1
|
Mehmood F, Li M, Bertolli A, Prosser F, Varotto C. Comparative Plastomics of Plantains ( Plantago, Plantaginaceae) as a Tool for the Development of Species-Specific DNA Barcodes. PLANTS (BASEL, SWITZERLAND) 2024; 13:2691. [PMID: 39409561 PMCID: PMC11478842 DOI: 10.3390/plants13192691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 10/20/2024]
Abstract
Plantago (plantains, Plantaginaceae) is a cosmopolitan genus including over 250 species used as functional foods, forage, and traditional medicine. Among them, Plantago lanceolata is commonly used as an ingredient of herbal products, but the close similarity to other Plantago species can cause misidentifications with potentially serious consequences for product safety/quality. To test the possibility of developing species-specific barcoding markers, we de novo assembled plastome sequences of individuals of Plantago argentea, Plantago atrata, P. lanceolata, and Plantago maritima. These genomes were characterized in comparison with both previously sequenced conspecific accessions and other publicly available plastomes, thus providing an assessment of both intraspecific and interspecific genetic variation in Plantago plastomes. Additionally, molecular evolutionary analyses indicated that eleven protein-coding genes involved in different plastid functions in Plantago plastomes underwent positive selection, suggesting they might have contributed to enhancing species' adaptation during the evolutionary history of Plantago. While the most variable mutational hotspots in Plantago plastomes were not suitable for the development of species-specific molecular markers, species-specific polymorphisms could discriminate P. lanceolata from its closest relatives. Taken together, these results highlight the potential of plastome sequencing for the development of molecular markers to improve the identification of species with relevance in herbal products.
Collapse
Affiliation(s)
- Furrukh Mehmood
- Ecogenomics Unit, Research and Innovation Centre, Fondazione Edmund Mach, 38098 San Michele all’Adige, Italy
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Mingai Li
- Ecogenomics Unit, Research and Innovation Centre, Fondazione Edmund Mach, 38098 San Michele all’Adige, Italy
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | | | | | - Claudio Varotto
- Ecogenomics Unit, Research and Innovation Centre, Fondazione Edmund Mach, 38098 San Michele all’Adige, Italy
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| |
Collapse
|
2
|
Zhang Y, Zhang J, Chen Z, Huang Y, Liu J, Liu Y, Yang Y, Jin X, Yang Y, Chen Y. Comparison of organelle genomes between endangered mangrove plant Dolichandrone spathacea to terrestrial relative provides insights into its origin and adaptative evolution. FRONTIERS IN PLANT SCIENCE 2024; 15:1442178. [PMID: 39376234 PMCID: PMC11457174 DOI: 10.3389/fpls.2024.1442178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 09/02/2024] [Indexed: 10/09/2024]
Abstract
Dolichandrone spathacea is a mangrove associate with high medicinal and ecological values. However, due to the dual-pressure of climate change and human activities, D. spathacea has become endangered in China. Moreover, misidentification between D. spathacea and its terrestrial relative D. cauda-felina poses further challenges to field protection and proper medicinal usage of D. spathacea. Thus, to address these problems, we sequenced and assembled mitochondrial (mt) and chloroplast (cp) genomes for both D. spathacea and D. cauda-felina. Comparative analysis revealed apparently different size and scaffold number between the two mt genomes, but a high similarity between the cp genomes. Eight regions with high sequence divergence were identified between the two cp genomes, which might be used for developing candidate DNA markers for distinguishing the two species. The splitting between D. spathacea and D. cauda-felina was inferred to occur at ~6.8 - 7.7 million years ago (Mya), which may be driven by the environment fluctuations in late Miocene. In the cp genome, 12 genes related to the expression of photosynthesis-associated proteins were detected with signatures of positive selection, which may contribute to the origin and evolutionary adaptation of Dolichandrone mangrove species. These new findings do not only enrich organelle genomic resources of Dolichandrone species, but also provide important genetic clues for improving the conservation and proper usage of endangered mangrove associate D. spathacea.
Collapse
Affiliation(s)
- Ying Zhang
- Hainan Academy of Forestry, Hainan Mangrove Research Institute, Haikou, China
- Mangrove Rare and Endangered Species Protection and Utilization Engineering Technology Research Center, Zhanjiang Key Laboratory of Mangrove Ecosystem Protection and Restoration, Lingnan Normal University, Zhanjiang, China
| | - Jingwen Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Zewei Chen
- Mangrove Rare and Endangered Species Protection and Utilization Engineering Technology Research Center, Zhanjiang Key Laboratory of Mangrove Ecosystem Protection and Restoration, Lingnan Normal University, Zhanjiang, China
| | - Yanni Huang
- Mangrove Rare and Endangered Species Protection and Utilization Engineering Technology Research Center, Zhanjiang Key Laboratory of Mangrove Ecosystem Protection and Restoration, Lingnan Normal University, Zhanjiang, China
| | - Jiaxuan Liu
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, China
| | - Yuqi Liu
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, China
| | - Yong Yang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Xiang Jin
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Yuchen Yang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, China
| | - Yiqing Chen
- Hainan Academy of Forestry, Hainan Mangrove Research Institute, Haikou, China
| |
Collapse
|
3
|
Nguyen HD, Do HDK, Vu MT. Comparative genomics revealed new insights into the plastome evolution of Ludwigia (Onagraceae, Myrtales). Sci Prog 2024; 107:368504241272741. [PMID: 39150375 PMCID: PMC11329976 DOI: 10.1177/00368504241272741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
The primrose-willow (Ludwigia L.), a well-defined genus of the Onagraceae family, comprises 87 species widely distributed worldwide. In this study, we sequenced and characterized the complete chloroplast (cp) genomes of three species in the genus, including Ludwigia adscendens, Ludwigia hyssopifolia, and Ludwigia prostrata. Three Ludwigia cp genomes ranged from 158,354 to 159,592 bp in size, and each contained 113 genes, including 79 unique protein-coding genes (PCGs), four rRNA genes, and 30 tRNA genes. A comparison of the Ludwigia cp genomes revealed that they were highly conserved in gene composition, gene orientation, and GC content. Moreover, we compared the structure of cp genomes and reconstructed phylogenetic relationships with related species in the Onagraceae family. Regarding contraction/expansion of inverted repeat (IR) region, two kinds of expansion IR region structures were found in Oenothera, Chamaenerion, and Epilobium genera, with primitive IR structures in Ludwigia and Circeae genera. The regions clpP, ycf2, and ycf1 genes possessed highly divergent nucleotides among all available cp genomes of the Onagraceae family. The phylogenetic reconstruction using 79 PCGs from 39 Onagraceae cp genomes inferred that Ludwigia (including L. adscendens, L. hyssopifolia, L. prostrata, and Ludwigia octovalvis) clade was monophyletic and well-supported by the bootstrap and posterior probability values. This study provides the reference cp genomes of three Ludwigia species, which can be used for species identification and phylogenetic reconstruction of Ludwigia and Onagraceae taxa.
Collapse
Affiliation(s)
- Hoang Danh Nguyen
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Hoang Dang Khoa Do
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Minh Thiet Vu
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| |
Collapse
|
4
|
Lubna, Asaf S, Jan R, Asif S, Bilal S, Khan AL, Al-Rawahi AN, Kim KM, Al-Harrasi A. The complete plastome sequences of invasive weed Parthenium hysterophorus: genome organization, evolutionary significance, structural features, and comparative analysis. Sci Rep 2024; 14:4006. [PMID: 38369569 PMCID: PMC10874969 DOI: 10.1038/s41598-024-54503-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/13/2024] [Indexed: 02/20/2024] Open
Abstract
Parthenium hysterophorus, a globally widespread weed, poses a significant threat to agricultural ecosystems due to its invasive nature. We investigated the chloroplast genome of P. hysterophorus in this study. Our analysis revealed that the chloroplast genome of P. hysterophorus spans a length of 151,881 base pairs (bp). It exhibits typical quadripartite structure commonly found in chloroplast genomes, including inverted repeat regions (IR) of 25,085 bp, a small single copy (SSC) region of 18,052 bp, and a large single copy (LSC) region of 83,588 bp. A total of 129 unique genes were identified in P. hysterophorus chloroplast genomes, including 85 protein-coding genes, 36 tRNAs, and eight rRNAs genes. Comparative analysis of the P. hysterophorus plastome with those of related species from the tribe Heliantheae revealed both conserved structures and intriguing variations. While many structural elements were shared among the species, we identified a rearrangement in the large single-copy region of P. hysterophorus. Moreover, our study highlighted notable gene divergence in several specific genes, namely matK, ndhF, clpP, rps16, ndhA, rps3, and ndhD. Phylogenetic analysis based on the 72 shared genes placed P. hysterophorus in a distinct clade alongside another species, P. argentatum. Additionally, the estimated divergence time between the Parthenium genus and Helianthus (sunflowers) was approximately 15.1 million years ago (Mya). These findings provide valuable insights into the evolutionary history and genetic relationships of P. hysterophorus, shedding light on its divergence and adaptation over time.
Collapse
Affiliation(s)
- Lubna
- Natural and Medical Sciences Research Center, University of Nizwa, 616, Nizwa, Oman
| | - Sajjad Asaf
- Natural and Medical Sciences Research Center, University of Nizwa, 616, Nizwa, Oman.
| | - Rahmatullah Jan
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Saleem Asif
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Saqib Bilal
- Natural and Medical Sciences Research Center, University of Nizwa, 616, Nizwa, Oman.
| | - Abdul Latif Khan
- Department of Engineering Technology, University of Houston, Sugar Land, TX, 77479, USA
| | - Ahmed N Al-Rawahi
- Natural and Medical Sciences Research Center, University of Nizwa, 616, Nizwa, Oman
| | - Kyung-Min Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, 616, Nizwa, Oman.
| |
Collapse
|
5
|
Wu J, Zhang J, Guo X, Yu N, Peng D, Xing S. Comprehensive analysis of complete chloroplast genome sequence of Plantago asiatica L. (Plantaginaceae). PLANT SIGNALING & BEHAVIOR 2023; 18:2163345. [PMID: 36592637 PMCID: PMC9809945 DOI: 10.1080/15592324.2022.2163345] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Plantago asiatica L. is a representative individual species of Plantaginaceae, whose high reputation is owed to its edible and medicinal values. However, the phylogeny and genes of the P. asiatica chloroplast have not yet been well described. Here we report the findings of a comprehensive analysis of the P. asiatica chloroplast genome. The P. asiatica chloroplast genome is 164,992 bp, circular, and has a GC content of 37.98%. The circular genome contains 141 genes, including 8 rRNAs, 38 tRNAs, and 95 protein-coding genes. Seventy-two simple sequence repeats are detected. Comparative chloroplast genome analysis of six related species suggests that a higher similarity exists in the coding region than the non-coding region, and differences in the degree of preservation is smaller between P. asiatica and Plantago depressa than among others. Our phylogenetic analysis illustrates P. asiatica has a relatively close relationship with P. depressa, which was also divided into different clades with Plantago ovata and Plantago lagopus in the genus Plantago. This analysis of the P. asiatica chloroplast genome contributes to an improved deeply understanding of the evolutionary relationships among Plantaginaceae.
Collapse
Affiliation(s)
- Jing Wu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Jing Zhang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Xiaohu Guo
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Nianjun Yu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China
| | - Daiyin Peng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China
| | - Shihai Xing
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, China
| |
Collapse
|
6
|
Nyamgerel N, Baasanmunkh S, Oyuntsetseg B, Bayarmaa GA, Erst A, Park I, Choi HJ. Insight into chloroplast genome structural variation of the Mongolian endemic species Adonis mongolica (Ranunculaceae) in the Adonideae tribe. Sci Rep 2023; 13:22014. [PMID: 38086985 PMCID: PMC10716127 DOI: 10.1038/s41598-023-49381-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/07/2023] [Indexed: 12/18/2023] Open
Abstract
Adonis mongolica is a threatened species that is endemic to Mongolia. It is a medicinal plant from the Adonis genus and has been used to treat heart diseases. However, the genomics and evolution of this species have not been thoroughly studied. We sequenced the first complete plastome of A. mongolica and compared it with ten Adonideae species to describe the plastome structure and infer phylogenetic relationships. The complete plastome of A. mongolica was 157,521 bp long and had a typical quadripartite structure with numerous divergent regions. The plastomes of Adonideae had relatively constant genome structures and sizes, except for those of Adonis. The plastome structure was consistent across Adonis. We identified a 44.8 kb large-scale inversion within the large single-copy region and rpl32 gene loss in the Adonis plastomes compared to other members of the Adonideae tribe. Additionally, Adonis had a smaller plastome size (156,917-157,603 bp) than the other genera within the tribe (159,666-160,940 bp), which was attributed to deletions of intergenic regions and partial and complete gene losses. These results suggested that an intramolecular mutation occurred in the ancestor of the Adonis genus. Based on the phylogenetic results, Adonis separated earlier than the other genera within the Adonideae tribe. The genome structures and divergences of specific regions in the Adonis genus were unique to the Adonideae tribe. This study provides fundamental knowledge for further genomic research in Mongolia and a better understanding of the evolutionary history of endemic plants.
Collapse
Affiliation(s)
- Nudkhuu Nyamgerel
- Department of Biology and Chemistry, Changwon National University, Changwon, 51140, South Korea
| | - Shukherdorj Baasanmunkh
- Department of Biology and Chemistry, Changwon National University, Changwon, 51140, South Korea
| | - Batlai Oyuntsetseg
- Department of Biology, School of Arts and Science, National University of Mongolia, Ulaanbaatar, 14201, Mongolia
| | - Gun-Aajav Bayarmaa
- Department of Biology, School of Arts and Science, National University of Mongolia, Ulaanbaatar, 14201, Mongolia
| | - Andrey Erst
- Central Siberian Botanical Garden, Siberian Branch of the Russian Academy of Science, Novosibirsk, 630090, Russia
| | - Inkyu Park
- Department of Biology and Chemistry, Changwon National University, Changwon, 51140, South Korea.
| | - Hyeok Jae Choi
- Department of Biology and Chemistry, Changwon National University, Changwon, 51140, South Korea.
| |
Collapse
|
7
|
Zoclanclounon YAB, Thamilarasan SK, Mo Y, Ahn BO, Kim JG, Lee K. Insights into chloroplast genome structure and phylogenetic relationships within the Sesamum species complex (Pedaliaceae). Front Genet 2023; 14:1207306. [PMID: 37323670 PMCID: PMC10267711 DOI: 10.3389/fgene.2023.1207306] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
Abstract
Background: In the Sesamum species complex, the lack of wild species genomic resources hinders the evolutionary comprehension of phylogenetic relationships. Results: In the present study, we generated complete chloroplast genomes of six wild relatives (Sesamum alatum, Sesamum angolense, Sesamum pedaloides, Ceratotheca sesamoides (syn. Sesamum sesamoides), Ceratotheca triloba (syn. Sesamum trilobum), and Sesamum radiatum) and a Korean cultivar, Sesamum indicum cv. Goenbaek. A typical quadripartite chloroplast structure, including two inverted repeats (IR), a large single copy (LSC), and a small single copy (SSC), was observed. A total of 114 unique genes encompassing 80 coding genes, four ribosomal RNAs, and 30 transfer RNAs were counted. The chloroplast genomes (152, 863-153, 338 bp) exhibited the IR contraction/expansion phenomenon and were quite conserved in both coding and non-coding regions. However, high values of the nucleotide diversity index were found in several genes, including ndhA, ndhE, ndhF, ycf1, and psaC-ndhD. Concordant tree topologies suggest ndhF as a useful marker for taxon discrimination. The phylogenetic inference and time divergence dating indicate that S. radiatum (2n = 64) occurred concomitantly with the sister species C. sesamoides (2n = 32) approximately 0.05 million years ago (Mya). In addition, S. alatum was clearly discriminated by forming a single clade, showing its long genetic distance and potential early speciation event in regards to the others. Conclusion: Altogether, we propose to rename C. sesamoides and C. triloba as S. sesamoides and S. trilobum, respectively, as suggested previously based on the morphological description. This study provides the first insight into the phylogenetic relationships among the cultivated and wild African native relatives. The chloroplast genome data lay a foundation for speciation genomics in the Sesamum species complex.
Collapse
Affiliation(s)
- Yedomon Ange Bovys Zoclanclounon
- Genomics Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, Republic of Korea
- Department of Crop Science and Biotechnology, Jeonbuk National University, Jeonju, Republic of Korea
| | - Senthil Kumar Thamilarasan
- Genomics Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, Republic of Korea
| | - Youngjun Mo
- Department of Crop Science and Biotechnology, Jeonbuk National University, Jeonju, Republic of Korea
| | - Byoung-Ohg Ahn
- Genomics Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, Republic of Korea
| | - Jeong-Gu Kim
- Genomics Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, Republic of Korea
| | - Keunpyo Lee
- Genomics Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, Republic of Korea
| |
Collapse
|
8
|
Wee CC, Nor Muhammad NA, Subbiah VK, Arita M, Nakamura Y, Goh HH. Plastomes of Garcinia mangostana L. and Comparative Analysis with Other Garcinia Species. PLANTS (BASEL, SWITZERLAND) 2023; 12:930. [PMID: 36840278 PMCID: PMC9966718 DOI: 10.3390/plants12040930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
The two varieties of mangosteen (Garcinia mangostana L.) cultivated in Malaysia are known as Manggis and Mesta. The latter is preferred for its flavor, texture, and seedlessness. Here, we report a complete plastome (156,580 bp) of the Mesta variety that was obtained through a hybrid assembly approach using PacBio and Illumina sequencing reads. It encompasses a large single-copy (LSC) region (85,383 bp) and a small single-copy (SSC) region (17,137 bp) that are separated by 27,230 bp of inverted repeat (IR) regions at both ends. The plastome comprises 128 genes, namely, 83 protein-coding genes, 37 tRNA genes, and 8 rRNA genes. The plastome of the Manggis variety (156,582 bp) obtained from reference-guided assembly of Illumina reads was found to be nearly identical to Mesta except for two indels and the presence of a single-nucleotide polymorphism (SNP). Comparative analyses with other publicly available Garcinia plastomes, including G. anomala, G. gummi-gutta, G. mangostana var. Thailand, G. oblongifolia, G. paucinervis, and G. pedunculata, found that the gene content, gene order, and gene orientation were highly conserved among the Garcinia species. Phylogenomic analysis divided the six Garcinia plastomes into three groups, with the Mesta and Manggis varieties clustered closer to G. anomala, G. gummi-gutta, and G. oblongifolia, while the Thailand variety clustered with G. pedunculata in another group. These findings serve as future references for the identification of species or varieties and facilitate phylogenomic analysis of lineages from the Garcinia genus to better understand their evolutionary history.
Collapse
Affiliation(s)
- Ching-Ching Wee
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
- Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Nor Azlan Nor Muhammad
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Vijay Kumar Subbiah
- Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Masanori Arita
- Department of Informatics, National Institute of Genetics, Mishima 411-8540, Shizuoka, Japan
| | - Yasukazu Nakamura
- Department of Informatics, National Institute of Genetics, Mishima 411-8540, Shizuoka, Japan
| | - Hoe-Han Goh
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| |
Collapse
|
9
|
Shelke RG, Rangan L. The whole chloroplast genome of Mesua ferrea: Insight into the dynamic pattern of evolution and its comparison with species from recently diverged families. Gene 2022; 846:146866. [PMID: 36084895 DOI: 10.1016/j.gene.2022.146866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 08/12/2022] [Accepted: 09/01/2022] [Indexed: 11/04/2022]
Abstract
Mesua ferrea is an important source of timber, oil and herbal medicines. In the present investigation, we assembled the whole chloroplast genome of M. ferrea of size 161.4 kb. The genome contained 86 protein-coding genes, 38 tRNAs, 8 rRNA genes and exhibited a characteristic quadripartite structural orientation, with two inverted repeats (27,614 bp) separated by an LSC (88,746 bp) region and an SSC (27,614 bp) (17,470 bp). Interestingly, no gene loss was identified in the M. ferrea genome, contrary to what has been observed in other Clusioid species. We compared the chloroplast genome of M. ferrea with the chloroplast genome of Bonnetia and Garcinia belonging to Bonnetiaceae and Clusiaceae families. Overall, the compared genomes possess a similar synteny of gene order except for a small inversion in Garcinia species. M. ferrea has the largest chloroplast genome size in Clusioid clade owing to the lengthening of the LSC, IR, and non-coding regions. Substantial differences were observed in population of simple sequence repeats (SSRs) and RNA editing sites among the studied genomes. A comparative assessment of chloroplast genomes revealed five highly divergence regions: rpl32, trnS-GCU_trnG-UCC, petN-psbM, psbZ_trnG-GCC and ccsA_ndhD among the analyzed sequences. Phylogenetic analyses and sequence homology search indicate that M. ferrea is closely related to the Garcinia species.
Collapse
Affiliation(s)
- Rahul G Shelke
- Applied Biodiversity Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781 039, India
| | - Latha Rangan
- Applied Biodiversity Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781 039, India.
| |
Collapse
|
10
|
Ahmad W, Asaf S, Khan A, Al-Harrasi A, Al-Okaishi A, Khan AL. Complete chloroplast genome sequencing and comparative analysis of threatened dragon trees Dracaena serrulata and Dracaena cinnabari. Sci Rep 2022; 12:16787. [PMID: 36202844 PMCID: PMC9537188 DOI: 10.1038/s41598-022-20304-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022] Open
Abstract
Dracaena (Asparagaceae family) tree is famous for producing "dragon blood"—a bioactive red-colored resin. Despite its long history of use in traditional medicine, little knowledge exists on the genomic architecture, phylogenetic position, or evolution. Hence, in this study, we sequenced the whole chloroplast (cp) genomes of D. serrulata and D. cinnabari and performed comparative genomics of nine genomes of the genus Dracaena. The results showed that the genome sizes range from 155,055 (D. elliptica) to 155,449 (D. cochinchinensis). The cp genomes of D. serrulata and D. cinnabari encode 131 genes, each including 85 and 84 protein-coding genes, respectively. However, the D. hokouensis had the highest number of genes (133), with 85 protein coding genes. Similarly, about 80 and 82 repeats were identified in the cp genomes of D. serrulata and D. cinnabari, respectively, while the highest repeats (103) were detected in the cp genome of D. terniflora. The number of simple sequence repeats (SSRs) was 176 and 159 in D. serrulata and D. cinnabari cp genomes, respectively. Furthermore, the comparative analysis of complete cp genomes revealed high sequence similarity. However, some sequence divergences were observed in accD, matK, rpl16, rpoC2, and ycf1 genes and some intergenic spacers. The phylogenomic analysis revealed that D. serrulata and D. cinnabari form a monophyletic clade, sister to the remaining Dracaena species sampled in this study, with high bootstrap values. In conclusion, this study provides valuable genetic information for studying the evolutionary relationships and population genetics of Dracaena, which is threatened in its conservation status.
Collapse
Affiliation(s)
- Waqar Ahmad
- Natural and Medical Sciences Research Centre, University of Nizwa, 616, Nizwa, Oman.,Department of Engineering Technology, University of Houston, Sugar Land, TX, 77479, USA
| | - Sajjad Asaf
- Natural and Medical Sciences Research Centre, University of Nizwa, 616, Nizwa, Oman
| | - Arif Khan
- Genomics Group, Faculty of Biosciences and Aquaculture, Nord University, 8049, Bodø, Norway
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Centre, University of Nizwa, 616, Nizwa, Oman.
| | | | - Abdul Latif Khan
- Department of Engineering Technology, University of Houston, Sugar Land, TX, 77479, USA.
| |
Collapse
|
11
|
Jiao Y, Feng G, Huang L, Nie G, Li Z, Peng Y, Li D, Xiong Y, Hu Z, Zhang X. Complete Chloroplast Genomes of 14 Subspecies of D. glomerata: Phylogenetic and Comparative Genomic Analyses. Genes (Basel) 2022; 13:genes13091621. [PMID: 36140789 PMCID: PMC9498378 DOI: 10.3390/genes13091621] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Orchardgrass (Dactylis glomerata L.) is a species in the Gramineae family that is highly important economically and valued for its role in ecology. However, the phylogeny and taxonomy of D. glomerata are still controversial based on current morphological and molecular evidence. The study of chloroplast (cp) genomes has developed into a powerful tool to develop molecular markers for related species and reveal the relationships between plant evolution and phylogenetics. In this study, we conducted comparative genomic analyses and phylogenetic inferences on 14 cp genomes of D. glomerata originating from the Mediterranean and Eurasia. The genome size ranged from 134,375 bp to 134,993 bp and exhibited synteny of gene organization and order. A total of 129–131 genes were identified, including 85–87 protein coding genes, 38 tRNA genes and 8 rRNA genes. The cp sequences were highly conserved, and key sequence variations were detected at the junctions of inverted repeats (IRs)/small single–copy (SSC) regions. Moreover, nine highly variable regions were identified among the subspecies based on a sequence divergence analysis. A total of 285 RNA editing sites were detected that were relevant to 52 genes, where rpoB exhibited the most abundant RNA editing sites. The phylogenetic analysis revealed that all Dactylis subspecies clustered into a monophyletic group and most branches provided a high support bootstrap. The main divergence time of D. glomerata was dated to the Miocene era, and this could have been due to changes in the climate. These findings will provide useful insights for further studies on phylogeny, the identification of subspecies and the development of hypotheses for the evolutionary history of the genus Dactylis and of the Gramineae family.
Collapse
|
12
|
Peng JY, Zhang XS, Zhang DG, Wang Y, Deng T, Huang XH, Kuang TH, Zhou Q. Newly reported chloroplast genome of Sinosenecio albonervius Y. Liu & Q. E. Yang and comparative analyses with other Sinosenecio species. BMC Genomics 2022; 23:639. [PMID: 36076168 PMCID: PMC9454173 DOI: 10.1186/s12864-022-08872-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/31/2022] [Indexed: 11/10/2022] Open
Abstract
Background Sinosenecio B. Nordenstam (Asteraceae) currently comprises 44 species. To investigate the interspecific relationship, several chloroplast markers, including ndhC-trnV, rpl32-trnL, matK, and rbcL, are used to analyze the phylogeny of Sinosenecio. However, the chloroplast genomes of this genus have not been thoroughly investigated. We sequenced and assembled the Sinosenecio albonervius chloroplast genome for the first time. A detailed comparative analysis was performed in this study using the previously reported chloroplast genomes of three Sinosenecio species. Results The results showed that the chloroplast genomes of four Sinosenecio species exhibit a typical quadripartite structure. There are equal numbers of total genes, protein-coding genes and RNA genes among the annotated genomes. Per genome, 49–56 simple sequence repeats and 99 repeat sequences were identified. Thirty codons were identified as RSCU values greater than 1 in the chloroplast genome of S. albonervius based on 54 protein-coding genes, indicating that they showed biased usage. Among 18 protein-coding genes, 46 potential RNA editing sites were discovered. By comparing these chloroplast genomes' structures, inverted repeat regions and coding regions were more conserved than single-copy and non-coding regions. The junctions among inverted repeat and single-copy regions showed slight difference. Several hot spots of genomic divergence were detected, which can be used as new DNA barcodes for species identification. Phylogenetic analysis of the whole chloroplast genome showed that the four Sinosenecio species have close interspecific relationships. Conclusions The complete chloroplast genome of Sinosenecio albonervius was revealed in this study, which included a comparison of Sinosenecio chloroplast genome structure, variation, and phylogenetic analysis for related species. These will help future research on Sinosenecio taxonomy, identification, origin, and evolution to some extent. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08872-3.
Collapse
Affiliation(s)
- Jing-Yi Peng
- College of Biology and Environmental Sciences, Jishou University, Jishou, 416000, Hunan, China
| | - Xiao-Shuang Zhang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Dai-Gui Zhang
- College of Biology and Environmental Sciences, Jishou University, Jishou, 416000, Hunan, China.,Key Laboratory of Plant Resources Conservation and Utilization, Jishou University, College of Hunan Province, Jishou, 416000, Hunan, China
| | - Yi Wang
- College of Biology and Environmental Sciences, Jishou University, Jishou, 416000, Hunan, China
| | - Tao Deng
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Xian-Han Huang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Tian-Hui Kuang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Qiang Zhou
- College of Biology and Environmental Sciences, Jishou University, Jishou, 416000, Hunan, China. .,Key Laboratory of Plant Resources Conservation and Utilization, Jishou University, College of Hunan Province, Jishou, 416000, Hunan, China.
| |
Collapse
|
13
|
Yin X, Huang F, Liu X, Guo J, Cui N, Liang C, Lian Y, Deng J, Wu H, Yin H, Jiang G. Phylogenetic analysis based on single-copy orthologous proteins in highly variable chloroplast genomes of Corydalis. Sci Rep 2022; 12:14241. [PMID: 35987818 PMCID: PMC9392791 DOI: 10.1038/s41598-022-17721-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 07/29/2022] [Indexed: 11/26/2022] Open
Abstract
Corydalis is one of the few lineages that have been reported to have extensive large-scale chloroplast genome (cp-genome) rearrangements. In this study, novel cp-genome rearrangements of Corydalis pinnata, C. mucronate, and C. sheareri are described. C. pinnata is a narrow endemic species only distributed at Qingcheng Mountain in southwest China. Two independent relocations of the same four genes (trnM-CAU-rbcL) were found relocated from the typically posterior part of the large single-copy region to the front of it. A uniform inversion of an 11-14-kb segment (ndhB-trnR-ACG) was found in the inverted repeat region; and extensive losses of accD, clpP, and trnV-UAC genes were detected in all cp-genomes of all three species of Corydalis. In addition, a phylogenetic tree was reconstructed based on 31 single-copy orthologous proteins in 27 cp-genomes. This study provides insights into the evolution of cp-genomes throughout the genus Corydalis and also provides a reference for further studies on the taxonomy, identification, phylogeny, and genetic transformation of other lineages with extensive rearrangements in cp-genomes.
Collapse
Affiliation(s)
- Xianmei Yin
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chendu, 611130, China
| | - Feng Huang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chendu, 611130, China
| | - Xiaofen Liu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chendu, 611130, China
| | - Jiachen Guo
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chendu, 611130, China
| | - Ning Cui
- Central Laboratory, Shandong Academy of Chinese Medicine, Jinan, 250014, China
| | - Conglian Liang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yan Lian
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chendu, 611130, China
| | - Jingjing Deng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chendu, 611130, China
| | - Hao Wu
- Central Laboratory, Shandong Academy of Chinese Medicine, Jinan, 250014, China
| | - Hongxiang Yin
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chendu, 611130, China.
| | - Guihua Jiang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chendu, 611130, China.
| |
Collapse
|
14
|
Yue J, Ni Y, Jiang M, Chen H, Chen P, Liu C. Characterization of Codonopsis pilosula subsp. tangshen plastome and comparative analysis of Codonopsis species. PLoS One 2022; 17:e0271813. [PMID: 35913971 PMCID: PMC9342729 DOI: 10.1371/journal.pone.0271813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 07/08/2022] [Indexed: 11/18/2022] Open
Abstract
Codonopsis pilosula subsp. tangshen is one of the most important medicinal herbs used in traditional Chinese medicine. Correct identification of materials from C. pilosula subsp. tangshen is critical to ensure the efficacy and safety of the associated medicines. Traditional DNA molecular markers could distinguish Codonopsis species well, so we need to develop super or specific molecular markers. In this study, we reported the plastome of Codonopsis pilosula subsp. tangshen (Oliv.) D.Y. Hong conducted phylogenomic and comparative analyses in the Codonopsis genus for the first time. The entire length of the Codonopsis pilosula subsp. tangshen plastome was 170,672 bp. There were 108 genes in the plastome, including 76 protein-coding genes, 28 transfer RNA (tRNA), and four ribosomal RNA (rRNA) genes. Comparative analysis indicated that Codonopsis pilosula subsp. tangshen had an unusual large inversion in the large single-copy (LSC) region compared with the other three Codonopsis species. And there were two dispersed repeat sequences at both ends of the inverted regions, which might mediate the generation of this inversion. We found five hypervariable regions among the four Codonopsis species. PCR amplification and Sanger sequencing experiments demonstrated that two hypervariable regions could distinguish three medicinal Codonopsis species. Results obtained from this study will support taxonomic classification, discrimination, and molecular evolutionary studies of Codonopsis species.
Collapse
Affiliation(s)
- Jingwen Yue
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, National Engineering Research Center of Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, P. R. China
| | - Yang Ni
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, National Engineering Research Center of Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, P. R. China
| | - Mei Jiang
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine from Ministry of Education, Engineering Research Center of Chinese Medicine Resources from Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, P. R. China
| | - Haimei Chen
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine from Ministry of Education, Engineering Research Center of Chinese Medicine Resources from Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, P. R. China
| | - Pinghua Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, National Engineering Research Center of Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, P. R. China
- * E-mail: (PHC); (CL)
| | - Chang Liu
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine from Ministry of Education, Engineering Research Center of Chinese Medicine Resources from Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, P. R. China
- * E-mail: (PHC); (CL)
| |
Collapse
|
15
|
Chen C, Xia X, Peng J, Wang D. Comparative Analyses of Six Complete Chloroplast Genomes from the Genus Cupressus and Juniperus (Cupressaceae). Gene 2022; 837:146696. [PMID: 35738448 DOI: 10.1016/j.gene.2022.146696] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/05/2022] [Accepted: 06/17/2022] [Indexed: 11/26/2022]
Abstract
Cupressaceae is a conifer family distributed around the world. Cupressus and Juniperus are the main genera of the Cupressaceae family and have important medicinal value. This leads to confusion between Cupressus and Juniperus due to similar morphologies. Here, the complete cp genomes of two Cupressus (C. duclouxiana and C. funebri) and four Juniperus (J. chinensis, J. gaussenii J. pingii and J. procumbens) were sequenced. The results revealed that the length of the cp genomes ranged from 126,996 bp to 129,959 bp, with 119 genes comprising 82 protein-coding genes, 33 transfer RNAs and 4 ribosomal RNAs. All chloroplast genomes of Cupressus and Juniperus lost whole IR regions, which is consistent with gymnosperm cp genome studies. In addition, the number of SSRs per species ranged from 54 to 73 and was dominated by mononucleotide repeats. In the six cp genomes of Cupressus and Juniperus, five highly divergent regions, including accD, accD-rpl2, ycf1, ycf2 and rrn23-rrn4.5, can be used as DNA barcodes of interspecific relationships and potential genetic markers. We compared the gene selection pressures (C. chengiana as reference species), and 6 genes underwent positive selection, the majority of which were related to photosynthesis. Phylogenetic results showed that the monophyly of Cupressus and Juniperus supported most bootstrap support. Cupressus funebris and J. chinensis were resolved to be early diverging species within Cupressus and Juniperus, and the two genera were sister groups to each other. This research revealed a new understanding of the structural pluralism and phylogenetic relationships of Cupressaceae cp genomes. These results will facilitate comprehension of the complexity and diversity of conifer cp genomes. SIGNIFICANCE:: Phylogenetic relationships among Cupressus, Juniperus, and their closest relatives are controversial, and generic delimitations have been in flux for the past decade. To address relationships and attempt to produce a more robust classification, we sequenced 6 new plastid genomes (plastomes) from the two variously described genera in this complex (Cupressus and Juniperus) and compared them with additional plastomes from diverse members of Cupressaceae. Our study corroborated the accD of Cupressophytes have a tendency to expand in size and strongly supported a sister relationship between Cupressus and Juniperus. The disparity in these results could be traced to the facts that the chloroplast genome is uniparentally inherited, also the usage of the whole chloroplast genome for this research is of a better advantage compared to usage of selected genes or portion of the plastome. The complete CP genomic data will provide useful information for studying genetic diversity and species identification, which is important for the overarching goal of biodiversity conservation.
Collapse
Affiliation(s)
- Can Chen
- Key Laboratory for Forest Resource Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China; Key Laboratory for Forest Genetic and Tree Improvement & Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China.
| | - Xi Xia
- Key Laboratory for Forest Resource Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China; Key Laboratory for Forest Genetic and Tree Improvement & Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China.
| | - Jingyu Peng
- Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China.
| | - Dawei Wang
- Key Laboratory for Forest Resource Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China; Key Laboratory for Forest Genetic and Tree Improvement & Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China.
| |
Collapse
|
16
|
Chloroplast Genome of Lithocarpus dealbatus (Hook.f. & Thomson ex Miq.) Rehder Establishes Monophyletic Origin of the Species and Reveals Mutational Hotspots with Taxon Delimitation Potential. Life (Basel) 2022; 12:life12060828. [PMID: 35743859 PMCID: PMC9225305 DOI: 10.3390/life12060828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/22/2022] [Accepted: 05/23/2022] [Indexed: 11/21/2022] Open
Abstract
There is phylogenetic ambiguity in the genus Lithocarpus and subfamily Quercoideae (Family: Fagaceae). Lithocarpus dealbatus, an ecologically important tree, is the dominant species among the Quercoideae in India. Although several studies have been conducted on the species' regeneration and ecological and economic significance, limited information is available on its phylo-genomics. To resolve the phylogeny in Quercoideae, we sequenced and assembled the 161,476 bp chloroplast genome of L. dealbatus, which has a large single-copy section of 90,732 bp and a small single-copy region of 18,987 bp, separated by a pair of inverted repeat regions of 25,879 bp. The chloroplast genome contained 133 genes, of which 86 were protein-coding genes, 39 were transfer RNAs, and eight were ribosomal RNAs. Analysis of repeat elements and RNA editing sites revealed interspecific similarities within the Lithocarpus genus. DNA diversity analysis identified five highly diverged coding and noncoding hotspot regions in the four genera, which can be used as polymorphic markers for species/taxon delimitation across the four genera of Quercoideae viz., Lithocarpus, Quercus, Castanea, and Castanopsis. The chloroplast-based phylogenetic analysis among the Quercoideae established a monophyletic origin of Lithocarpus, and a closer evolutionary lineage with a few Quercus species. Besides providing insights into the chloroplast genome architecture of L. dealbatus, the study identified five mutational hotspots having high taxon-delimitation potential across four genera of Quercoideae.
Collapse
|
17
|
The Plastome Sequences of Triticum sphaerococcum (ABD) and Triticum turgidum subsp. durum (AB) Exhibit Evolutionary Changes, Structural Characterization, Comparative Analysis, Phylogenomics and Time Divergence. Int J Mol Sci 2022; 23:ijms23052783. [PMID: 35269924 PMCID: PMC8911259 DOI: 10.3390/ijms23052783] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 12/10/2022] Open
Abstract
The mechanism and course of Triticum plastome evolution is currently unknown; thus, it remains unclear how Triticum plastomes evolved during recent polyploidization. Here, we report the complete plastomes of two polyploid wheat species, Triticum sphaerococcum (AABBDD) and Triticum turgidum subsp. durum (AABB), and compare them with 19 available and complete Triticum plastomes to create the first map of genomic structural variation. Both T. sphaerococcum and T. turgidum subsp. durum plastomes were found to have a quadripartite structure, with plastome lengths of 134,531 bp and 134,015 bp, respectively. Furthermore, diploid (AA), tetraploid (AB, AG) and hexaploid (ABD, AGAm) Triticum species plastomes displayed a conserved gene content and commonly harbored an identical set of annotated unique genes. Overall, there was a positive correlation between the number of repeats and plastome size. In all plastomes, the number of tandem repeats was higher than the number of palindromic and forward repeats. We constructed a Triticum phylogeny based on the complete plastomes and 42 shared genes from 71 plastomes. We estimated the divergence of Hordeum vulgare from wheat around 11.04-11.9 million years ago (mya) using a well-resolved plastome tree. Similarly, Sitopsis species diverged 2.8-2.9 mya before Triticum urartu (AA) and Triticum monococcum (AA). Aegilops speltoides was shown to be the maternal donor of polyploid wheat genomes and diverged ~0.2-0.9 mya. The phylogeny and divergence time estimates presented here can act as a reference framework for future studies of Triticum evolution.
Collapse
|
18
|
Gupta S, Singh R, Sharma A, Rather GA, Lattoo SK, Dhar MK. Comparative transcriptome mining for terpenoid biosynthetic pathway genes in wild and cultivated species of Plantago. PROTOPLASMA 2022; 259:439-452. [PMID: 34191123 DOI: 10.1007/s00709-021-01663-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 05/03/2021] [Indexed: 06/13/2023]
Abstract
Plantagos are important economical and medicinal plants that possess several bioactive secondary metabolites, such as phenolics, iridoids, triterpenes, and alkaloids. Triterpenoids are the ubiquitous and dynamic secondary metabolites that are deployed by plants for chemical interactions and protection under biotic/abiotic stress. Plantago ovata, a cultivated species, is the source of psyllium, while Plantago major, a wild species, has significant therapeutic potential. Wild species are considered more tolerant to stressful conditions in comparison to their cultivated allies. In view of this, the present study aimed to decipher the terpenoid biosynthetic pathway operative in P. ovata and P. major using a comparative transcriptomics approach. Majority of terpenoid biosynthetic genes were observed as upregulated in P. major including rate limiting genes of MVA (HMGR) and MEP (DXR) pathways and genes (α-AS, BAS, SM, and CYP716) involved in ursolic acid biosynthesis, an important triterpenoid prevalent in Plantago species. The HPLC output further confirmed the higher concentration of ursolic acid in P. major as compared to P. ovata leaf samples, respectively. In addition to terpenoid biosynthesis, KEGG annotation revealed the involvement of differentially expressed unigenes in several metabolic pathways, aminoacyl-tRNA biosynthesis, biosynthesis of antibiotics, and biosynthesis of secondary metabolites. MYB was found as the most abundant transcription factor family in Plantago transcriptome. We have been able to generate valuable information which can help in improving terpenoid production in Plantago. Additionally, the present study has laid a strong foundation for deciphering other important metabolic pathways in Plantago.
Collapse
Affiliation(s)
- Suruchi Gupta
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, Jammu, 180001, India
| | - Ravail Singh
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, Jammu, 180001, India
| | - Arti Sharma
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, Jammu, 180001, India
| | - Gulzar A Rather
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, Jammu, 180001, India
| | - Surrinder K Lattoo
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, Jammu, 180001, India
| | - Manoj K Dhar
- Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu, 180006, India.
| |
Collapse
|
19
|
Asaf S, Ahmad W, Al-Harrasi A, Khan AL. Uncovering the first complete plastome genomics, comparative analyses, and phylogenetic dispositions of endemic medicinal plant Ziziphus hajarensis (Rhamnaceae). BMC Genomics 2022; 23:83. [PMID: 35086490 PMCID: PMC8796432 DOI: 10.1186/s12864-022-08320-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 01/19/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ziziphus hajarensis is an endemic plant species well-distributed in the Western Hajar mountains of Oman. Despite its potential medicinal uses, little is known regarding its genomic architecture, phylogenetic position, or evolution. Here we sequenced and analyzed the entire chloroplast (cp) genome of Z. hajarensis to understand its genetic organization, structure, and phylogenomic disposition among Rhamnaceae species. RESULTS The results revealed the genome of Z. hajarensis cp comprised 162,162 bp and exhibited a typical quadripartite structure, with a large single copy (LSC) region of 895,67 bp, a small single copy (SSC) region of 19,597 bp and an inverted repeat (IR) regions of 26,499 bp. In addition, the cp genome of Z. hajarensis comprises 126 genes, including 82 protein-coding genes, eight rRNA genes, and 36 tRNA genes. Furthermore, the analysis revealed 208 microsatellites, 96.6% of which were mononucleotides. Similarly, a total of 140 repeats were identified, including 11 palindromic, 24 forward, 14 reverse, and 104 tandem repeats. The whole cp genome comparison of Z. hajarensis and nine other species from family Rhamnaceae showed an overall high degree of sequence similarity, with divergence among some intergenic spacers. Comparative phylogenetic analysis based on the complete cp genome, 66 shared genes and matK gene revealed that Z. hajarensis shares a clade with Z. jujuba and that the family Rhamnaceae is the closest family to Barbeyaceae and Elaeagnaceae. CONCLUSION All the genome features such as genome size, GC content, genome organization and gene order were highly conserved compared to the other related genomes. The whole cp genome of Z. hajarensis gives fascinating insights and valuable data that may be used to identify related species and reconstruct the phylogeny of the species.
Collapse
Affiliation(s)
- Sajjad Asaf
- Natural and Medical Sciences Research Centre, University of Nizwa, 616, Nizwa, Oman
| | - Waqar Ahmad
- Natural and Medical Sciences Research Centre, University of Nizwa, 616, Nizwa, Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Centre, University of Nizwa, 616, Nizwa, Oman.
| | - Abdul Latif Khan
- Department of Engineering Technology, University of Houston, Houston, TX, 77479, USA.
| |
Collapse
|
20
|
Mutinda ES, Mkala EM, Dong X, Yang JX, Waswa EN, Nanjala C, Odago WO, Hu GW, Wang QF. Comparative Genomics, Phylogenetics, Biogeography, and Effects of Climate Change on Toddalia asiatica (L.) Lam. (Rutaceae) from Africa and Asia. PLANTS 2022; 11:231. [DOI: https:/doi.org/10.3390/plants11020231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
In the present study, two samples of Toddalia asiatica species, both collected from Kenya, were sequenced and comparison of their genome structures carried out with T. asiatica species from China, available in the NCBI database. The genome size of both species from Africa was 158, 508 base pairs, which was slightly larger, compared to the reference genome of T. asiatica from Asia (158, 434 bp). The number of genes was 113 for both species from Africa, consisting of 79 protein-coding genes, 30 transfer RNA (tRNA) genes, and 4 ribosomal RNA (rRNA) genes. Toddalia asiatica from Asia had 115 genes with 81 protein-coding genes, 30 transfer RNA (tRNA) genes, and 4 ribosomal RNA (rRNA) genes. Both species compared displayed high similarity in gene arrangement. The gene number, orientation, and order were highly conserved. The IR/SC boundary structures were the same in all chloroplast genomes. A comparison of pairwise sequences indicated that the three regions (trnH-psbA, rpoB, and ycf1) were more divergent and can be useful in developing effective genetic markers. Phylogenetic analyses of the complete cp genomes and 79 protein-coding genes indicated that the Toddalia species collected from Africa were sister to T. asiatica collected from Asia. Both species formed a sister clade to the Southwest Pacific and East Asian species of Zanthoxylum. These results supported the previous studies of merging the genus Toddalia with Zanthoxylum and taxonomic change of Toddalia asiatica to Zanthoxylum asiaticum, which should also apply for the African species of Toddalia. Biogeographic results demonstrated that the two samples of Toddalia species from Africa diverged from T. asiatica from Asia (3.422 Mya, 95% HPD). These results supported an Asian origin of Toddalia species and later dispersal to Africa and Madagascar. The maxent model analysis showed that Asia would have an expansion of favorable areas for Toddalia species in the future. In Africa, there will be contraction and expansion of the favorable areas for the species. The availability of these cp genomes will provide valuable genetic resources for further population genetics and biogeographic studies of these species. However, more T. asiatica species collected from a wide geographical range are required.
Collapse
|
21
|
Mutinda ES, Mkala EM, Dong X, Yang JX, Waswa EN, Nanjala C, Odago WO, Hu GW, Wang QF. Comparative Genomics, Phylogenetics, Biogeography, and Effects of Climate Change on Toddalia asiatica (L.) Lam. (Rutaceae) from Africa and Asia. PLANTS 2022; 11:plants11020231. [PMID: 35050119 PMCID: PMC8781850 DOI: 10.3390/plants11020231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/29/2021] [Accepted: 01/11/2022] [Indexed: 11/16/2022]
Abstract
In the present study, two samples of Toddalia asiatica species, both collected from Kenya, were sequenced and comparison of their genome structures carried out with T. asiatica species from China, available in the NCBI database. The genome size of both species from Africa was 158, 508 base pairs, which was slightly larger, compared to the reference genome of T. asiatica from Asia (158, 434 bp). The number of genes was 113 for both species from Africa, consisting of 79 protein-coding genes, 30 transfer RNA (tRNA) genes, and 4 ribosomal RNA (rRNA) genes. Toddalia asiatica from Asia had 115 genes with 81 protein-coding genes, 30 transfer RNA (tRNA) genes, and 4 ribosomal RNA (rRNA) genes. Both species compared displayed high similarity in gene arrangement. The gene number, orientation, and order were highly conserved. The IR/SC boundary structures were the same in all chloroplast genomes. A comparison of pairwise sequences indicated that the three regions (trnH-psbA, rpoB, and ycf1) were more divergent and can be useful in developing effective genetic markers. Phylogenetic analyses of the complete cp genomes and 79 protein-coding genes indicated that the Toddalia species collected from Africa were sister to T. asiatica collected from Asia. Both species formed a sister clade to the Southwest Pacific and East Asian species of Zanthoxylum. These results supported the previous studies of merging the genus Toddalia with Zanthoxylum and taxonomic change of Toddalia asiatica to Zanthoxylum asiaticum, which should also apply for the African species of Toddalia. Biogeographic results demonstrated that the two samples of Toddalia species from Africa diverged from T. asiatica from Asia (3.422 Mya, 95% HPD). These results supported an Asian origin of Toddalia species and later dispersal to Africa and Madagascar. The maxent model analysis showed that Asia would have an expansion of favorable areas for Toddalia species in the future. In Africa, there will be contraction and expansion of the favorable areas for the species. The availability of these cp genomes will provide valuable genetic resources for further population genetics and biogeographic studies of these species. However, more T. asiatica species collected from a wide geographical range are required.
Collapse
Affiliation(s)
- Elizabeth Syowai Mutinda
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (E.S.M.); (E.M.M.); (X.D.); (J.-X.Y.); (E.N.W.); (C.N.); (W.O.O.); (Q.-F.W.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Elijah Mbandi Mkala
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (E.S.M.); (E.M.M.); (X.D.); (J.-X.Y.); (E.N.W.); (C.N.); (W.O.O.); (Q.-F.W.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- East African Herbarium, National Museums of Kenya, Nairobi 451660-0100, Kenya
| | - Xiang Dong
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (E.S.M.); (E.M.M.); (X.D.); (J.-X.Y.); (E.N.W.); (C.N.); (W.O.O.); (Q.-F.W.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia-Xin Yang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (E.S.M.); (E.M.M.); (X.D.); (J.-X.Y.); (E.N.W.); (C.N.); (W.O.O.); (Q.-F.W.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Emmanuel Nyongesa Waswa
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (E.S.M.); (E.M.M.); (X.D.); (J.-X.Y.); (E.N.W.); (C.N.); (W.O.O.); (Q.-F.W.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Consolata Nanjala
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (E.S.M.); (E.M.M.); (X.D.); (J.-X.Y.); (E.N.W.); (C.N.); (W.O.O.); (Q.-F.W.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wyclif Ochieng Odago
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (E.S.M.); (E.M.M.); (X.D.); (J.-X.Y.); (E.N.W.); (C.N.); (W.O.O.); (Q.-F.W.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- East African Herbarium, National Museums of Kenya, Nairobi 451660-0100, Kenya
| | - Guang-Wan Hu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (E.S.M.); (E.M.M.); (X.D.); (J.-X.Y.); (E.N.W.); (C.N.); (W.O.O.); (Q.-F.W.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence:
| | - Qing-Feng Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (E.S.M.); (E.M.M.); (X.D.); (J.-X.Y.); (E.N.W.); (C.N.); (W.O.O.); (Q.-F.W.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| |
Collapse
|
22
|
Raman G, Nam GH, Park S. Extensive reorganization of the chloroplast genome of Corydalis platycarpa: A comparative analysis of their organization and evolution with other Corydalis plastomes. FRONTIERS IN PLANT SCIENCE 2022; 13:1043740. [PMID: 37090468 PMCID: PMC10115153 DOI: 10.3389/fpls.2022.1043740] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/07/2022] [Indexed: 05/03/2023]
Abstract
Introduction The chloroplast (cp) is an autonomous plant organelle with an individual genome that encodes essential cellular functions. The genome architecture and gene content of the cp is highly conserved in angiosperms. The plastome of Corydalis belongs to the Papaveraceae family, and the genome is comprised of unusual rearrangements and gene content. Thus far, no extensive comparative studies have been carried out to understand the evolution of Corydalis chloroplast genomes. Methods Therefore, the Corydalis platycarpa cp genome was sequenced, and wide-scale comparative studies were conducted using publicly available twenty Corydalis plastomes. Results Comparative analyses showed that an extensive genome rearrangement and IR expansion occurred, and these events evolved independently in the Corydalis species. By contrast, the plastomes of its closely related subfamily Papaveroideae and other Ranunculales taxa are highly conserved. On the other hand, the synapomorphy characteristics of both accD and the ndh gene loss events happened in the common ancestor of the Corydalis and sub-clade of the Corydalis lineage, respectively. The Corydalis-sub clade species (ndh lost) are distributed predominantly in the Qinghai-Tibetan plateau (QTP) region. The phylogenetic analysis and divergence time estimation were also employed for the Corydalis species. Discussion The divergence time of the ndh gene in the Corydalis sub-clade species (44.31 - 15.71 mya) coincides very well with the uplift of the Qinghai-Tibet Plateau in Oligocene and Miocene periods, and maybe during this period, it has probably triggered the radiation of the Corydalis species. Conclusion To the best of the authors' knowledge, this is the first large-scale comparative study of Corydalis plastomes and their evolution. The present study may provide insights into the plastome architecture and the molecular evolution of Corydalis species.
Collapse
Affiliation(s)
- Gurusamy Raman
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongsan-buk, Republic of Korea
| | - Gi-Heum Nam
- Plants Resource Division, Biological Resources Research Department, National Institute of Biological Resources, Seo-gu, Incheon, Republic of Korea
- *Correspondence: SeonJoo Park, ; Gi-Heum Nam,
| | - SeonJoo Park
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongsan-buk, Republic of Korea
- *Correspondence: SeonJoo Park, ; Gi-Heum Nam,
| |
Collapse
|
23
|
Shipunov A, Fernández-Alonso JL, Hassemer G, Alp S, Lee HJ, Pay K. Molecular and Morphological Data Improve the Classification of Plantagineae (Lamiales). PLANTS (BASEL, SWITZERLAND) 2021; 10:2299. [PMID: 34834664 PMCID: PMC8625185 DOI: 10.3390/plants10112299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
The tribe Plantagineae (Lamiales) is a group of plants with worldwide distribution, notorious for its complicated taxonomy and still unresolved natural history. We describe the result of a broadly sampled phylogenetic study of tribe. The expanded sampling dataset is based on the trnL-F spacer, rbcL, and ITS2 markers across all three included genera (Aragoa, Littorella and Plantago) and makes this the most comprehensive study to date. The other dataset uses five markers and provides remarkably good resolution throughout the tree, including support for all of the major clades. In addition to the molecular phylogeny, a morphology database of 114 binary characters was assembled to provide comparison with the molecular phylogeny and to develop a means to assign species not sampled in the molecular analysis to their most closely related species that were sampled. Based on the molecular phylogeny and the assignment algorithm to place unsampled species, a key to sections is presented, and a revised classification of the tribe is provided. We also include the description of new species from North America.
Collapse
Affiliation(s)
- Alexey Shipunov
- Department of Biology, Minot State University, Minot, ND 58707, USA; (S.A.); (H.J.L.); (K.P.)
| | | | - Gustavo Hassemer
- Três Lagoas Campus, Federal University of Mato Grosso do Sul, Três Lagoas CEP 79610-100, Brazil;
| | - Sean Alp
- Department of Biology, Minot State University, Minot, ND 58707, USA; (S.A.); (H.J.L.); (K.P.)
| | - Hye Ji Lee
- Department of Biology, Minot State University, Minot, ND 58707, USA; (S.A.); (H.J.L.); (K.P.)
| | - Kyle Pay
- Department of Biology, Minot State University, Minot, ND 58707, USA; (S.A.); (H.J.L.); (K.P.)
| |
Collapse
|
24
|
New Insight into the Phylogeny and Taxonomy of Cultivated and Related Species of Crataegus in China, Based on Complete Chloroplast Genome Sequencing. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7090301] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hawthorns (Crataegus L.) are one of the most important processing and table fruits in China, due to their medicinal properties and health benefits. However, the interspecific relationships and evolution history of cultivated Crataegus in China remain unclear. Our previously published data showed C. bretschneideri may be derived from the hybridization of C. pinnatifida with C. maximowiczii, and that introgression occurs between C. hupehensis, C. pinnatifida, and C. pinnatifida var. major. In the present study, chloroplast sequences were used to further elucidate the phylogenetic relationships of cultivated Crataegus native to China. The chloroplast genomes of three cultivated species and one related species of Crataegus were sequenced for comparative and phylogenetic analyses. The four chloroplast genomes of Crataegus exhibited typical quadripartite structures and ranged from 159,607 bp (C. bretschneideri) to 159,875 bp (C. maximowiczii) in length. The plastomes of the four species contained 113 genes consisting of 79 protein-coding genes, 30 tRNA genes, and 4 rRNA genes. Six hypervariable regions (ndhC-trnV(UAC)-trnM(CAU), ndhA, atpH-atpI, ndhF, trnR(UCU)-atpA, and ndhF-rpl32), 196 repeats, and a total of 386 simple sequence repeats were detected as potential variability makers for species identification and population genetic studies. In the phylogenomic analyses, we also compared the entire chloroplast genomes of three published Crataegus species: C. hupehensis (MW201730.1), C. pinnatifida (MN102356.1), and C. marshallii (MK920293.1). Our phylogenetic analyses grouped the seven Crataegus taxa into two main clusters. One cluster included C. bretschneideri, C. maximowiczii, and C. marshallii, whereas the other included C. hupehensis, C. pinnatifida, and C. pinnatifida var. major. Taken together, our findings indicate that C. maximowiczii is the maternal origin of C. bretschneideri. This work provides further evidence of introgression between C. hupehensis, C. pinnatifida, and C. pinnatifida var. major, and suggests that C. pinnatifida var. major might have been artificially selected and domesticated from hybrid populations, rather than evolved from C. pinnatifida.
Collapse
|
25
|
Wanga VO, Dong X, Oulo MA, Mkala EM, Yang JX, Onjalalaina GE, Gichua MK, Kirika PM, Gituru RW, Hu GW, Wang QF. Complete Chloroplast Genomes of Acanthochlamys bracteata (China) and Xerophyta (Africa) (Velloziaceae): Comparative Genomics and Phylogenomic Placement. FRONTIERS IN PLANT SCIENCE 2021; 12:691833. [PMID: 34194461 PMCID: PMC8238049 DOI: 10.3389/fpls.2021.691833] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/19/2021] [Indexed: 05/15/2023]
Abstract
Acanthochlamys P.C. Kao is a Chinese endemic monotypic genus, whereas Xerophyta Juss. is a genus endemic to Africa mainland, Arabian Peninsula and Madagascar with ca.70 species. In this recent study, the complete chloroplast genome of Acanthochlamys bracteata was sequenced and its genome structure compared with two African Xerophyta species (Xerophyta spekei and Xerophyta viscosa) present in the NCBI database. The genomes showed a quadripartite structure with their sizes ranging from 153,843 bp to 155,498 bp, having large single-copy (LSC) and small single-copy (SSC) regions divided by a pair of inverted repeats (IR regions). The total number of genes found in A. bracteata, X. spekei and X. viscosa cp genomes are 129, 130, and 132, respectively. About 50, 29, 28 palindromic, forward and reverse repeats and 90, 59, 53 simple sequence repeats (SSRs) were found in the A. bracteata, X. spekei, and X. viscosa cp genome, respectively. Nucleotide diversity analysis in all species was 0.03501, Ka/Ks ratio average score was calculated to be 0.26, and intergeneric K2P value within the Order Pandanales was averaged to be 0.0831. Genomic characterization was undertaken by comparing the genomes of the three species of Velloziaceae and it revealed that the coding regions were more conserved than the non-coding regions. However, key variations were noted mostly at the junctions of IRs/SSC regions. Phylogenetic analysis suggests that A. bracteata species has a closer genetic relationship to the genus Xerophyta. The present study reveals the complete chloroplast genome of A. bracteata and gives a genomic comparative analysis with the African species of Xerophyta. Thus, can be useful in developing DNA markers for use in the study of genetic variabilities and evolutionary studies in Velloziaceae.
Collapse
Affiliation(s)
- Vincent Okelo Wanga
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| | - Xiang Dong
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| | - Millicent Akinyi Oulo
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| | - Elijah Mbandi Mkala
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| | - Jia-Xin Yang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| | - Guy Eric Onjalalaina
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| | - Moses Kirega Gichua
- Botany Department, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | | | - Robert Wahiti Gituru
- Botany Department, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Guang-Wan Hu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| | - Qing-Feng Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
26
|
Mower JP, Guo W, Partha R, Fan W, Levsen N, Wolff K, Nugent JM, Pabón-Mora N, González F. Plastomes from tribe Plantagineae (Plantaginaceae) reveal infrageneric structural synapormorphies and localized hypermutation for Plantago and functional loss of ndh genes from Littorella. Mol Phylogenet Evol 2021; 162:107217. [PMID: 34082129 DOI: 10.1016/j.ympev.2021.107217] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/14/2021] [Accepted: 05/27/2021] [Indexed: 10/21/2022]
Abstract
Tribe Plantagineae (Plantaginaceae) comprises ~ 270 species in three currently recognized genera (Aragoa, Littorella, Plantago), of which Plantago is most speciose. Plantago plastomes exhibit several atypical features including large inversions, expansions of the inverted repeat, increased repetitiveness, intron losses, and gene-specific increases in substitution rate, but the prevalence of these plastid features among species and subgenera is unknown. To assess phylogenetic relationships and plastomic evolutionary dynamics among Plantagineae genera and Plantago subgenera, we generated 25 complete plastome sequences and compared them with existing plastome sequences from Plantaginaceae. Using whole plastome and partitioned alignments, our phylogenomic analyses provided strong support for relationships among major Plantagineae lineages. General plastid features-including size, GC content, intron content, and indels-provided additional support that reinforced major Plantagineae subdivisions. Plastomes from Plantago subgenera Plantago and Coronopus have synapomorphic expansions and inversions affecting the size and gene order of the inverted repeats, and particular genes near the inversion breakpoints exhibit accelerated nucleotide substitution rates, suggesting localized hypermutation associated with rearrangements. The Littorella plastome lacks functional copies of ndh genes, which may be related to an amphibious lifestyle and partial reliance on CAM photosynthesis.
Collapse
Affiliation(s)
- Jeffrey P Mower
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68588, USA; Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68583, USA.
| | - Wenhu Guo
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68588, USA; School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA
| | - Raghavendran Partha
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68588, USA
| | - Weishu Fan
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68588, USA; Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68583, USA
| | - Nick Levsen
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK
| | - Kirsten Wolff
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK
| | - Jacqueline M Nugent
- Department of Biology, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland
| | - Natalia Pabón-Mora
- Instituto de Biología, Universidad de Antioquia, Apartado 1226, Medellín, Colombia
| | - Favio González
- Universidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias, Instituto de Ciencias Naturales, Apartado 7495, Colombia
| |
Collapse
|
27
|
Khan AL, Asaf S, Lubna, Al-Rawahi A, Al-Harrasi A. Decoding first complete chloroplast genome of toothbrush tree (Salvadora persica L.): insight into genome evolution, sequence divergence and phylogenetic relationship within Brassicales. BMC Genomics 2021; 22:312. [PMID: 33926374 PMCID: PMC8086069 DOI: 10.1186/s12864-021-07626-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/12/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Salvadora persica L. (Toothbrush tree - Miswak; family-Salvadoraceae) grows in the arid-land ecosystem and possesses economic and medicinal importance. The species, genus and the family have no genomic datasets available specifically on chloroplast (cp) genomics and taxonomic evolution. Herein, we have sequenced the complete chloroplast genome of S. persica for the first time and compared it with 11 related specie's cp genomes from the order Brassicales. RESULTS The S. persica cp genome was 153,379 bp in length containing a sizeable single-copy region (LSC) of 83,818 bp which separated from the small single-copy region (SSC) of 17,683 bp by two inverted repeats (IRs) each 25,939 bp. Among these genomes, the largest cp genome size (160,600 bp) was found in M. oleifera, while in S. persica it was the smallest (153,379 bp). The cp genome of S. persica encoded 131 genes, including 37 tRNA genes, eight rRNA genes and 86 protein-coding genes. Besides, S. persica contains 27 forward, 36 tandem and 19 palindromic repeats. The S. persica cp genome had 154 SSRs with the highest number in the LSC region. Complete cp genome comparisons showed an overall high degree of sequence resemblance between S. persica and related cp genomes. Some divergence was observed in the intergenic spaces of other species. Phylogenomic analyses of 60 shared genes indicated that S. persica formed a single clade with A. tetracantha with high bootstrap values. The family Salvadoraceae is closely related to Capparaceae and Petadiplandraceae rather than to Bataceae and Koberliniacaea. CONCLUSION The current genomic datasets provide pivotal genetic resources to determine the phylogenetic relationships, genome evolution and future genetic diversity-related studies of S. persica in complex angiosperm families.
Collapse
Affiliation(s)
- Abdul Latif Khan
- Natural and Medical Sciences Research Center, University of Nizwa, 616, Nizwa, Oman
| | - Sajjad Asaf
- Natural and Medical Sciences Research Center, University of Nizwa, 616, Nizwa, Oman.
| | - Lubna
- Department of Botany, Garden Campus, Abdul Wali Khan University, Mardan, 23200, Pakistan
| | - Ahmed Al-Rawahi
- Natural and Medical Sciences Research Center, University of Nizwa, 616, Nizwa, Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, 616, Nizwa, Oman.
| |
Collapse
|
28
|
Rossini BC, de Moraes MLT, Marino CL. Complete chloroplast genome of Myracrodruon urundeuva and its phylogenetics relationships in Anacardiaceae family. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:801-814. [PMID: 33967463 PMCID: PMC8055753 DOI: 10.1007/s12298-021-00989-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/24/2021] [Accepted: 04/03/2021] [Indexed: 06/12/2023]
Abstract
Continuous exploratory use of tree species is threatening the existence of several plants in South America. One of these threatened species is Myracroduron urundeuva, highly exploited due to the high quality and durability of its wood. The chloroplast (cp) has been used for several evolutionary studies as well traceability of timber origin, based on its gene sequences and simple sequence repeats (SSR) variability. Cp genome organization is usually consisting of a large single copy and a small single copy region separated by two inverted repeats regions. We sequenced the complete cp genome from M. urundeuva based on Illumina next-generation sequencing. Our results show that the cp genome is 159,883 bp in size. The 36 SSR identified ranging from mono- to hexanucleotides. Positive selection analysis revealed nine genes related to photosystem, protein synthesis, and DNA replication, and protease are under positive selection. Genome comparison a other Anacardiaceae chloroplast genomes showed great variability in the family. The phylogenetic analysis using complete chloroplast genome sequences of other Anacardiaceae family members showed a close relationship with two other economically important genera, Pistacia and Rhus. These results will help future investigations of timber monitoring and population and evolutionary studies. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-00989-1.
Collapse
Affiliation(s)
- Bruno Cesar Rossini
- Biotechnology Institute (IBTEC), UNESP-Univ Estadual Paulista, Botucatu, SP CEP 18607-440 Brazil
- Department of Biochemical and Biological Sciences, UNESP-Univ Estadual Paulista, Botucatu, SP CEP 18618-689 Brazil
| | | | - Celso Luis Marino
- Biotechnology Institute (IBTEC), UNESP-Univ Estadual Paulista, Botucatu, SP CEP 18607-440 Brazil
- Department of Biochemical and Biological Sciences, UNESP-Univ Estadual Paulista, Botucatu, SP CEP 18618-689 Brazil
| |
Collapse
|
29
|
Xu X, Wang D. Comparative Chloroplast Genomics of Corydalis Species (Papaveraceae): Evolutionary Perspectives on Their Unusual Large Scale Rearrangements. FRONTIERS IN PLANT SCIENCE 2021; 11:600354. [PMID: 33584746 PMCID: PMC7873532 DOI: 10.3389/fpls.2020.600354] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 12/21/2020] [Indexed: 05/08/2023]
Abstract
The chloroplast genome (plastome) of angiosperms (particularly photosynthetic members) is generally highly conserved, although structural rearrangements have been reported in a few lineages. In this study, we revealed Corydalis to be another unusual lineage with extensive large-scale plastome rearrangements. In the four newly sequenced Corydalis plastomes that represent all the three subgenera of Corydalis, we detected (1) two independent relocations of the same five genes (trnV-UAC-rbcL) from the typically posterior part of the large single-copy (LSC) region to the front, downstream of either the atpH gene in Corydalis saxicola or the trnK-UUU gene in both Corydalis davidii and Corydalis hsiaowutaishanensis; (2) relocation of the rps16 gene from the LSC region to the inverted repeat (IR) region in Corydalis adunca; (3) uniform inversion of an 11-14 kb segment (ndhB-trnR-ACG) in the IR region of all the four Corydalis species (the same below); (4) expansions (>10 kb) of IR into the small single-copy (SSC) region and corresponding contractions of SSC region; and (5) extensive pseudogenizations or losses of 13 genes (accD, clpP, and 11 ndh genes). In addition, we also found that the four Corydalis plastomes exhibited elevated GC content in both gene and intergenic regions and high number of dispersed repeats. Phylogenomic analyses generated a well-supported topology that was consistent with the result of previous studies based on a few DNA markers but contradicted with the morphological character-based taxonomy to some extent. This study provided insights into the evolution of plastomes throughout the three Corydalis subgenera and will be of value for further study on taxonomy, phylogeny, and evolution of Corydalis.
Collapse
Affiliation(s)
- Xiaodong Xu
- School of Life Sciences, Central China Normal University, Key Laboratory for Geographical Process Analysis and Simulation, Wuhan, China
| | - Dong Wang
- School of Life Sciences, Central China Normal University, Key Laboratory for Geographical Process Analysis and Simulation, Wuhan, China
- Bio-Resources Key Laboratory of Shaanxi Province, Shaanxi University of Technology, Hanzhong, China
| |
Collapse
|
30
|
Wei N, Pérez-Escobar OA, Musili PM, Huang WC, Yang JB, Hu AQ, Hu GW, Grace OM, Wang QF. Plastome Evolution in the Hyperdiverse Genus Euphorbia (Euphorbiaceae) Using Phylogenomic and Comparative Analyses: Large-Scale Expansion and Contraction of the Inverted Repeat Region. FRONTIERS IN PLANT SCIENCE 2021; 12:712064. [PMID: 34421963 PMCID: PMC8372406 DOI: 10.3389/fpls.2021.712064] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/05/2021] [Indexed: 05/09/2023]
Abstract
With c. 2,000 species, Euphorbia is one of the largest angiosperm genera, yet a lack of chloroplast genome (plastome) resources impedes a better understanding of its evolution. In this study, we assembled and annotated 28 plastomes from Euphorbiaceae, of which 15 were newly sequenced. Phylogenomic and comparative analyses of 22 plastome sequences from all four recognized subgenera within Euphorbia revealed that plastome length in Euphorbia is labile, presenting a range of variation c. 42 kb. Large-scale expansions of the inverted repeat (IR) region were identified, and at the extreme opposite, the near-complete loss of the IR region (with only 355 bp left) was detected for the first time in Euphorbiaceae. Other structural variations, including gene inversion and duplication, and gene loss/pseudogenization, were also observed. We screened the most promising molecular markers from both intergenic and coding regions for phylogeny-based utilities, and estimated maximum likelihood and Bayesian phylogenies from four datasets including whole plastome sequences. The monophyly of Euphorbia is supported, and its four subgenera are recovered in a successive sister relationship. Our study constitutes the first comprehensive investigation on the plastome structural variation in Euphorbia and it provides resources for phylogenetic research in the genus, facilitating further studies on its taxonomy, evolution, and conservation.
Collapse
Affiliation(s)
- Neng Wei
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | | | - Paul M. Musili
- East African Herbarium, National Museums of Kenya, Nairobi, Kenya
| | - Wei-Chang Huang
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Chenshan Botanical Garden, Shanghai, China
| | - Jun-Bo Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Ai-Qun Hu
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | - Guang-Wan Hu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| | - Olwen M. Grace
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
- *Correspondence: Olwen M. Grace,
| | - Qing-Feng Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
- Qing-Feng Wang,
| |
Collapse
|
31
|
Liao M, Gao XF, Zhang JY, Deng HN, Xu B. Comparative Chloroplast Genomics of Sophora Species: Evolution and Phylogenetic Relationships in the Early-Diverging Legume Subfamily Papilionoideae (Fabaceae). FRONTIERS IN PLANT SCIENCE 2021; 12:778933. [PMID: 34975964 PMCID: PMC8716937 DOI: 10.3389/fpls.2021.778933] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/08/2021] [Indexed: 05/04/2023]
Abstract
The taxonomy and evolutionary history of Sophora L., a genus with high economic and medicinal value, remain uncertain due to the absence of genetic resource (especially in China) and low polymorphism of molecular markers. Our aim was to elucidate the molecular evolution and phylogenetic relationships in chloroplast genomes of Sophora species in the early-diverging legume subfamily Papilionoideae (Fabaceae). We reported nine Sophora chloroplast genome from China using Illumina sequencing. We performed a series of analyses with previously published genomes of Sophora species to investigate their genomic characteristics, identified simple sequence repeats, large repeat sequences, tandem repeats, and highly polymorphic loci. The genomes were 152,953-158,087 bp in length, and contained 111-113 unique genes, including 76-78 protein coding, 31 tRNA, and 4 rRNA. The expansion of inverted repeat boundary of Sophora resulted in rps12 entering into the LSC region and loss of trnT-CGU gene in some species. Also, we found an approximately 23 kb inversion between trnC-GCA and trnF-GAA within the genus. In addition, we identified seven highly polymorphic loci (pi (π) > 0.035) suitable for inferring the phylogeny of Sophora species. Among these, three regions also co-occurred with large repeat sequences and support use of repeats as a proxy for the identification of polymorphic loci. Based on whole chloroplast genome and protein-coding sequences data-set, a well-supported phylogenetic tree of Sophora and related taxa showed that this genus is monophyletic, but sect. Disamaea and sect. Sophora, are incongruent with traditional taxonomic classifications based on fruit morphology. Our finding provides significant genetic resources to support further investigation into the phylogenetic relationship and evolution of the genus Sophora.
Collapse
Affiliation(s)
- Min Liao
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xin-Fen Gao
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Jun-Yi Zhang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Heng-Ning Deng
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Bo Xu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- *Correspondence: Bo Xu,
| |
Collapse
|
32
|
Xu W, Xia B, Li X. The complete chloroplast genome sequences of five pinnate-leaved Primula species and phylogenetic analyses. Sci Rep 2020; 10:20782. [PMID: 33247172 PMCID: PMC7699626 DOI: 10.1038/s41598-020-77661-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 11/12/2020] [Indexed: 11/23/2022] Open
Abstract
The six pinnate-leaved species are a very particular group in the genus Primula. In the present paper, we sequenced, assembled and annotated the chloroplast genomes of five of them (P. cicutarrifolia, P. hubeiensis, P. jiugongshanensis, P. merrilliana, P. ranunculoides). The five chloroplast genomes ranged from ~ 150 to 152 kb, containing 113 genes (four ribosomal RNA genes, 29 tRNA genes and 80 protein-coding genes). The six pinnate-leaved species exhibited synteny of gene order and possessed similar IR boundary regions in chloroplast genomes. The gene accD was pseudogenized in P. filchnerae. In the chloroplast genomes of the six pinnate-leaved Primula species, SSRs, repeating sequences and divergence hotspots were identified; ycf1 and trnH-psbA were the most variable markers among CDSs and noncoding sequences, respectively. Phylogenetic analyses showed that the six Primula species were separated into two distant clades: one was formed by P. filchnerae and P. sinensis and the other clade was consisting of two subclades, one formed by P. hubeiensis and P. ranunculoides, the other by P. merrilliana, P. cicutarrifolia and P. jiugongshanensis. P. hubeiensis was closely related with P. ranunculoides and therefore it should be placed into Sect. Ranunculoides. P. cicutarrifolia did not group first with P. ranunculoides but with P. merrilliana, although the former two were once united in one species, our results supported the separation of P. ranunculoides from P. cicutarrifolia as one distinct species.
Collapse
Affiliation(s)
- Wenbin Xu
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Boshun Xia
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Xinwei Li
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
| |
Collapse
|
33
|
Maurya S, Darshetkar AM, Yi DK, Kim J, Lee C, Ali MA, Choi S, Choudhary RK, Kim SY. Plastome comparison and evolution within the tribes of Plantaginaceae: Insights from an Asian gypsyweed. Saudi J Biol Sci 2020; 27:3489-3498. [PMID: 33304160 PMCID: PMC7715022 DOI: 10.1016/j.sjbs.2020.09.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/17/2020] [Accepted: 09/20/2020] [Indexed: 11/26/2022] Open
Abstract
In spite of availability of several plastomes representing different tribes of Plantaginaceae, sparse attempts have been made to understand the plastome structure, evolution, and phylogenomics. In the present study, we have made an effort to understand the gene content and plastome evolution in the family Plantaginaceae using the newly generated plastome sequence of Veronica ovata subsp. kiusiana, a taxon native to SE Asia. In the first-ever attempt, plastomes of seven out of 10 tribes of Plantaginaceae have been compared to understand the evolution across the tribes of Plantaginaceae. The size of the plastome of V. ovata subsp. kiusiana is 152,249 bp, showing a typical quadripartite structure containing LSC, SSC, and two IRs with the sizes of 83,187, 17,704, and 25,679 respectively. The plastome comparison revealed the unique deletions in ycf2 and ndhF genes of members of different tribes, and also revealed high nucleotide variable hotspots. The study also revealed six highly variable genes and intergenic spacer viz. rps16, rps15-ycf1, ccsA-ndhD, ndhC-trnV, petN-psbM, and ycf1-trnN as potential DNA barcodes for the genus Veronica. The phylogenomic study revealed the sister relationship between V. ovata subsp. kiusiana and V. persica and also suggested the tentative placement of seven tribes in the family Plantaginaceae.
Collapse
Affiliation(s)
- Satish Maurya
- Biodiversity & Palaeobiology Group, Agharkar Research Institute, Pune 411 004, India
| | - Ashwini M Darshetkar
- Biodiversity & Palaeobiology Group, Agharkar Research Institute, Pune 411 004, India
| | - Dong-Keun Yi
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Jinki Kim
- Seed Vault Center, Baekdudaegan National Arboretum, Gyeongsangbuk-do 36209, Republic of Korea
| | - Changyoung Lee
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - M Ajmal Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sangho Choi
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | | | - Soo-Yong Kim
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| |
Collapse
|
34
|
Complete Chloroplast Genome Characterization of Oxalis Corniculata and Its Comparison with Related Species from Family Oxalidaceae. PLANTS 2020; 9:plants9080928. [PMID: 32717796 PMCID: PMC7464629 DOI: 10.3390/plants9080928] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/14/2020] [Accepted: 07/17/2020] [Indexed: 01/20/2023]
Abstract
Oxalis corniculata L. (family Oxalidaceae) is a small creeper wood sorrel plant that grows well in moist climates. Despite being medicinally important, little is known about the genomics of this species. Here, we determined the complete chloroplast genome sequence of O. corniculata for the first time and compared it with other members of family Oxalidaceae. The genome was 152,189 bp in size and comprised of a pair of 25,387 bp inverted repeats (IR) that separated a large 83,427 bp single copy region (LSC) and a small 16,990 bp single copy region (SSC). The chloroplast genome of O. corniculata contains 131 genes with 83 protein coding genes, 40 tRNA genes, and 8 rRNA genes. The analysis revealed 46 microsatellites, of which 6 were present in coding sequences (CDS) regions, 34 in the LSC, 8 in the SSC, and 2 in the single IR region. Twelve palindromic repeats, 30 forward repeats, and 32 tandem repeats were also detected. Chloroplast genome comparisons revealed an overall high degree of sequence similarity between O. corniculata and O. drummondii and some divergence in the intergenic spacers of related species in Oxalidaceae. Furthermore, the seven most divergent genes (ccsA, clpP, rps8, rps15, rpl22, matK, and ycf1) among genomes were observed. Phylogenomic characterization on the basis of 60 shared genes revealed that O. corniculata is closely related to O. drummondii. The complete O. corniculata genome sequenced in the present study is a valuable resource for investigating the population and evolutionary genetics of family Oxalidaceae and can be used to identify related species.
Collapse
|
35
|
Min J, Tao T. Characterization of the complete chloroplast genome of Plantago media, a Chinese herb from China. MITOCHONDRIAL DNA PART B 2020. [DOI: 10.1080/23802359.2020.1751002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Jie Min
- The Third Hospital of Nanchang, Nanchang, Jiangxi, China
| | - Tao Tao
- The Third Hospital of Nanchang, Nanchang, Jiangxi, China
| |
Collapse
|