department of Morphology, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| | - Annelies Bronckaers
- Department of Morphology, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, 3590 Diepenbeek, Belgium.
| | - Hugo Vankelecom
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven (University of Leuven), 3000 Leuven, Belgium.
| |
Collapse
|
7
|
Mohabatpour F, Yazdanpanah Z, Papagerakis S, Chen X, Papagerakis P. Self-Crosslinkable Oxidized Alginate-Carboxymethyl Chitosan Hydrogels as an Injectable Cell Carrier for In Vitro Dental Enamel Regeneration. J Funct Biomater 2022; 13:jfb13020071. [PMID: 35735926 PMCID: PMC9225469 DOI: 10.3390/jfb13020071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/14/2022] [Accepted: 05/18/2022] [Indexed: 02/01/2023] Open
Abstract
Injectable hydrogels, as carriers, offer great potential to incorporate cells or growth factors for dental tissue regeneration. Notably, the development of injectable hydrogels with appropriate structures and properties has been a challenging task, leaving much to be desired in terms of cytocompatibility, antibacterial and self-healing properties, as well as the ability to support dental stem cell functions. This paper presents our study on the development of a novel self-cross-linkable hydrogel composed of oxidized alginate and carboxymethyl chitosan and its characterization as a cell carrier for dental enamel regeneration in vitro. Oxidized alginate was synthesized with 60% theoretical oxidation degree using periodate oxidation and characterized by Fourier Transform Infrared spectroscopy, proton nuclear magnetic resonance spectroscopy, and Ultraviolet-visible absorption spectroscopy. Then, hydrogels were prepared at three varying weight ratios of oxidized alginate to carboxymethyl chitosan (4:1, 3:1, and 2:1) through Schiff base reactions, which was confirmed by Fourier Transform Infrared spectroscopy. The hydrogels were characterized in terms of gelation time, swelling ratio, structure, injectability, self-healing, antibacterial properties, and in vitro characterization for enamel regeneration. The results demonstrated that, among the three hydrogels examined, the one with the highest ratio of oxidized alginate (i.e., 4:1) had the fastest gelation time and the lowest swelling ability, and that all hydrogels were formed with highly porous structures and were able to be injected through a 20-gauge needle without clogging. The injected hydrogels could be rapidly reformed with the self-healing property. The hydrogels also showed antibacterial properties against two cariogenic bacteria: Streptococcus mutans and Streptococcus sobrinus. For in vitro enamel regeneration, a dental epithelial cell line, HAT-7, was examined, demonstrating a high cell viability in the hydrogels during injection. Furthermore, HAT-7 cells encapsulated in the hydrogels showed alkaline phosphatase production and mineral deposition, as well as maintaining their round morphology, after 14 days of in vitro culture. Taken together, this study has provided evidence that the oxidized alginate-carboxymethyl chitosan hydrogels could be used as an injectable cell carrier for dental enamel tissue engineering applications.
Collapse
Affiliation(s)
- Fatemeh Mohabatpour
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr., Saskatoon, SK S7N 5A9, Canada; (F.M.); (Z.Y.)
- College of Dentistry, University of Saskatchewan, 105 Wiggins Rd, Saskatoon, SK S7N 5A9, Canada
| | - Zahra Yazdanpanah
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr., Saskatoon, SK S7N 5A9, Canada; (F.M.); (Z.Y.)
| | - Silvana Papagerakis
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr., Saskatoon, SK S7N 5A9, Canada; (F.M.); (Z.Y.)
- Department of Surgery, College of Medicine, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, SK S7N 5A9, Canada
- Correspondence: (S.P.); (X.C.); (P.P.)
| | - Xiongbiao Chen
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr., Saskatoon, SK S7N 5A9, Canada; (F.M.); (Z.Y.)
- Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Dr., Saskatoon, SK S7N 5A9, Canada
- Correspondence: (S.P.); (X.C.); (P.P.)
| | - Petros Papagerakis
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr., Saskatoon, SK S7N 5A9, Canada; (F.M.); (Z.Y.)
- College of Dentistry, University of Saskatchewan, 105 Wiggins Rd, Saskatoon, SK S7N 5A9, Canada
- Correspondence: (S.P.); (X.C.); (P.P.)
| |
Collapse
|
8
|
Organoids from human tooth showing epithelial stemness phenotype and differentiation potential. Cell Mol Life Sci 2022; 79:153. [PMID: 35217915 PMCID: PMC8881251 DOI: 10.1007/s00018-022-04183-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/27/2022] [Accepted: 02/01/2022] [Indexed: 01/09/2023]
Abstract
Insight into human tooth epithelial stem cells and their biology is sparse. Tissue-derived organoid models typically replicate the tissue’s epithelial stem cell compartment. Here, we developed a first-in-time epithelial organoid model starting from human tooth. Dental follicle (DF) tissue, isolated from unerupted wisdom teeth, efficiently generated epithelial organoids that were long-term expandable. The organoids displayed a tooth epithelial stemness phenotype similar to the DF’s epithelial cell rests of Malassez (ERM), a compartment containing dental epithelial stem cells. Single-cell transcriptomics reinforced this organoid-ERM congruence, and uncovered novel, mouse-mirroring stem cell features. Exposure of the organoids to epidermal growth factor induced transient proliferation and eventual epithelial-mesenchymal transition, highly mimicking events taking place in the ERM in vivo. Moreover, the ERM stemness organoids were able to unfold an ameloblast differentiation process, further enhanced by transforming growth factor-β (TGFβ) and abrogated by TGFβ receptor inhibition, thereby reproducing TGFβ's known key position in amelogenesis. Interestingly, by creating a mesenchymal-epithelial composite organoid (assembloid) model, we demonstrated that the presence of dental mesenchymal cells (i.e. pulp stem cells) triggered ameloblast differentiation in the epithelial stem cells, thus replicating the known importance of mesenchyme-epithelium interaction in tooth development and amelogenesis. Also here, differentiation was abrogated by TGFβ receptor inhibition. Together, we developed novel organoid models empowering the exploration of human tooth epithelial stem cell biology and function as well as their interplay with dental mesenchyme, all at present only poorly defined in humans. Moreover, the new models may pave the way to future tooth-regenerative perspectives.
Collapse
|
9
|
Hermans F, Hemeryck L, Lambrichts I, Bronckaers A, Vankelecom H. Intertwined Signaling Pathways Governing Tooth Development: A Give-and-Take Between Canonical Wnt and Shh. Front Cell Dev Biol 2021; 9:758203. [PMID: 34778267 PMCID: PMC8586510 DOI: 10.3389/fcell.2021.758203] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Teeth play essential roles in life. Their development relies on reciprocal interactions between the ectoderm-derived dental epithelium and the underlying neural crest-originated mesenchyme. This odontogenic process serves as a prototype model for the development of ectodermal appendages. In the mouse, developing teeth go through distinct morphological phases that are tightly controlled by epithelial signaling centers. Crucial molecular regulators of odontogenesis include the evolutionarily conserved Wnt, BMP, FGF and sonic hedgehog (Shh) pathways. These signaling modules do not act on their own, but are closely intertwined during tooth development, thereby outlining the path to be taken by specific cell populations including the resident dental stem cells. Recently, pivotal Wnt-Shh interaction and feedback loops have been uncovered during odontogenesis, showing conservation in other developing ectodermal appendages. This review provides an integrated overview of the interplay between canonical Wnt and Shh throughout mouse tooth formation stages, extending from the initiation of dental placode to the fully formed adult tooth.
Collapse
Affiliation(s)
- Florian Hermans
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven (University of Leuven), Leuven, Belgium.,Biomedical Research Institute (BIOMED), Department of Cardio and Organ Systems, UHasselt-Hasselt University, Diepenbeek, Belgium
| | - Lara Hemeryck
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven (University of Leuven), Leuven, Belgium
| | - Ivo Lambrichts
- Biomedical Research Institute (BIOMED), Department of Cardio and Organ Systems, UHasselt-Hasselt University, Diepenbeek, Belgium
| | - Annelies Bronckaers
- Biomedical Research Institute (BIOMED), Department of Cardio and Organ Systems, UHasselt-Hasselt University, Diepenbeek, Belgium
| | - Hugo Vankelecom
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven (University of Leuven), Leuven, Belgium
| |
Collapse
|
10
|
Shoushrah SH, Transfeld JL, Tonk CH, Büchner D, Witzleben S, Sieber MA, Schulze M, Tobiasch E. Sinking Our Teeth in Getting Dental Stem Cells to Clinics for Bone Regeneration. Int J Mol Sci 2021; 22:6387. [PMID: 34203719 PMCID: PMC8232184 DOI: 10.3390/ijms22126387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022] Open
Abstract
Dental stem cells have been isolated from the medical waste of various dental tissues. They have been characterized by numerous markers, which are evaluated herein and differentiated into multiple cell types. They can also be used to generate cell lines and iPSCs for long-term in vitro research. Methods for utilizing these stem cells including cellular systems such as organoids or cell sheets, cell-free systems such as exosomes, and scaffold-based approaches with and without drug release concepts are reported in this review and presented with new pictures for clarification. These in vitro applications can be deployed in disease modeling and subsequent pharmaceutical research and also pave the way for tissue regeneration. The main focus herein is on the potential of dental stem cells for hard tissue regeneration, especially bone, by evaluating their potential for osteogenesis and angiogenesis, and the regulation of these two processes by growth factors and environmental stimulators. Current in vitro and in vivo publications show numerous benefits of using dental stem cells for research purposes and hard tissue regeneration. However, only a few clinical trials currently exist. The goal of this review is to pinpoint this imbalance and encourage scientists to pick up this research and proceed one step further to translation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Edda Tobiasch
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig- Strasse. 20, 53359 Rheinbach, Germany; (S.H.S.); (J.L.T.); (C.H.T.); (D.B.); (S.W.); (M.A.S.); (M.S.)
| |
Collapse
|
11
|
Ma X, Wang C, Da Y, Cheng R, Zhang J, Qiao X. Expressions of Yes-associated Protein and Transcriptional Co-Activator with PDZ-binding Motif during the Development of Mandibular First Molar in BALB/c Mice. J HARD TISSUE BIOL 2021. [DOI: 10.2485/jhtb.30.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Xuliang Ma
- Department of Oral and Maxillofacial Surgery, Hebei Provincial Eye Hospital
| | - Chao Wang
- Department of Implant Dentistry, Hebei Provincial Eye Hospital
| | - Yunmeng Da
- Department of Prosthodontics, Hebei Provincial Eye Hospital
| | - Ruiqing Cheng
- Department of Cariology and Endodontology, Hebei Provincial Eye Hospital
| | - Jingjing Zhang
- Department of Orthodontics, Hebei Provincial Eye Hospital
| | - Xiaotong Qiao
- Department of Cariology and Endodontology, The School of Stomatology of Fujian Medical University
| |
Collapse
|
12
|
Isono K, Takahashi E, Miyoshi I, Tsuneto M, Hikosaka-Kuniishi M, Yamane T, Yamazaki H. Simultaneous Fluorescent Identification of Odontoblasts and Ameloblasts. J Dent Res 2020; 100:532-541. [PMID: 33289448 DOI: 10.1177/0022034520974576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The tooth is mainly composed of dentin and enamel. Identification of dentin-producing odontoblasts and enamel-producing ameloblasts using reporter techniques is useful to study tooth development and regeneration with tissue engineering. Ameloblasts express Amelogenin, Ameloblastin, Enamelin, and Amelotin, whereas odontoblasts express Dentin sialophosphoprotein (Dspp) and Dentin matrix protein1 (Dmp1). Although there are several transgenic lines using promoter elements or bacterial artificial chromosomes (BACs) to label odontoblasts and ameloblasts, there is a possibility that the expression patterns vary from the endogenous genes. Here, we established 2 lines of mice where tdTomato was knocked into the second exon of X-chromosomal Amelogenin (Amelx), and green fluorescent protein (GFP) was knocked into the second exon of Dspp. tdTomato and GFP were highly expressed on secretory ameloblasts and secretory and fully differentiated odontoblasts, respectively. In addition, DSPP and AMELX were not produced in the dentin matrix and enamel matrix of DsppGFP/GFP and AmelxtdTomato male mice (as representative of AmelxtdTomato/Y hemizygous male mice), respectively. Moreover, micro-computed tomography analysis of AmelxtdTomato male mice revealed a notable reduction in enamel volume but increased dentin mineral density. DsppGFP/GFP mice had reduced dentin mineral density. To identify odontoblasts and ameloblasts from developing tooth, we examined the expression of mesenchymal cell surface molecules CD90, CD166 and epithelial cell surface molecules CD49f, Epcam1 with fluorescence on odontoblasts and ameloblasts in these mice. We found that GFP+ odontoblasts and tdTomato+ ameloblasts in tooth germ from 0.5-d-old DsppGFP/+ mice and AmelxtdTomato male mice were enriched in CD45-/Ter119-/Epcam1-/CD90+/Integrin α4+cell fractions and CD45-/Ter119-/Epcam1+/CD49f+/CD147+ cell fractions, respectively. By using antibodies against mesenchymal and epithelial cell surface molecules and fluorescence, we can easily distinguish odontoblasts from ameloblasts and isolate each cell for further studies. These mice would serve as useful models for tooth development and regeneration as well as provide concurrent observation for the differentiation processes of odontoblasts and ameloblasts in vivo and in vitro.
Collapse
Affiliation(s)
- K Isono
- Department of Stem Cells and Developmental Biology, Division of Fundamental Medicine, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - E Takahashi
- Support Unit for Animal Resources Development, Research Resources Division, RIKEN Center for Brain Science, Wako-shi, Saitama, Japan
| | - I Miyoshi
- Department of Laboratory Animal Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - M Tsuneto
- Division of Regenerative Medicine and Therapeutics, Department of Genetic Medicine and Regenerative Therapeutics, Tottori University Graduate School of Medical Science, Yonago, Tottori, Japan
| | - M Hikosaka-Kuniishi
- Department of Stem Cells and Developmental Biology, Division of Fundamental Medicine, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - T Yamane
- Department of Stem Cells and Developmental Biology, Division of Fundamental Medicine, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - H Yamazaki
- Department of Stem Cells and Developmental Biology, Division of Fundamental Medicine, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| |
Collapse
|
13
|
Exploiting teeth as a model to study basic features of signaling pathways. Biochem Soc Trans 2020; 48:2729-2742. [DOI: 10.1042/bst20200514] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 12/21/2022]
Abstract
Teeth constitute a classical model for the study of signaling pathways and their roles in mediating interactions between cells and tissues in organ development, homeostasis and regeneration. Rodent teeth are mostly used as experimental models. Rodent molars have proved fundamental in the study of epithelial–mesenchymal interactions and embryonic organ morphogenesis, as well as to faithfully model human diseases affecting dental tissues. The continuously growing rodent incisor is an excellent tool for the investigation of the mechanisms regulating stem cells dynamics in homeostasis and regeneration. In this review, we discuss the use of teeth as a model to investigate signaling pathways, providing an overview of the many unique experimental approaches offered by this organ. We discuss how complex networks of signaling pathways modulate the various aspects of tooth biology, and the models used to obtain this knowledge. Finally, we introduce new experimental approaches that allow the study of more complex interactions, such as the crosstalk between dental tissues, innervation and vascularization.
Collapse
|