1
|
Paganová V, Hus M, Lichtnerová H, Žiarovská J, Moravčíková D, Kučka M, Ražná K, Abbas A. Physiological and Molecular Responses of Pyrus pyraster Seedlings to Salt Treatment Analyzed by miRNA and Cytochrome P450 Gene-Based Markers. PLANTS (BASEL, SWITZERLAND) 2024; 13:261. [PMID: 38256814 PMCID: PMC10820964 DOI: 10.3390/plants13020261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/09/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024]
Abstract
Physiological and molecular marker-based changes were studied in the tissues of two-year-old Pyrus pyraster (L.) Burgsd. seedlings under salt treatment. For 60 days, 5 mL of 100 mM NaCl solution was applied to each plant per day to a cumulative volume of 300 mL in the substrate. In response to osmotic stress, the seedlings increased their water use efficiency (WUE) on day 20 of regular NaCl application and maintained a stable net photosynthetic rate (An) per unit area. Under conditions of increasing salinity, the young plants maintained a balanced water regime of the leaf tissues (Ψwl). The seedlings invested mass to their root growth (R/S), retained a substantial portion (72%) of Na+ ions in the roots, and protected their leaves against intoxication and damage. A significant decrease in the leaf gas exchange parameters (gs, E, An) was manifested on day 60 of the experiment when the cumulative NaCl intake was 300 mL per plant. The variability in the reactions of the seedlings to salinity is related to the use of open-pollinated progeny (54 genotypes) in the experiment. Lus-miR168 showed tissue- and genotype-specific genome responses to the applied stress. Polymorphic miRNA-based loci were mostly detected in the root samples on the 20th and 35th days of the experiment. The cumulative effect of the salt treatment was reflected in the predominance of polymorphic loci in the leaves. We can confirm that miRNA-based markers represent a sensitive detection tool for plant stress response on an individual level. The screening and selection of the optimal type of miRNA for this type of research is crucial. The cytochrome P450-Based Analog (PBA) techniques were unable to detect polymorphism among the control and treated seedlings, except for the primer pair CYP2BF+R, where, in the roots of the stressed plant, insertions in the amplicons were obtained. The expression ratios of cytochrome P450 in the salt-stressed plants were higher in the roots in the case of 20/100 mL and in the leaves with higher doses. The observed physiological and molecular responses to salinity reflect the potential of P. pyraster seedlings in adaptation to osmotic and ionic stress.
Collapse
Affiliation(s)
- Viera Paganová
- Institute of Landscape Architecture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, 949 76 Nitra, Slovakia; (M.H.); (H.L.)
| | - Marek Hus
- Institute of Landscape Architecture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, 949 76 Nitra, Slovakia; (M.H.); (H.L.)
| | - Helena Lichtnerová
- Institute of Landscape Architecture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, 949 76 Nitra, Slovakia; (M.H.); (H.L.)
| | - Jana Žiarovská
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, 949 76 Nitra, Slovakia; (J.Ž.); (D.M.); (M.K.); (K.R.); (A.A.)
| | - Dagmar Moravčíková
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, 949 76 Nitra, Slovakia; (J.Ž.); (D.M.); (M.K.); (K.R.); (A.A.)
| | - Matúš Kučka
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, 949 76 Nitra, Slovakia; (J.Ž.); (D.M.); (M.K.); (K.R.); (A.A.)
| | - Katarína Ražná
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, 949 76 Nitra, Slovakia; (J.Ž.); (D.M.); (M.K.); (K.R.); (A.A.)
| | - Aqsa Abbas
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, 949 76 Nitra, Slovakia; (J.Ž.); (D.M.); (M.K.); (K.R.); (A.A.)
| |
Collapse
|
2
|
Vignesh P, Mahadevaiah C, Selvamuthu K, Mahadeva Swamy HK, Sreenivasa V, Appunu C. Comparative genome-wide characterization of salt responsive micro RNA and their targets through integrated small RNA and de novo transcriptome profiling in sugarcane and its wild relative Erianthus arundinaceus. 3 Biotech 2024; 14:24. [PMID: 38162015 PMCID: PMC10756875 DOI: 10.1007/s13205-023-03867-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 11/24/2023] [Indexed: 01/03/2024] Open
Abstract
Soil salinity and saline irrigation water are major constraints in sugarcane affecting the production of cane and sugar yield. To understand the salinity induced responses and to identify novel genomic resources, integrated de novo transcriptome and small RNA sequencing in sugarcane wild relative, Erianthus arundinaceus salt tolerant accession IND 99-907 and salt-sensitive sugarcane genotype Co 97010 were performed. A total of 362 known miRNAs belonging to 62 families and 353 miRNAs belonging to 63 families were abundant in IND 99-907 and Co 97010 respectively. The miRNA families such as miR156, miR160, miR166, miR167, miR169, miR171, miR395, miR399, miR437 and miR5568 were the most abundant with more than ten members in both genotypes. The differential expression analysis of miRNA reveals that 221 known miRNAs belonging to 48 families and 130 known miRNAs belonging to 42 families were differentially expressed in IND 99-907 and Co 97010 respectively. A total of 12,693 and 7982 miRNA targets against the monoploid mosaic genome and a total of 15,031 and 12,152 miRNA targets against the de novo transcriptome were identified for differentially expressed known miRNAs of IND 99-907 and Co 97010 respectively. The gene ontology (GO) enrichment analysis of the miRNA targets revealed that 24, 12 and 14 enriched GO terms (FDR < 0.05) for biological process, molecular function and cellular component respectively. These miRNAs have many targets that associated in regulation of biotic and abiotic stresses. Thus, the genomic resources generated through this study are useful for sugarcane crop improvement through biotechnological and advanced breeding approaches. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03867-7.
Collapse
Affiliation(s)
- Palanisamy Vignesh
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu 641007 India
| | - Channappa Mahadevaiah
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu 641007 India
- ICAR-Indian Institute of Horticultural Research, Hesaraghatta Lake Post, Bangalore, 560089 India
| | - Kannan Selvamuthu
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu 641007 India
| | | | - Venkatarayappa Sreenivasa
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu 641007 India
| | - Chinnaswamy Appunu
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu 641007 India
| |
Collapse
|
3
|
Xu X, Zhang C, Xu X, Cai R, Guan Q, Chen X, Chen Y, Zhang Z, XuHan X, Lin Y, Lai Z. Riboflavin mediates m6A modification targeted by miR408, promoting early somatic embryogenesis in longan. PLANT PHYSIOLOGY 2023; 192:1799-1820. [PMID: 36930572 PMCID: PMC10315286 DOI: 10.1093/plphys/kiad139] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Plant somatic embryogenesis (SE) is an in vitro biological process wherein bipolar structures are induced to form somatic cells and regenerate into whole plants. MicroRNA (miRNA) is an essential player in plant SE. However, the mechanism of microRNA408 (miR408) in SE remains elusive. Here, we used stable transgenic technology in longan (Dimocarpus longan) embryogenic calli to verify the mechanism by which miR408 promotes cell division and differentiation of longan early SE. dlo-miR408-3p regulated riboflavin biosynthesis by targeting nudix hydrolase 23 (DlNUDT23), a previously unidentified gene mediating N6-methyladenosine (m6A) modification and influencing RNA homeostasis and cell cycle gene expression during longan early SE. We showed that DlMIR408 overexpression (DlMIR408-OE) promoted 21-nt miRNA biosynthesis. In DlMIR408-OE cell lines, dlo-miR408-3p targeted and downregulated DlNUDT23, promoted riboflavin biosynthesis, decreased flavin mononucleotide (FMN) accumulation, promoted m6A level, and influenced miRNA homeostasis. DNA replication, glycosylphosphatidylinositol (GPI)-anchor biosynthesis, the pentose phosphate pathway, and taurine and hypotaurine metabolism were also closely associated with riboflavin metabolism. In a riboflavin feeding assay, dlo-miR408-3p and pre-miR408 were upregulated and DlNUDT23 was downregulated, increasing the m6A level and cell division and differentiation in longan globular embryos. When riboflavin biosynthesis was inhibited, dlo-miR408-3p was downregulated and DlNUDT23 was upregulated, which decreased m6A modification and inhibited cell division but did not inhibit cell differentiation. FMN artificial demethylated m6A modification affected the homeostasis of precursor miRNA and miRNA. Our results revealed a mechanism underlying dlo-miR408-3p-activated riboflavin biosynthesis in which DlNUDT23 is targeted, m6A modification is dynamically mediated, and cell division is affected, promoting early SE in plants.
Collapse
Affiliation(s)
- Xiaoping Xu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350003, China
| | - Chunyu Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xiaoqiong Xu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Roudi Cai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Qingxu Guan
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xiaohui Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yukun Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Zihao Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xu XuHan
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Institut de la Recherche Interdisciplinaire de Toulouse, IRIT-ARI, 31300 Toulouse, France
| | - Yuling Lin
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Zhongxiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| |
Collapse
|
4
|
Xu XP, Cao QY, Guan QX, Mohammadi MA, Di Cai R, Chen XH, Zhang ZH, Chen YK, Xuhan X, Lin YL, Lai ZX. Genome-wide identification of miRNAs and targets associated with cell wall biosynthesis: Differential roles of dlo-miR397a and dlo-miR408-3p during early somatic embryogenesis in longan. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 323:111372. [PMID: 35863557 DOI: 10.1016/j.plantsci.2022.111372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 06/12/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
The dynamic alterations in cell wall (CW) biosynthesis play an essential role in physiological isolation during the plant somatic embryogenesis (SE). However, the mechanisms underlying the functions of cell wall-associated miRNAs (CW-miRNA) remain poorly understood in plant SE. Here, we have identified 36 distinct candidate miRNAs associated with CW biosynthesis from longan third-generation genome as well as miRNA transcriptome, and modified RLM-RACE validated four distinct miRNA, which specifically targeted four CW-related genes. More importantly, we found that the dlo-miR397a-antagomir significantly enhanced DlLAC7 expression and improved laccase activity. Interestingly, inhibition of dlo-miR397a increased CW lignin deposition and promoted the tightening of protodermal cell by miRNA-mimic technology during early SE. Moreover, overexpression of dlo-miR408-3p (dlo-miR408-3p-agomir) markedly decreased DlLAC12 expression. dlo-miR408-3p-agomir activated rapid cell division, thus promoting the globular embryo (GE) development, which might be due to high DNA synthesis activity in protoepidermal cells, rather than affecting lignin synthesis. The subcellular location also indicated that both DlLAC7 and DlLAC12 proteins were primarily localized in CW and regulated CW biosynthesis. Overall, our findings provided new insight on the molecular regulatory networks comprising various miRNAs associated with cell wall, and established that dlo-miR397a and dlo-miR408-3p played differential roles during early SE in longan. The findings also shed some light on the potential role of miRNA target DlLAC regulating in vivo embryonic development of plant.
Collapse
Affiliation(s)
- Xiao Ping Xu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350003, China
| | - Qing Ying Cao
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Qing Xu Guan
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Mohammad Aqa Mohammadi
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Rou Di Cai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xiao Hui Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Zi Hao Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yu Kun Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xu Xuhan
- Institut de la Recherche Interdisciplinaire de Toulouse, IRIT-ARI, 31300 Toulouse, France
| | - Yu Ling Lin
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Zhong Xiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
5
|
Wong GY, Millar AA. TRUEE; a bioinformatic pipeline to define the functional microRNA targetome of Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1476-1492. [PMID: 35352405 PMCID: PMC9324967 DOI: 10.1111/tpj.15751] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Central to plant microRNA (miRNA) biology is the identification of functional miRNA-target interactions (MTIs). However, the complementarity basis of bioinformatic target prediction results in mostly false positives, and the degree of complementarity does not equate with regulation. Here, we develop a bioinformatic workflow named TRUEE (Targets Ranked Using Experimental Evidence) that ranks MTIs on the extent to which they are subjected to miRNA-mediated cleavage. It sorts predicted targets into high (HE) and low evidence (LE) groupings based on the frequency and strength of miRNA-guided cleavage degradome signals across multiple degradome experiments. From this, each target is assigned a numerical value, termed a Category Score, ranking the extent to which it is subjected to miRNA-mediated cleavage. As a proof-of-concept, the 428 Arabidopsis miRNAs annotated in miRBase were processed through the TRUEE pipeline to determine the miRNA 'targetome'. The majority of high-ranking Category Score targets corresponded to highly conserved MTIs, validating the workflow. Very few Arabidopsis-specific, Brassicaceae-specific, or Conserved-passenger miRNAs had HE targets with high Category Scores. In total, only several hundred MTIs were found to have Category Scores characteristic of currently known physiologically significance MTIs. Although non-exhaustive, clearly the number of functional MTIs is much narrower than many studies claim. Therefore, using TRUEE to numerically rank targets directly on experimental evidence has given insights into the scope of the functional miRNA targetome of Arabidopsis.
Collapse
Affiliation(s)
- Gigi Y. Wong
- Division of Plant Science, Research School of BiologyThe Australian National UniversityCanberraACT2601Australia
| | - Anthony A. Millar
- Division of Plant Science, Research School of BiologyThe Australian National UniversityCanberraACT2601Australia
| |
Collapse
|
6
|
The Evolution and Functional Roles of miR408 and Its Targets in Plants. Int J Mol Sci 2022; 23:ijms23010530. [PMID: 35008962 PMCID: PMC8745667 DOI: 10.3390/ijms23010530] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/21/2021] [Accepted: 12/29/2021] [Indexed: 12/20/2022] Open
Abstract
MicroRNA408 (miR408) is an ancient and highly conserved miRNA, which is involved in the regulation of plant growth, development and stress response. However, previous research results on the evolution and functional roles of miR408 and its targets are relatively scattered, and there is a lack of a systematic comparison and comprehensive summary of the detailed evolutionary pathways and regulatory mechanisms of miR408 and its targets in plants. Here, we analyzed the evolutionary pathway of miR408 in plants, and summarized the functions of miR408 and its targets in regulating plant growth and development and plant responses to various abiotic and biotic stresses. The evolutionary analysis shows that miR408 is an ancient and highly conserved microRNA, which is widely distributed in different plants. miR408 regulates the growth and development of different plants by down-regulating its targets, encoding blue copper (Cu) proteins, and by transporting Cu to plastocyanin (PC), which affects photosynthesis and ultimately promotes grain yield. In addition, miR408 improves tolerance to stress by down-regulating target genes and enhancing cellular antioxidants, thereby increasing the antioxidant capacity of plants. This review expands and promotes an in-depth understanding of the evolutionary and regulatory roles of miR408 and its targets in plants.
Collapse
|
7
|
Cui Y, Bian J, Guan Y, Xu F, Han X, Deng X, Liu X. Genome-Wide Analysis and Expression Profiles of Ethylene Signal Genes and Apetala2/Ethylene-Responsive Factors in Peanut ( Arachis hypogaea L.). FRONTIERS IN PLANT SCIENCE 2022; 13:828482. [PMID: 35371146 PMCID: PMC8968948 DOI: 10.3389/fpls.2022.828482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/14/2022] [Indexed: 05/05/2023]
Abstract
Peanut is an important oil and economic crop widely cultivated in the world. It has special characteristics such as blooming on the ground but bearing fruits underground. During the peg penetrating into the ground, it is subjected to mechanical stress from the soil at the same time. It has been proved that mechanical stress affects plant growth and development by regulating the ethylene signaling-related genes. In this study, we identified some genes related to ethylene signal of peanut, including 10 ethylene sensors, two constitutive triple responses (CTRs), four ethylene insensitive 2 (EIN2s), four ethylene insensitive 3 (EIN3s), six EIN3-binding F-box proteins (EBFs), and 188 Apetala2/ethylene-responsive factors (AP2/ERFs). One hundred and eighty-eight AP2/ERFs were further divided into four subfamilies, 123 ERFs, 56 AP2s, 6 Related to ABI3/VP1 (RAVs), and three Soloists, of them one hundred and seventy AP2/ERF gene pairs were clustered into segmental duplication events in genome of Arachis hypogaea. A total of 134, 138, 97, and 150 AhAP2/ERF genes formed 210, 195, 166, and 525 orthologous gene pairs with Arachis duranensis, Arachis ipaensis, Arabidopsis thaliana, and Glycine max, respectively. Our transcriptome results showed that two EIN3s (Arahy.J729H0 and Arahy.S7XF8N) and one EBFs (Arahy.G4JMEM) were highly expressed when mechanical stress increased. Among the 188 AhAP2/ERF genes, there were 31 genes with the fragments per kilobase of exon model per million mapped fragments (FPKM) ≥ 100 at least one of the 15 samples of Tifrunner. Among them, three AhAP2/ERFs (Arahy.15RATX, Arahy.FAI7YU, and Arahy.452FBF) were specifically expressed in seeds and five AhAP2/ERFs (Arahy.HGAZ7D, Arahy.ZW7540, Arahy.4XS3FZ, Arahy.QGFJ76, and Arahy.AS0C7C) were highly expressed in the tissues, which responded mechanical stress, suggesting that they might sense mechanical stress. Mechanical stress simulation experiment showed that three AhAP2/ERFs (Arahy.QGFJ76, Arahy.AS0C7C, and Arahy.HGAZ7D) were sensitive to mechanical stress changes and they all had the conservative repressor motif (DLNXXP) in the C-terminus, indicated that they might transmit mechanical stress signals through transcriptional inhibition. This study reveals the regulatory landscape of ethylene signal-related genes in peanut, providing valuable information for the mining of target genes for further study.
Collapse
Affiliation(s)
- Yuanyuan Cui
- Institute of Advanced Agricultural Science, Peking University, Weifang, China
- School of Advanced Agricultural Sciences, Peking University, Beijing, China
| | - Jianxin Bian
- Institute of Advanced Agricultural Science, Peking University, Weifang, China
| | - Yu Guan
- Institute of Advanced Agricultural Science, Peking University, Weifang, China
| | - Fangtao Xu
- Institute of Advanced Agricultural Science, Peking University, Weifang, China
| | - Xue Han
- Institute of Advanced Agricultural Science, Peking University, Weifang, China
- School of Advanced Agricultural Sciences, Peking University, Beijing, China
| | - Xingwang Deng
- Institute of Advanced Agricultural Science, Peking University, Weifang, China
- School of Advanced Agricultural Sciences, Peking University, Beijing, China
- *Correspondence: Xingwang Deng,
| | - Xiaoqin Liu
- Institute of Advanced Agricultural Science, Peking University, Weifang, China
- Xiaoqin Liu,
| |
Collapse
|
8
|
Exhaustive Plant Profile of “Dimocarpus longan Lour” with Significant Phytomedicinal Properties: A Literature Based-Review. Processes (Basel) 2021. [DOI: 10.3390/pr9101803] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background: “Dimocarpus longan Lour” is a tropical and subtropical evergreen tree species mainly found in China, India, and Thailand; this plant, found naturally in Bangladesh, even locally, is used as “kaviraj” medication for treating different diseases, such as gastrointestinal disorders, wounds, fever, snake bites, menstrual problem, chickenpox, bone fractures, neurological disorders, and reproductive health. Different parts of this plant, especially juice pulp, pericarp, seeds, leaves, and flowers, contain a diverse group of botanical phytocompounds, and nutrient components which are directly related to alleviating numerous diseases. This literature-based review provides the most up-to-date data on the ethnomedicinal usages, phytochemical profiling, and bio-pharmacological effects of D. longan Lour based on published scientific articles. Methodology: A literature-based review was conducted by collecting information from various published papers in reputable journals and cited organizations. ChemDraw, a commercial software package, used to draw the chemical structure of the phytochemicals. Results: Various phytochemicals such as flavonoids, tannins, and polyphenols were collected from the various sections of the plant, and other compounds like vitamins and minerals were also obtained from this plant. As a treating agent, this plant displayed many biologicals activities, such as anti-proliferative, antioxidant, anti-cancer, anti-tyrosinase, radical scavenging activity, anti-inflammatory activity, anti-microbial, activation of osteoblast differentiation, anti-fungal, immunomodulatory, probiotic, anti-aging, anti-diabetic, obesity, neurological issues, and suppressive effect on macrophages cells. Different plant parts have displayed better activity in different disease conditions. Still, the compounds, such as gallic acid, ellagic acid, corilagin acid, quercetin, 4-O-methyl gallic acid, and (-)-epicatechin showed better activity in the biological system. Gallic acid, corilagin, and ellagic acid strongly exhibited anti-cancer activity in the HepG2, A549, and SGC 7901 cancer cell lines. Additionally, 4-O-methyl gallic acid and (-)-epicatechin have displayed outstanding antioxidant activity as well as anti-cancer activity. Conclusion: This plant species can be considered an alternative source of medication for some diseases as it contains a potential group of chemical constituents.
Collapse
|
9
|
Zou H, Guo X, Yang R, Wang S, Li L, Niu J, Wang D, Cao X. MiR408- SmLAC3 Module Participates in Salvianolic Acid B Synthesis in Salvia miltiorrhiza. Int J Mol Sci 2021; 22:ijms22147541. [PMID: 34299156 PMCID: PMC8306038 DOI: 10.3390/ijms22147541] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 11/21/2022] Open
Abstract
MicroRNAs (miRNAs) are important regulators of gene expression involved in plant development and abiotic stress responses. Recently, miRNAs have also been reported to be engaged in the regulation of secondary plant metabolism. However, there are few functional studies of miRNAs in medicinal plants. For this study, we obtained Sm-miR408 interference lines to investigate the function of Sm-miR408 in a medicinal model plant (Salvia miltiorrhiza). It was found that inhibiting the expression of Sm-miR408 could increase the content of salvianolic acid B and rosmarinic acid in the roots. The SmLAC3 and Sm-miR408 expression patterns were analyzed by qRT-PCR. A 5’ RLM-RACE assay confirmed that Sm-miR408 targets and negatively regulates SmLAC3. Moreover, the overexpression of SmLAC3 in S. miltiorrhiza promoted the accumulation of salvianolic acids in the roots. Furthermore, the lignin content of the roots in overexpressed SmLAC3 lines was decreased. Taken together, these findings indicated that Sm-miR408 modulates the accumulation of phenolic acids in S. miltiorrhiza by targeting SmLAC3 expression levels.
Collapse
|
10
|
Qin Z, Li J, Zhang Y, Xiao Y, Zhang X, Zhong L, Liu H, Chen B. Genome-wide identification of microRNAs involved in the somatic embryogenesis of Eucalyptus. G3-GENES GENOMES GENETICS 2021; 11:6163290. [PMID: 33693674 PMCID: PMC8049409 DOI: 10.1093/g3journal/jkab070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/24/2021] [Accepted: 02/27/2021] [Indexed: 11/13/2022]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs (18-24 nt) and function in many biological processes in plants. Although Eucalyptus trees are widely planted across the world, our understanding of the miRNA regulation in the somatic embryogenesis (SE) of Eucalyptus is still poor. Here we reported, for the first time, the miRNA profiles of differentiated and dedifferentiated tissues of two Eucalyptus species and identified miRNAs involved in SE of Eucalyptus. Stem and tissue culture-induced callus were obtained from the subculture seedlings of E. camaldulensis and E. grandis x urophylla and were used as differentiated and dedifferentiated samples, respectively. Small RNA sequencing generated 304.2 million clean reads for the Eucalyptus samples (n = 3) and identified 888 miRNA precursors (197 known and 691 novel) for Eucalyptus. These miRNAs were mainly distributed in chromosomes Chr03, Chr05, and Chr08 and can produce 46 miRNA clusters. Then, we identified 327 and 343 differentially expressed miRNAs (DEmiRs) in the dedifferentiation process of E. camaldulensis and E. grandis x urophylla, respectively. DEmiRs shared by the two Eucalyptus species might be involved in the development of embryonic callus, such as MIR156, MIR159, MIR160, MIR164, MIR166, MIR169, MIR171, MIR399, and MIR482. Notably, we identified 81 upregulated and 67 downregulated miRNAs specific to E. camaldulensis, which might be associated with the high embryogenic potential. Target prediction and functional analysis showed that they might be involved in longevity regulating and plant hormone signal transduction pathways. Further, using the gene expression profiles, we observed the negative regulation of miRNA-target pairs, such as MIR160~ARF18, MIR396~GRF6, MIR166~ATHB15/HD-ZIP, and MIR156/MIR157~SPL1. Interestingly, transcription factors such as WRKY, MYB, GAMYB, TCP4, and PIL1 were found to be regulated by the DEmiRs. The genes encoding PIL1 and RPS21C, regulated by upregulated miRNAs (e.g., egd-N-miR63-5p, egd-N-miR63-5p, and MIR169,) were downregulated exclusively in the dedifferentiation of E. camaldulensis. This is the first time to study the miRNA regulation in the dedifferentiation process of Eucalyptus and it will provide a valuable resource for future studies. More importantly, it will improve our understanding of miRNA regulation during the somatic embryogenesis of Eucalyptus and benefit the Eucalyptus breeding program.
Collapse
Affiliation(s)
- Zihai Qin
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, Nanning 530002, China
| | - Junji Li
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, Nanning 530002, China
| | - Ye Zhang
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, Nanning 530002, China
| | - Yufei Xiao
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, Nanning 530002, China
| | - Xiaoning Zhang
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, Nanning 530002, China
| | - Lianxiang Zhong
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, Nanning 530002, China
| | - Hailong Liu
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, Nanning 530002, China
| | - Bowen Chen
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, Nanning 530002, China
| |
Collapse
|
11
|
Mehdi SMM, Krishnamoorthy S, Szczesniak MW, Ludwików A. Identification of Novel miRNAs and Their Target Genes in the Response to Abscisic Acid in Arabidopsis. Int J Mol Sci 2021; 22:7153. [PMID: 34281207 PMCID: PMC8268864 DOI: 10.3390/ijms22137153] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022] Open
Abstract
miRNAs are involved in various biological processes, including adaptive responses to abiotic stress. To understand the role of miRNAs in the response to ABA, ABA-responsive miRNAs were identified by small RNA sequencing in wild-type Arabidopsis, as well as in abi1td, mkkk17, and mkkk18 mutants. We identified 10 novel miRNAs in WT after ABA treatment, while in abi1td, mkkk17, and mkkk18 mutants, three, seven, and nine known miRNAs, respectively, were differentially expressed after ABA treatment. One novel miRNA (miRn-8) was differentially expressed in the mkkk17 mutant. Potential target genes of the miRNA panel were identified using psRNATarget. Sequencing results were validated by quantitative RT-PCR of several known and novel miRNAs in all genotypes. Of the predicted targets of novel miRNAs, seven target genes of six novel miRNAs were further validated by 5' RLM-RACE. Gene ontology analyses showed the potential target genes of ABA-responsive known and novel miRNAs to be involved in diverse cellular processes in plants, including development and stomatal movement. These outcomes suggest that a number of the identified miRNAs have crucial roles in plant responses to environmental stress, as well as in plant development, and might have common regulatory roles in the core ABA signaling pathway.
Collapse
Affiliation(s)
- Syed Muhammad Muntazir Mehdi
- Laboratory of Biotechnology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland; (S.M.M.M.); (S.K.)
| | - Sivakumar Krishnamoorthy
- Laboratory of Biotechnology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland; (S.M.M.M.); (S.K.)
| | - Michal Wojciech Szczesniak
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland;
| | - Agnieszka Ludwików
- Laboratory of Biotechnology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland; (S.M.M.M.); (S.K.)
| |
Collapse
|
12
|
MicroRNA Zma-miR528 Versatile Regulation on Target mRNAs during Maize Somatic Embryogenesis. Int J Mol Sci 2021; 22:ijms22105310. [PMID: 34069987 PMCID: PMC8157881 DOI: 10.3390/ijms22105310] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 11/17/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate the accumulation and translation of their target mRNAs through sequence complementarity. miRNAs have emerged as crucial regulators during maize somatic embryogenesis (SE) and plant regeneration. A monocot-specific miRNA, mainly accumulated during maize SE, is zma-miR528. While several targets have been described for this miRNA, the regulation has not been experimentally confirmed for the SE process. Here, we explored the accumulation of zma-miR528 and several predicted targets during embryogenic callus induction, proliferation, and plantlet regeneration using the maize cultivar VS-535. We confirmed the cleavage site for all tested zma-miR528 targets; however, PLC1 showed very low levels of processing. The abundance of zma-miR528 slightly decreased in one month-induced callus compared to the immature embryo (IE) explant tissue. However, it displayed a significant increase in four-month sub-cultured callus, coincident with proliferation establishment. In callus-regenerated plantlets, zma-miR528 greatly decreased to levels below those observed in the initial explant. Three of the target transcripts (MATE, bHLH, and SOD1a) showed an inverse correlation with the miRNA abundance in total RNA samples at all stages. Using polysome fractionation, zma-miR528 was detected in the polysome fraction and exhibited an inverse distribution with the PLC1 target, which was not observed at total RNA. Accordingly, we conclude that zma-miR528 regulates multiple target mRNAs during the SE process by promoting their degradation, translation inhibition or both.
Collapse
|
13
|
|
14
|
Alves A, Cordeiro D, Correia S, Miguel C. Small Non-Coding RNAs at the Crossroads of Regulatory Pathways Controlling Somatic Embryogenesis in Seed Plants. PLANTS (BASEL, SWITZERLAND) 2021; 10:504. [PMID: 33803088 PMCID: PMC8001652 DOI: 10.3390/plants10030504] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 11/25/2022]
Abstract
Small non-coding RNAs (sncRNAs) are molecules with important regulatory functions during development and environmental responses across all groups of terrestrial plants. In seed plants, the development of a mature embryo from the zygote follows a synchronized cell division sequence, and growth and differentiation events regulated by highly regulated gene expression. However, given the distinct features of the initial stages of embryogenesis in gymnosperms and angiosperms, it is relevant to investigate to what extent such differences emerge from differential regulation mediated by sncRNAs. Within these, the microRNAs (miRNAs) are the best characterized class, and while many miRNAs are conserved and significantly represented across angiosperms and other seed plants during embryogenesis, some miRNA families are specific to some plant lineages. Being a model to study zygotic embryogenesis and a relevant biotechnological tool, we systematized the current knowledge on the presence and characterization of miRNAs in somatic embryogenesis (SE) of seed plants, pinpointing the miRNAs that have been reported to be associated with SE in angiosperm and gymnosperm species. We start by conducting an overview of sncRNA expression profiles in the embryonic tissues of seed plants. We then highlight the miRNAs described as being involved in the different stages of the SE process, from its induction to the full maturation of the somatic embryos, adding references to zygotic embryogenesis when relevant, as a contribution towards a better understanding of miRNA-mediated regulation of SE.
Collapse
Affiliation(s)
- Ana Alves
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisboa, Portugal;
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Daniela Cordeiro
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; (D.C.); (S.C.)
| | - Sandra Correia
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; (D.C.); (S.C.)
| | - Célia Miguel
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisboa, Portugal;
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
| |
Collapse
|
15
|
Xu X, Chen X, Shen X, Chen R, Zhu C, Zhang Z, Chen Y, Lin W, Xu X, Lin Y, Lai Z. Genome-wide identification and characterization of DEAD-box helicase family associated with early somatic embryogenesis in Dimocarpus longan Lour. JOURNAL OF PLANT PHYSIOLOGY 2021; 258-259:153364. [PMID: 33465637 DOI: 10.1016/j.jplph.2021.153364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/01/2021] [Accepted: 01/03/2021] [Indexed: 06/12/2023]
Abstract
DEAD-box (DDX) proteins belong to the largest subfamily of RNA helicase SF2, which contributes to all biological processes of RNA metabolism in the plant kingdom. Till now, no significant data are available regarding studies on DDX in Somatic Embryogenesis (SE) of woody plants. It is important to investigate the biological function of the DlDDX family in longan SE. Thus, a comprehensive analysis of 58 longan DEAD-box (DlDDX) genes characterization was performed by genome-wide identification and transcript abundance validation analysis. Homologous evolution has revealed that some DlDDXs in longan had high sequence similarity with Mus musculus, Citrus and Saccharomyces cerevisiae, indicating that DlDDXs were highly conservative in the animal, plant, and microorganism. Remarkably, gene duplication, purifying selection, and alternative splicing events, and new auxiliary domains have likely contributed to the functional evolution of DlDDX, indicating that DlDDX appeared neofunctionalization in longan. Besides, DlDDX3, 15, 28, 36 might interact with protein complex (MAC3A, MAC3B, CDC5, CBP20) of miRNA biosynthesis. Notably, DlDDX28 contained a novel auxiliary domain (CAF-1 p150), which might contribute to DNA demethylation in longan early SE. 4 DlDDX genes significantly expressed not only in early SE and zygotic embryogenesis (ZE) but also up-regulated at high levels in 'Honghezi' and 'Quanlongbaihe' with abortive seeds, which are of great significance. Moreover, some DlDDXs presented abiotic stress-response dynamic expression patterns by ABA, SA, JA, and NaCl treatments during early SE. Hence, DEAD-box is essential to SE development and seed abortive in longan.
Collapse
Affiliation(s)
- Xiaoping Xu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaohui Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xu Shen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Rongzhu Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chen Zhu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zihao Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yukun Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wenzhong Lin
- Quanzhou Agricultural Science Research Institute, Quanzhou, 362212, China
| | - Xuhan Xu
- Institut de la Recherche Interdisciplinaire de Toulouse, IRIT-ARI, 31300, Toulouse, France
| | - Yuling Lin
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Zhongxiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
16
|
Lin Y, Chen Y, Zeng Y, Zhang S, Zhang Z, Chen Y, Gong J, Lai Z. Molecular characterization of miRNA genes and their expression in Dimocarpus longan Lour. PLANTA 2021; 253:41. [PMID: 33475870 DOI: 10.1007/s00425-021-03564-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 01/02/2021] [Indexed: 06/12/2023]
Abstract
A genome-wide analysis of longan miRNA genes was conducted, and full-length pri-miRNA transcripts were cloned. Bioinformatics and expression analyses contributed to the functional characterization of longan miRNA genes. MicroRNAs are important for the post-transcriptional regulation of target genes. However, little is known about the transcription and regulation of miRNA genes in longan (Dimocarpus longan Lour.). In this study, 80 miRNA precursors (pre-miRNA) were predicted, and their secondary structure, size, conservation, and diversity were analyzed. Furthermore, the full-length cDNA sequences of 13 longan primary miRNAs (pri-miRNAs) were amplified by RLM-RACE and SMART-RACE and analyzed, which revealed that longan pri-miRNA transcripts have multiple transcription start sites (TSSs) and the downstream pre-miRNAs are polymorphic. Accordingly, the longan pri-miRNAs and protein-encoding genes may have similar transcriptional specificities. An analysis of the longan miRNA gene promoter elements indicated that the three most abundant cis-acting elements were light-responsive, stress-responsive, and hormone-responsive elements. A quantitative real-time PCR assay elucidated the potential spatial and temporal expression patterns of longan pre-miRNAs during the early stages of somatic embryogenesis (SE) and in different longan organs/tissues. This is the first report regarding the molecular characterization of miRNA genes and their expression profiles in longan. The generated data may serve as a foundation for future research aimed at clarifying the longan miRNA gene functions.
Collapse
Affiliation(s)
- Yuling Lin
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Yan Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Youjing Zeng
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Shuting Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Zihao Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - YuKun Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Jiawei Gong
- Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Zhongxiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
| |
Collapse
|
17
|
Cao H, Zhang X, Ruan Y, Zhang L, Cui Z, Li X, Jia B. miRNA expression profiling and zeatin dynamic changes in a new model system of in vivo indirect regeneration of tomato. PLoS One 2020; 15:e0237690. [PMID: 33332392 PMCID: PMC7745965 DOI: 10.1371/journal.pone.0237690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/27/2020] [Indexed: 01/15/2023] Open
Abstract
Callus formation and adventitious shoot differentiation could be observed on the cut surface of completely decapitated tomato plants. We propose that this process can be used as a model system to investigate the mechanisms that regulate indirect regeneration of higher plants without the addition of exogenous hormones. This study analyzed the patterns of trans-zeatin and miRNA expression during in vivo regeneration of tomato. Analysis of trans-zeatin revealed that the hormone cytokinin played an important role in in vivo regeneration of tomato. Among 183 miRNAs and 1168 predicted target genes sequences identified, 93 miRNAs and 505 potential targets were selected based on differential expression levels for further characterization. Expression patterns of six miRNAs, including sly-miR166, sly-miR167, sly-miR396, sly-miR397, novel 156, and novel 128, were further validated by qRT-PCR. We speculate that sly-miR156, sly-miR160, sly-miR166, and sly-miR397 play major roles in callus formation of tomato during in vivo regeneration by regulating cytokinin, IAA, and laccase levels. Overall, our microRNA sequence and target analyses of callus formation during in vivo regeneration of tomato provide novel insights into the regulation of regeneration in higher plants.
Collapse
Affiliation(s)
- Huiying Cao
- College of Biological Science and Technology, Liaoning Province Research Center of Plant Genetic Engineering Technology, Shenyang Key Laboratory of Maize Genomic Selection Breeding, Shenyang Agricultural University, Shenyang, China
| | - Xinyue Zhang
- College of Biological Science and Technology, Liaoning Province Research Center of Plant Genetic Engineering Technology, Shenyang Key Laboratory of Maize Genomic Selection Breeding, Shenyang Agricultural University, Shenyang, China
| | - Yanye Ruan
- College of Biological Science and Technology, Liaoning Province Research Center of Plant Genetic Engineering Technology, Shenyang Key Laboratory of Maize Genomic Selection Breeding, Shenyang Agricultural University, Shenyang, China
- * E-mail: (YR); (LZ)
| | - Lijun Zhang
- College of Biological Science and Technology, Liaoning Province Research Center of Plant Genetic Engineering Technology, Shenyang Key Laboratory of Maize Genomic Selection Breeding, Shenyang Agricultural University, Shenyang, China
- * E-mail: (YR); (LZ)
| | - Zhenhai Cui
- College of Biological Science and Technology, Liaoning Province Research Center of Plant Genetic Engineering Technology, Shenyang Key Laboratory of Maize Genomic Selection Breeding, Shenyang Agricultural University, Shenyang, China
| | - Xuxiao Li
- College of Biological Science and Technology, Liaoning Province Research Center of Plant Genetic Engineering Technology, Shenyang Key Laboratory of Maize Genomic Selection Breeding, Shenyang Agricultural University, Shenyang, China
| | - Bing Jia
- College of Biological Science and Technology, Liaoning Province Research Center of Plant Genetic Engineering Technology, Shenyang Key Laboratory of Maize Genomic Selection Breeding, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
18
|
miRNAs as key regulators via targeting the phytohormone signaling pathways during somatic embryogenesis of plants. 3 Biotech 2020; 10:495. [PMID: 33150121 DOI: 10.1007/s13205-020-02487-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/13/2020] [Indexed: 01/12/2023] Open
Abstract
Somatic embryogenesis is the regeneration of embryos from the somatic cell via dedifferentiation and redifferentiation without the occurrence of fertilization. A complex network of genes regulates the somatic embryogenesis process. Especially, microRNAs (miRNAs) have emerged as key regulators by affecting phytohormone biosynthesis, transport and signal transduction pathways. miRNAs are small, non-coding small RNA regulatory molecules involved in various developmental processes including somatic embryogenesis. Several types of miRNAs such as miR156, miR157, miR 159, miR 160, miR165, miR166, miR167, miR390, miR393 and miR396 have been reported to intricate in regulating somatic embryogenesis via targeting the phytohormone signaling pathways. Here we review current research progress on the miRNA-mediated regulation involved in somatic embryogenesis via regulating auxin, ethylene, abscisic acid and cytokinin signaling pathways. Further, we also discussed the possible role of other phytohormone signaling pathways such as gibberellins, jasmonates, nitric oxide, polyamines and brassinosteroids. Finally, we conclude by discussing the expression of miRNAs and their targets involved in somatic embryogenesis and possible regulatory mechanisms cross talk with phytohormones during somatic embryogenesis.
Collapse
|
19
|
Grzybkowska D, Nowak K, Gaj MD. Hypermethylation of Auxin-Responsive Motifs in the Promoters of the Transcription Factor Genes Accompanies the Somatic Embryogenesis Induction in Arabidopsis. Int J Mol Sci 2020; 21:E6849. [PMID: 32961931 PMCID: PMC7555384 DOI: 10.3390/ijms21186849] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/09/2020] [Accepted: 09/16/2020] [Indexed: 12/17/2022] Open
Abstract
The auxin-induced embryogenic reprogramming of plant somatic cells is associated with extensive modulation of the gene expression in which epigenetic modifications, including DNA methylation, seem to play a crucial role. However, the function of DNA methylation, including the role of auxin in epigenetic regulation of the SE-controlling genes, remains poorly understood. Hence, in the present study, we analysed the expression and methylation of the TF genes that play a critical regulatory role during SE induction (LEC1, LEC2, BBM, WUS and AGL15) in auxin-treated explants of Arabidopsis. The results showed that auxin treatment substantially affected both the expression and methylation patterns of the SE-involved TF genes in a concentration-dependent manner. The auxin treatment differentially modulated the methylation of the promoter (P) and gene body (GB) sequences of the SE-involved genes. Relevantly, the SE-effective auxin treatment (5.0 µM of 2,4-D) was associated with the stable hypermethylation of the P regions of the SE-involved genes and a significantly higher methylation of the P than the GB fragments was a characteristic feature of the embryogenic culture. The presence of auxin-responsive (AuxRE) motifs in the hypermethylated P regions suggests that auxin might substantially contribute to the DNA methylation-mediated control of the SE-involved genes.
Collapse
Affiliation(s)
| | | | - Małgorzata D. Gaj
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland; (D.G.); (K.N.)
| |
Collapse
|
20
|
Wójcik AM. Research Tools for the Functional Genomics of Plant miRNAs During Zygotic and Somatic Embryogenesis. Int J Mol Sci 2020; 21:E4969. [PMID: 32674459 PMCID: PMC7420248 DOI: 10.3390/ijms21144969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
Abstract
During early plant embryogenesis, some of the most fundamental decisions on fate and identity are taken making it a fascinating process to study. It is no surprise that higher plant embryogenesis was intensively analysed during the last century, while somatic embryogenesis is probably the most studied regeneration model. Encoded by the MIRNA, short, single-stranded, non-coding miRNAs, are commonly present in all Eukaryotic genomes and are involved in the regulation of the gene expression during the essential developmental processes such as plant morphogenesis, hormone signaling, and developmental phase transition. During the last few years dedicated to miRNAs, analytical methods and tools have been developed, which have afforded new opportunities in functional analyses of plant miRNAs, including (i) databases for in silico analysis; (ii) miRNAs detection and expression approaches; (iii) reporter and sensor lines for a spatio-temporal analysis of the miRNA-target interactions; (iv) in situ hybridisation protocols; (v) artificial miRNAs; (vi) MIM and STTM lines to inhibit miRNA activity, and (vii) the target genes resistant to miRNA. Here, we attempted to summarise the toolbox for functional analysis of miRNAs during plant embryogenesis. In addition to characterising the described tools/methods, examples of the applications have been presented.
Collapse
Affiliation(s)
- Anna Maria Wójcik
- University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Jagiellonska 28, 40-032 Katowice, Poland
| |
Collapse
|