1
|
Falconi-Páez C, Aldaz MAN, Navarro TG, González-Vaca CC, Campos LA, Davila-Sanchez A, Arrais CAG. How Universal Adhesive Systems With Nanoencapsulated Flavonoids Improve Long-Term Bonding to Caries-Affected Dentin. J ESTHET RESTOR DENT 2025. [PMID: 39894994 DOI: 10.1111/jerd.13426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/13/2025] [Accepted: 01/17/2025] [Indexed: 02/04/2025]
Abstract
OBJECTIVES To determine the presence of nano-encapsulated flavonoids and their effect in universal adhesives on resin-dentin bond-strength (μTBS) and nanoleakage (NL) on artificial caries-affected dentin (CAD) after 24-h and 6 months of water storage (WS). MATERIALS AND METHODS Artificial CAD was created on the occlusal dentin surfaces of 60 human third molars by a microbiological assay. Nanoencapsulated quercetin (Q) and naringin (N) were incorporated into Prime&Bond Universal (PBU; Dentsply-Sirona) and Single Bond Universal (SBU, 3M ESPE). The adhesive systems with and without (control) flavonoids were applied to the CAD surface, and a 4-mm resin composite block (TPH Spectrum, Dentsply Sirona) was built up and light-cured. Specimens were sectioned into resin-dentin beams (0.8 mm2). The hybrid layer (HL) was subjected to micro-Raman analysis to detect N and Q. The specimens were tested in tension in a universal testing machine at 0.5 mm/min. μTBS and NL tests were performed after 24-h and WS. μTBS and NL data were analyzed using a nonparametric three-way ANOVA test followed by Bonferroni's test (α = 5%). RESULTS Q and N were detected within the HL. N and Q nanocapsules increased μTBS and reduced NL values after WS. At 24 h, the PBU group showed higher NL values than the SBU group, and the values decreased after WS. CONCLUSIONS Incorporating nanoencapsulated flavonoids may improve the longevity of universal bonding systems applied to CAD. CLINICAL RELEVANCE Adhesive restorations incorporating nanoencapsulated quercetin or naringin might be a promising alternative for achieving long-term bonding stability.
Collapse
Affiliation(s)
- Camila Falconi-Páez
- Department of Restorative Dentistry, State University of Ponta Grossa, Av. General Carlos Cavalcanti, Ponta Grossa, Parana, Brazil
| | - Mayra Alejandra Nuñez Aldaz
- Department of Restorative Dentistry, State University of Ponta Grossa, Av. General Carlos Cavalcanti, Ponta Grossa, Parana, Brazil
- Department of Restorative Dentistry and Dental Materials, School of Dentistry, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Tobia Gastón Navarro
- Department of Restorative Dentistry, State University of Ponta Grossa, Av. General Carlos Cavalcanti, Ponta Grossa, Parana, Brazil
| | - Claudia Carolina González-Vaca
- Department of Restorative Dentistry and Dental Materials, School of Dentistry, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Lucas Arrais Campos
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- School of Dentistry, Campus Araraquara, São Paulo State University (UNESP), São Paulo, Brazil
- Institute of Dentistry, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Andres Davila-Sanchez
- Department of Restorative Dentistry and Dental Materials, School of Dentistry, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Cesar Augusto Galvão Arrais
- Department of Restorative Dentistry, State University of Ponta Grossa, Av. General Carlos Cavalcanti, Ponta Grossa, Parana, Brazil
| |
Collapse
|
2
|
Toledano M, Fernández-Romero E, Osorio MT, Osorio E, Aguilera FS, Toledano R, Osorio R. Investigation of the effect of Tideglusib on the hydroxyapatite formation, crystallinity and elasticity of conditioned resin-dentin interfaces. J Dent 2024; 150:105334. [PMID: 39218289 DOI: 10.1016/j.jdent.2024.105334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVES To investigate the effect of dentin infiltration with polymeric nanoparticles (NPs) doped with tideglusib (TDg) (TDg-NPs) on hydroxyapatite formation, crystallinity and elasticity of conditioned resin-dentin interfaces. METHODS Dentin conditioned surfaces were infiltrated with NPs or TDg-NPs. Bonded interfaces were created, stored for 24 h and submitted to mechanical and thermal challenging. Resin-dentin interfaces were evaluated through nanoindentation to determine the modulus of elasticity, X-ray diffraction and transmission electron microscopy through selected area diffraction and bright-filed imaging. RESULTS TDg-NPs provoked peaks narrowing after the diffraction-intensity analysis that corresponded with high crystallinity, with an increased modulus of Young after load cycling in comparison with the samples treated with undoped NPs. New minerals, in the group of TDg-NPs, showed the greatest both deviation of line profile from perfect crystal diffraction and dimension of the lattice strain, i.e., crystallite, grain size and microstrain and 002 plane-texture. The new minerals generated after TDg-NPs application and mechanical loading followed a well defined lineation. Undoped NPs mostly produced small hydroxyapatite crystallites, non crystalline or amorphous in nature with poor maturity. CONCLUSIONS Tideglusib promoted the precipitation of hydroxyapatite, as a major crystalline phase, at the intrafibrillar compartment of the collagen fibrils, enabling functional mineralization. TDg-NPs facilitated nucleation of crystals randomly oriented, showing less structural variation in angles and distances that improved crystallographic relative order of atoms and maturity. Nanocrystals inducted by TDg-NPs were hexagonal prisms of submicron size. Thermal challenging of dentin treated with TDg-NPs have provoked a decrease of functional mineralization and crystallinity, associated to immature hydroxyapatite. CLINICAL SIGNIFICANCE New polycrystalline lattice formation generated after TDg-NPs infiltration may become correlated with high mechanical performance. This association can be inferred from the superior crystallinity that was obtained in presence of tideglusib. Immature crystallites formed in dentin treated with undoped NPs will account for a high remineralizing activity.
Collapse
Affiliation(s)
- Manuel Toledano
- University of Granada, Faculty of Dentistry, Colegio Máximo de Cartuja s/n, Granada 18071, Spain
| | - Enrique Fernández-Romero
- University of Granada, Faculty of Dentistry, Colegio Máximo de Cartuja s/n, Granada 18071, Spain; Medicina Clínica y Salud Pública PhD Programme, University of Granada, Granada 18071, Spain
| | - María T Osorio
- University of Granada, Faculty of Dentistry, Colegio Máximo de Cartuja s/n, Granada 18071, Spain
| | - Estrella Osorio
- University of Granada, Faculty of Dentistry, Colegio Máximo de Cartuja s/n, Granada 18071, Spain
| | - Fátima S Aguilera
- University of Granada, Faculty of Dentistry, Colegio Máximo de Cartuja s/n, Granada 18071, Spain.
| | - Raquel Toledano
- University of Granada, Faculty of Dentistry, Colegio Máximo de Cartuja s/n, Granada 18071, Spain
| | - Raquel Osorio
- University of Granada, Faculty of Dentistry, Colegio Máximo de Cartuja s/n, Granada 18071, Spain
| |
Collapse
|
3
|
Lasota A, Gorzelak M, Turżańska K, Kłapeć W, Jarzębski M, Blicharski T, Pawlicz J, Wieruszewski M, Jabłoński M, Kuczumow A. The Ways of Forming and the Erosion/Decay/Aging of Bioapatites in the Context of the Reversibility of Apatites. Int J Mol Sci 2024; 25:11297. [PMID: 39457079 PMCID: PMC11508326 DOI: 10.3390/ijms252011297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
This study primarily focused on the acid erosion of enamel and dentin. A detailed examination of the X-ray diffraction data proves that the products of the acid-caused decay of enamel belong to the family of isomorphic bioapatites, especially calcium-deficient hydroxyapatites. They are on a trajectory towards less and less crystallized substances. The increase in Bragg's parameter d and the decrease in the energy necessary for the changes were coupled with variability in the pH. This was valid for the corrosive action of acid solutions with a pH greater than 3.5. When the processes of natural tooth aging were studied by X-ray diffraction, a clear similarity to the processes of the erosion of teeth was revealed. Scarce data on osteoporotic bones seemed to confirm the conclusions derived for teeth. The data concerning the bioapatite decays were confronted with the cycles of apatite synthesis/decay. The chemical studies, mainly concerning the Ca/P ratio in relation to the pH range of durability of popular compounds engaged in the synthesis/decay of apatites, suggested that the process of the formation of erosion under the influence of acids was much inverted in relation to the process of the formation of apatites, starting from brushite up to apatite, in an alkaline environment. Our simulations showed the shift between the family of bioapatites versus the family of apatites concerning the pH of the reaction environment. The detailed model stoichiometric equations associated with the particular stages of relevant processes were derived. The synthesis processes were alkalization reactions coupled with dehydration. The erosion processes were acid hydrolysis reactions. Formally, the alkalization of the environment during apatite synthesis is presented by introducing Ca(OH)2 to stoichiometric equations.
Collapse
Affiliation(s)
- Agnieszka Lasota
- Department of Maxillary Orthopaedics, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Mieczysław Gorzelak
- Department of Orthopaedics and Rehabilitation, Medical University of Lublin, 20-059 Lublin, Poland; (M.G.); (K.T.); (W.K.); (T.B.); (M.J.)
| | - Karolina Turżańska
- Department of Orthopaedics and Rehabilitation, Medical University of Lublin, 20-059 Lublin, Poland; (M.G.); (K.T.); (W.K.); (T.B.); (M.J.)
| | - Wojciech Kłapeć
- Department of Orthopaedics and Rehabilitation, Medical University of Lublin, 20-059 Lublin, Poland; (M.G.); (K.T.); (W.K.); (T.B.); (M.J.)
| | - Maciej Jarzębski
- Department of Physics and Biophysics, Poznan University of Life Sciences, 60-637 Poznań, Poland
| | - Tomasz Blicharski
- Department of Orthopaedics and Rehabilitation, Medical University of Lublin, 20-059 Lublin, Poland; (M.G.); (K.T.); (W.K.); (T.B.); (M.J.)
| | - Jarosław Pawlicz
- Department of Orthopedics and Traumatology, Poznan University of Medical Sciences, 28 Czerwca 1956 135/147, 61-545 Poznań, Poland;
| | - Marek Wieruszewski
- Department of Mechanical Wood Technology, Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, 60-627 Poznań, Poland;
| | - Mirosław Jabłoński
- Department of Orthopaedics and Rehabilitation, Medical University of Lublin, 20-059 Lublin, Poland; (M.G.); (K.T.); (W.K.); (T.B.); (M.J.)
| | | |
Collapse
|
4
|
Seredin P, Litvinova T, Ippolitov Y, Goloshchapov D, Peshkov Y, Kashkarov V, Ippolitov I, Chae B. A Study of the Association between Primary Oral Pathologies (Dental Caries and Periodontal Diseases) Using Synchrotron Molecular FTIR Spectroscopy in View of the Patient's Personalized Clinical Picture (Demographics and Anamnesis). Int J Mol Sci 2024; 25:6395. [PMID: 38928102 PMCID: PMC11204202 DOI: 10.3390/ijms25126395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/15/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
In this exploratory study, we searched for associations between the two most common diseases of the oral cavity-dental caries and periodontal diseases-taking into account additional factors, such as personalized clinical pictures (the individual risk factors of the patient), based on the method of a multivariate data analysis of the molecular changes in the composition of human gingival crevicular fluid (GCF). For this purpose, a set of synchrotron Fourier-transform infrared spectroscopy (FTIR) spectra of gingival crevicular fluid samples from patients with different demographics, levels of dental caries development and periodontal diseases, and the presence/absence of concomitant chronic diseases were obtained and analyzed. Using a set of techniques (v-, F-, Chi-square tests; a principal component analysis (PCA); and the hierarchical clustering of principal components (HCPCs)) implemented in the R package FactoMineR allowed us to assess the relationship between the principal components (PCs) and characteristics of the respondents. By identifying the features (vibrational modes in the FTIR spectra) that contribute most to the differentiation of the spectral dataset, and by taking into account the interrelationships between the patients' characteristics, we were able to match specific biological markers (specific molecular groups) to the two factors of interest-two types of oral pathologies. The results obtained show that the observed changes in the quantitative and qualitative composition of the modes in the infrared (IR) spectra of the GCF samples from patients with different dental caries developments and periodontal diseases present confirm the difficulty of identifying patient-specific spectral information. At the same time, different periodontal pathologies are more closely associated with other characteristics of the patients than the level of their caries development. The multivariate analysis performed on the spectral dataset indicates the need to take into account not only the co-occurrence of oral diseases, but also some other factors. The lack of this consideration (typical in lots of studies in this area) may lead to misinterpretations and consequently to a loss of data when searching for biological markers of certain oral diseases.
Collapse
Affiliation(s)
- Pavel Seredin
- Department of Solid-State Physics and Nanostructures, Voronezh State University, 394018 Voronezh, Russia; (T.L.)
| | - Tatiana Litvinova
- Department of Solid-State Physics and Nanostructures, Voronezh State University, 394018 Voronezh, Russia; (T.L.)
- Psycholinguistic Textual Modelling Lab, Voronezh State Pedagogical University, 394043 Voronezh, Russia
| | - Yuri Ippolitov
- Department of Solid-State Physics and Nanostructures, Voronezh State University, 394018 Voronezh, Russia; (T.L.)
- Department of Pediatric Dentistry with Orthodontia, Voronezh State Medical University, 394006 Voronezh, Russia
| | - Dmitry Goloshchapov
- Department of Solid-State Physics and Nanostructures, Voronezh State University, 394018 Voronezh, Russia; (T.L.)
| | - Yaroslav Peshkov
- Department of Solid-State Physics and Nanostructures, Voronezh State University, 394018 Voronezh, Russia; (T.L.)
| | - Vladimir Kashkarov
- Department of Solid-State Physics and Nanostructures, Voronezh State University, 394018 Voronezh, Russia; (T.L.)
| | - Ivan Ippolitov
- Department of Pediatric Dentistry with Orthodontia, Voronezh State Medical University, 394006 Voronezh, Russia
| | - Boknam Chae
- Pohang Accelerator Laboratory, Beamline Research Division, Pohang 37673, Republic of Korea
| |
Collapse
|
5
|
Toledano M, Osorio E, Osorio MT, Aguilera FS, Toledano R, Romero EF, Osorio R. Dexamethasone-doped nanoparticles improve mineralization, crystallinity and collagen structure of human dentin. J Dent 2023; 130:104447. [PMID: 36754111 DOI: 10.1016/j.jdent.2023.104447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/01/2023] [Accepted: 02/04/2023] [Indexed: 02/09/2023] Open
Abstract
OBJECTIVES Bioactive materials have been used for functionalization of adhesives to promote dentin remineralization. This study aims to evaluate bonding ability and both mechanical and chemical behavior of demineralized dentin infiltrated with polymeric nanoparticles doped with dexamethasone (Dex-NPs). METHODS Dentin conditioned surfaces were infiltrated with NPs, Dex-NPs or Dex-Zn-NPs. Bonded interfaces were also created and stored for 24 h or 21d, and then submitted to microtensile bond strength testing. Dentin remineralization was analyzed by Nanohardness, Young's modulus and Raman analysis. RESULTS At 21d of storage, dentin treated with undoped-NPs attained the lowest nanohardness and Young's modulus. Dex-NPs and Zn-Dex-NPs increased dentin nanohardness and Young's modulus after 21d Raman analysis showed high remineralization, crystallinity, crosslinking and better structure of collagen when functionalized Dex-NPs were present at the dentin interface. CONCLUSIONS Infiltration of dentin with Dex-NPs promoted functional remineralization as proved by nanomechanical and morpho-chemical evaluation tests. Dexamethasone in dentin facilitated crystallographic maturity, crystallinity and improved maturity and secondary structure of dentin collagen. CLINICAL SIGNIFICANCE Using dexamethasone-functionalized NPs before resin infiltration is a clear option to obtain dentin remineralization, as these NPs produce the reinforcement of the dentin structure, which will lead to the improvement of the longevity of resin restorations.
Collapse
Affiliation(s)
- Manuel Toledano
- Faculty of Dentistry, Dental Materials Section, Colegio Máximo de Cartuja s/n, University of Granada, Granada 18071, Spain
| | - Estrella Osorio
- Faculty of Dentistry, Dental Materials Section, Colegio Máximo de Cartuja s/n, University of Granada, Granada 18071, Spain
| | - María T Osorio
- Faculty of Dentistry, Dental Materials Section, Colegio Máximo de Cartuja s/n, University of Granada, Granada 18071, Spain
| | - Fátima S Aguilera
- Faculty of Dentistry, Dental Materials Section, Colegio Máximo de Cartuja s/n, University of Granada, Granada 18071, Spain.
| | - Raquel Toledano
- Faculty of Dentistry, Dental Materials Section, Colegio Máximo de Cartuja s/n, University of Granada, Granada 18071, Spain
| | - Enrique Fernández- Romero
- Faculty of Dentistry, Dental Materials Section, Colegio Máximo de Cartuja s/n, University of Granada, Granada 18071, Spain
| | - Raquel Osorio
- Faculty of Dentistry, Dental Materials Section, Colegio Máximo de Cartuja s/n, University of Granada, Granada 18071, Spain
| |
Collapse
|
6
|
Dexamethasone and zinc loaded polymeric nanoparticles reinforce and remineralize coronal dentin. A morpho-histological and dynamic-biomechanical study. Dent Mater 2023; 39:41-56. [PMID: 36460577 DOI: 10.1016/j.dental.2022.11.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 11/18/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To investigate the effect of novel polymeric nanoparticles (NPs) doped with dexamethasone (Dex) on viscoelasticity, crystallinity and ultra-nanostructure of the formed hydroxyapatite after NPs dentin infiltration. METHODS Undoped-NPs, Dex-doped NPs (Dex-NPs) and zinc-doped-Dex-NPs (Zn-Dex-NPs) were tested at dentin, after 24 h and 21 d. A control group without NPs was included. Coronal dentin surfaces were studied by nano-dynamic mechanical analysis measurements, atomic force microscopy, X-ray diffraction and transmission electron microscopy. Mean and standard deviation were analyzed by ANOVA and Student-Newman-Keuls multiple comparisons (p < 0.05). RESULTS At 21 d of storage time, both groups doped with Dex exhibited the highest complex, storage and loss moduli among groups. Zn-Dex-NPs and Dex-NPs promoted the highest and lowest tan delta values, respectively. Dex-NPs contributed to increase the fibril diameters of dentin collagen over time. Dentin surfaces treated with Zn-Dex-NPs attained the lowest nano-roughness values, provoked the highest crystallinity, and produced the longest and shortest crystallite and grain size. These new crystals organized with randomly oriented lattices. Dex-NPs induced the highest microstrain. Crystalline and amorphous matter was present in the mineral precipitates of all groups, but Zn and Dex loaded NPs helped to increase crystallinity. SIGNIFICANCE Dentin treated with Zn-Dex-NPs improved crystallographic and atomic order, providing structural stability, high mechanical performance and tissue maturation. Amorphous content was also present, so high hydroxyapatite solubility, bioactivity and remineralizing activity due to the high ion-rich environment took place in the infiltrated dentin.
Collapse
|
7
|
Moussa DG, Sharma AK, Mansour TA, Witthuhn B, Perdigão J, Rudney JD, Aparicio C, Gomez A. Functional signatures of ex-vivo dental caries onset. J Oral Microbiol 2022; 14:2123624. [PMID: 36189437 PMCID: PMC9518263 DOI: 10.1080/20002297.2022.2123624] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/09/2022] [Accepted: 08/18/2022] [Indexed: 11/18/2022] Open
Abstract
Background The etiology of dental caries remains poorly understood. With the advent of next-generation sequencing, a number of studies have focused on the microbial ecology of the disease. However, taxonomic associations with caries have not been consistent. Researchers have also pursued function-centric studies of the caries microbial communities aiming to identify consistently conserved functional pathways. A major question is whether changes in microbiome are a cause or a consequence of the disease. Thus, there is a critical need to define conserved functional signatures at the onset of dental caries. Methods Since it is unethical to induce carious lesions clinically, we developed an innovative longitudinal ex-vivo model integrated with the advanced non-invasive multiphoton second harmonic generation bioimaging to spot the very early signs of dental caries, combined with 16S rRNA short amplicon sequencing and liquid chromatography-mass spectrometry-based targeted metabolomics. Findings For the first time, we induced longitudinally monitored caries lesions validated with the scanning electron microscope. Consequently, we spotted the caries onset and, associated with it, distinguished five differentiating metabolites - Lactate, Pyruvate, Dihydroxyacetone phosphate, Glyceraldehyde 3-phosphate (upregulated) and Fumarate (downregulated). Those metabolites co-occurred with certain bacterial taxa; Streptococcus, Veillonella, Actinomyces, Porphyromonas, Fusobacterium, and Granulicatella, regardless of the abundance of other taxa. Interpretation These findings are crucial for understanding the etiology and dynamics of dental caries, and devising targeted interventions to prevent disease progression.
Collapse
Affiliation(s)
- Dina G. Moussa
- Minnesota Dental Research Center for Biomaterials and Biomechanics, Department of Restorative Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Animal Science, College of Food, Agriculture and Natural Resource Sciences, University of Minnesota, St Paul, Minnesota, USA
| | - Ashok K. Sharma
- Department of Animal Science, College of Food, Agriculture and Natural Resource Sciences, University of Minnesota, St Paul, Minnesota, USA
| | - Tamer A Mansour
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, USA
- Department of Clinical Pathology, School of Medicine, Mansoura University, Mansoura, Egypt
| | - Bruce Witthuhn
- Center for Mass Spectrometry and Proteomics, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jorge Perdigão
- Department of Restorative Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Joel D. Rudney
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Conrado Aparicio
- Minnesota Dental Research Center for Biomaterials and Biomechanics, Department of Restorative Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Restorative Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Andres Gomez
- Department of Animal Science, College of Food, Agriculture and Natural Resource Sciences, University of Minnesota, St Paul, Minnesota, USA
| |
Collapse
|
8
|
Du Q, Li H, Su J, Zhang L, Zhang S, Zhang Q, Ju J, Wang X, Li Y. Ultrastructural Analysis of Er:YAG Lased Bovine Dentin Contaminated by Cariogenic Bacteria. Photobiomodul Photomed Laser Surg 2022; 40:507-515. [PMID: 35867122 DOI: 10.1089/photob.2021.0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Objective: The purpose of this study is to investigate the crystal structure of bacteria-contaminated bovine dentin after Er:YAG laser irradiation at various energy densities from macroscale, microscale, and nanoscale. Background: Er:YAG laser can change the morphology and chemical components of dentin. Few preliminary researchers investigate the laser effect on crystal in dentin tissue. Methods: Twenty dentin specimens from bovine incisors were cocultured with S. mutans (UA 159) and divided into four groups with diverse Er:YAG laser irradiation energy (0, 6.37, 12.73, 19.11 J/cm2). The ultrastructure of dentin before and after laser irradiation was investigated with nanoanalytical electron microscopy. X-ray diffraction provided the information of lattice parameters in dentin. The morphology of dentin was observed by scanning electron microscopy. High-resolution transmission electron microscope images and selected-area electron diffraction patterns were obtained for characterizing crystal domain size, structure, and microenvironment of dentin. Results: The combination of these methods disclosed that there exist mineralized, demineralized, and remineralized dentin in the bacteria-invaded dentin and can be feasibly recognized using morphological features. Laser treatments influence hydroxyapatite (HAp) crystals in dentin tissue in different ways: needle HAp in mineralized dentin tissue keeps intact with laser irradiation of no higher than 19.11 J/cm2; laser irradiation improves the crystallinity of lamella HAp by domain growth and rearranges its growth orientations. Conclusions: We report an unprecedented presence of remineralization zone consisting of lamella HAp crystals with distinct high-index planes. These findings have broad implications on the role of laser operation in driving biomineralization and shed new insights into a possible relationship between laser irradiation and remineralization.
Collapse
Affiliation(s)
- Qing Du
- Stomatology Department, Peking University Third Hospital, Beijing, China
| | - He Li
- Transmission Electron Microscopy Laboratory, Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, China.,Department of Functional Materials, School of Materials Science and Engineering, Hebei Provincial Key Laboratory of Traffic Engineering Materials, Shijiazhuang Tiedao University, Shijiazhuang, China
| | - Jie Su
- Transmission Electron Microscopy Laboratory, Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Li Zhang
- Transmission Electron Microscopy Laboratory, Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Sun Zhang
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Qian Zhang
- Microbiology Laboratory, Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Jing Ju
- Transmission Electron Microscopy Laboratory, Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Xiao Wang
- Stomatology Department, Peking University Third Hospital, Beijing, China
| | - Yanting Li
- Department of Functional Materials, School of Materials Science and Engineering, Hebei Provincial Key Laboratory of Traffic Engineering Materials, Shijiazhuang Tiedao University, Shijiazhuang, China
| |
Collapse
|
9
|
Al-Jubori SH, AL-Murad MA, Al-Mashhadane FA. Effect of Oral Vitamin D3 on Dental Caries: An In-Vivo and In-Vitro Study. Cureus 2022; 14:e25360. [PMID: 35761922 PMCID: PMC9233525 DOI: 10.7759/cureus.25360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 05/26/2022] [Indexed: 11/05/2022] Open
Abstract
Aim Vitamin D3 plays an important role in affecting the overall remineralization process of the dentition. The use of supplements help to keep the levels at optimum and thus reduce the chances of treating very early lesion of caries. Hence the aim was to investigate the indirect effects of oral vitamin D3 on microhardness and elemental weight percentage of Calcium (Ca) and Phosphorous (P) in enamel surface with an artificially initiated carious lesion. Methods The 120 extracted premolars were randomly divided into five groups according to salivary immersion. Each group had a total of twenty-four participants, with the following characteristics: control +ve: sound enamel; control -ve: only subjected to pH cycle; A: pH cycle and immersion in control saliva; B: pH cycle and saliva collected after three weeks; and C: pH cycle and saliva collected after six weeks. The unstimulated saliva was collected from (40) adult volunteers receiving vitamin D3 1000IU gel capsules daily for six weeks. Before each vitamin D3 intake, 10 mL of unstimulated control saliva was collected from each participant. Then other 10 ml. were collected after three and six weeks of vitamin D receiving periods. Saliva immersion time (12 hours). Enamel surface was assessed by Vicker’s Microhardness machine and (X-ray fluorescence - XRF) spectrometer. Results For all specimens, there was a significant decrease in both (Ca and P weight %) after demineralization and then they significantly increased after receiving vitamin D3. The microhardness and elemental analysis provide confirmed results that were represented as a statistically significant difference at (P≤ 0.05) between groups that received vitamin D3 and those without vitamin D3 dosage. Conclusions Oral vitamin D3 has a significant potential in motivating remineralization of early lesions on the enamel surfaces representing improved surface microhardness and minerals content (Ca and P weight %) of demineralized tooth surfaces.
Collapse
|
10
|
Efficacy of a Novel Bioactive Glass-Polymer Composite for Enamel Remineralization following Erosive Challenge. Int J Dent 2022; 2022:6539671. [PMID: 35497177 PMCID: PMC9054491 DOI: 10.1155/2022/6539671] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/19/2022] [Accepted: 03/21/2022] [Indexed: 11/17/2022] Open
Abstract
Introduction Dental caries is the most common cause of tooth loss. However, it can be stopped by enhancing remineralization. Fluoride and casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) are among the most important remineralizing agents. Recent studies have used bioactive glass as a remineralizing agent in different forms. This study aimed to assess the efficacy of a composite paste (prepared by mixing urethane polypropylene glycol oligomer with bioactive glass powder for easier application). Materials and Methods Enamel disks were cut out of the buccal surface of extracted sound third molars. The samples were randomly divided into 3 groups of 15 and underwent Vickers microhardness test. X-ray diffraction (XRD) and field emission scanning electron microscopy/energy dispersive X-ray spectroscopy (FESEM/EDS) were performed. All samples were immersed in a demineralizing solution for 14 days. The tests were then repeated. Next, bioactive glass paste, fluoride, and CPP-ACP were applied on the surface of the samples and they were then stored in an artificial saliva for 14 days. The tests were repeated again. The microhardness values were analyzed using repeated measures ANOVA followed by one-way ANOVA and Tukey's post hoc test (P < 0.05). Results The microhardness of the bioactive glass group was significantly higher than that of other groups (P < 0.05). XRD revealed an enamel structure more similar to sound enamel in the bioactive glass and CPP-ACP groups compared with the fluoride group. FESEM/EDS revealed higher hydroxyapatite deposition in the bioactive glass group than in the other two groups. Conclusions All three remineralizing agents caused remineralization, but bioactive glass paste had a greater efficacy.
Collapse
|
11
|
Ionescu AC, Degli Esposti L, Iafisco M, Brambilla E. Dental tissue remineralization by bioactive calcium phosphate nanoparticles formulations. Sci Rep 2022; 12:5994. [PMID: 35397624 PMCID: PMC8994765 DOI: 10.1038/s41598-022-09787-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/18/2022] [Indexed: 11/09/2022] Open
Abstract
Recent health care products are based on formulations claimed to provide enamel remineralization and dentinal tubules occlusion through calcium-phosphate bioactive nanocompounds (ion-doped hydroxyapatite and precursor, amorphous calcium phosphate nanoparticles). This study aimed to characterize, test, and compare for the first time the structure and performance of a representative, market-available sample of remineralizing toothpastes and topical mousses. Formulations were characterized to determine their composition and investigate the presence of bioactive compounds and doping elements. A conventional fluoride-containing toothpaste was used as reference. The enamel remineralization and efficacy of dentinal tubules occlusion by tested formulations were investigated ex vivo on human hard tissues. All formulations containing Ca-P bioactive nanocompounds showed remineralizing ability by epitaxial growth of a layer showing the morphology and composition of human hydroxyapatite. Such layers also embedded nanosilica clusters. The presence of doping elements or casein phosphopeptide seemed essential to allow such performances, especially when hydroxyapatite and amorphous calcium phosphate compounds were doped with small amounts of CO32−, F−, Mg2+, and Sr2+. Topical mousse formulations showed a higher tubules occlusion capability than toothpastes, independently from their composition. Therefore, all tested formulations could be useful in restoring tooth structures in a biomimetic way, contrasting dental demineralization processes leading to caries.
Collapse
Affiliation(s)
- Andrei Cristian Ionescu
- Oral Microbiology and Biomaterials Laboratory, Department of Biomedical, Surgical, and Dental Sciences, University of Milan, Via Pascal, 36, 20133, Milan, Italy.
| | - Lorenzo Degli Esposti
- Institute of Science and Technology for Ceramics (ISTEC), National Research Council (CNR), Via Granarolo, 64, 48018, Faenza, Italy
| | - Michele Iafisco
- Institute of Science and Technology for Ceramics (ISTEC), National Research Council (CNR), Via Granarolo, 64, 48018, Faenza, Italy
| | - Eugenio Brambilla
- Oral Microbiology and Biomaterials Laboratory, Department of Biomedical, Surgical, and Dental Sciences, University of Milan, Via Pascal, 36, 20133, Milan, Italy
| |
Collapse
|
12
|
House KL, Pan L, O'Carroll DM, Xu S. Applications of scanning electron microscopy and focused ion beam milling in dental research. Eur J Oral Sci 2022; 130:e12853. [PMID: 35288994 DOI: 10.1111/eos.12853] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 01/06/2022] [Indexed: 12/15/2022]
Abstract
The abilities of scanning electron microscopy (SEM) and focused ion beam (FIB) milling for obtaining high-resolution images from top surfaces, cross-sectional surfaces, and even in three dimensions, are becoming increasingly important for imaging and analyzing tooth structures such as enamel and dentin. FIB was originally developed for material research in the semiconductor industry. However, use of SEM/FIB has been growing recently in dental research due to the versatility of dual platform instruments that can be used as a milling device to obtain low-artifact cross-sections of samples combined with high-resolution images. The advent of the SEM/FIB system and accessories may offer access to previously inaccessible length scales for characterizing tooth structures for dental research, opening exciting opportunities to address many central questions in dental research. New discoveries and fundamental breakthroughs in understanding are likely to follow. This review covers the applications, key findings, and future direction of SEM/FIB in dental research in morphology imaging, specimen preparation for transmission electron microscopy (TEM) analysis, and three-dimensional volume imaging using SEM/FIB tomography.
Collapse
Affiliation(s)
- Krystal L House
- Colgate Palmolive Company, Piscataway, New Jersey, USA.,Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, USA
| | - Long Pan
- Colgate Palmolive Company, Piscataway, New Jersey, USA
| | - Deirdre M O'Carroll
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, USA.,Department of Materials Science and Engineering, Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, USA
| | - Shiyou Xu
- Colgate Palmolive Company, Piscataway, New Jersey, USA
| |
Collapse
|
13
|
Xu S, Stranick M, Hines D, Du K, Pan L. Super high-quality SEM/FIB imaging of dentine structures without collagen fiber loss through a metal staining process. Sci Rep 2022; 12:2369. [PMID: 35149756 PMCID: PMC8837798 DOI: 10.1038/s41598-022-06271-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 01/24/2022] [Indexed: 11/26/2022] Open
Abstract
Scanning Electron Microscope/Focused Ion Beam (SEM/FIB) system has become valuable and popular tool for the analysis of biological materials such as dentine structures. According to physiological and anatomical studies, dentine structures are a complicated system containing collagen fibers, nanocrystalline hydroxyapatite, and numerous networks of tubular pores. During a routine FIB milling process, collagen fibers and other organic structures are vaporized, which increases the number of pores on the milled surface of the dentine. This causes the final cross-section to be more porous than the pristine sample. Unfortunately, little attention has been paid to the collagen fiber loss and how to preserve them during a FIB milling process. In this work, we present a novel and simple approach to preserve the organic portions of the dentine structure through metal staining. By using this method, the porosity of the dentine structure after the FIB milling process is significantly reduced similar to the pristine sample. This indicates that the organic portion of the dentine structure is well protected by the metal staining. This approach enables the SEM/FIB system to generate super-high quality SEM images with less ion beam damage; and the SEM images can better reflect the original condition of the dentine structure. Further, serial energy-dispersive X-ray spectroscopy (EDS) mapping of the stained dentine structure is achieved without an additional metal coating; and three-dimensional (3-D) elemental mapping of an occluded dentine is achieved with a significantly reduced data acquisition time.
Collapse
Affiliation(s)
- Shiyou Xu
- Colgate-Palmolive Technology Center, 909 River Road, Piscataway, NJ, 08844, USA.
| | - Michael Stranick
- Colgate-Palmolive Technology Center, 909 River Road, Piscataway, NJ, 08844, USA
| | - Deon Hines
- Colgate-Palmolive Technology Center, 909 River Road, Piscataway, NJ, 08844, USA
| | - Ke Du
- Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Long Pan
- Colgate-Palmolive Technology Center, 909 River Road, Piscataway, NJ, 08844, USA
| |
Collapse
|
14
|
The power of weak ion-exchange resins assisted by amelogenin for natural remineralization of dental enamel: an in vitro study. Odontology 2022; 110:545-556. [PMID: 35147809 PMCID: PMC9170625 DOI: 10.1007/s10266-022-00688-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 01/20/2022] [Indexed: 10/28/2022]
Abstract
This study aims to develop an innovative dental product to remineralize dental enamel by a proper combination of ion-exchange resins as controlled release of mineral ions that form dental enamel, in the presence of amelogenin to guide the appropriate crystal growth. The novel product proposed consists of a combination of ion-exchange resins (weak acid and weak base) individually loaded with the remineralizing ions: Ca2+, PO43- and F-, also including Zn2+ in a minor amount as antibacterial, together with the protein amelogenin. Such cocktail provides onsite controlled release of the ions necessary for enamel remineralization due to the weak character of the resins and at the same time, a guiding tool for related crystal growth by the indicated protein. Amelogenin protein is involved in the structural development of natural enamel and takes a key role in controlling the crystal growth morphology and alignment at the enamel surface. Bovine teeth were treated by applying the resins and protein together with artificial saliva. Treated teeth were evaluated with nanoindentation, scanning electron microscopy and energy-dispersive X-ray spectroscopy. The innovative material induces the dental remineralization creating a fluorapatite layer with a hardness equivalent to sound enamel, with the appropriate alignment of corresponding nanocrystals, being the fluorapatite more acid resistant than the original mineral. Our results suggest that the new product shows potential for promoting long-term remineralization leading to the inhibition of caries and protection of dental structures.
Collapse
|
15
|
Birjandi AA, Sharpe P. Wnt Signalling in Regenerative Dentistry. FRONTIERS IN DENTAL MEDICINE 2021. [DOI: 10.3389/fdmed.2021.725468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Teeth are complex structures where a soft dental pulp tissue is enriched with nerves, vasculature and connective tissue and encased by the cushioning effect of dentin and the protection of a hard enamel in the crown and cementum in the root. Injuries such as trauma or caries can jeopardise these layers of protection and result in pulp exposure, inflammation and infection. Provision of most suitable materials for tooth repair upon injury has been the motivation of dentistry for many decades. Wnt signalling, an evolutionarily conserved pathway, plays key roles during pre- and post-natal development of many organs including the tooth. Mutations in the components of this pathway gives rise to various types of developmental tooth anomalies. Wnt signalling is also fundamental in the response of odontoblasts to injury and repair processes. The complexity of tooth structure has resulted in diverse studies looking at specific compartments or cell types of this organ. This review looks at the current advances in the field of tooth development and regeneration. The objective of the present review is to provide an updated vision on dental biomaterials research, focusing on their biological properties and interactions to act as evidence for their potential use in vital pulp treatment procedures. We discuss the outstanding questions and future directions to make this knowledge more translatable to the clinics.
Collapse
|
16
|
Yoshihara K, Nagaoka N, Benino Y, Nakamura A, Hara T, Maruo Y, Yoshida Y, Van Meerbeek B. Touch-Cure Polymerization at the Composite Cement-Dentin Interface. J Dent Res 2021; 100:935-942. [PMID: 33771050 DOI: 10.1177/00220345211001020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Ceramic restorations are often adhesively luted onto the tooth prep. The so-called touch-cure concept was developed to yield optimum polymerization of composite cement at the restoration-cement-tooth interface for immediate bond stabilization. Although this touch cure is theorized to initiate polymerization at the interface when the accelerator in the primer makes contact with the cement, this process has not yet been proven. This study aimed to elucidate the mechanism of touch cure by measuring the degree of conversion (DC) of composite cement applied with or without an accelerator-containing tooth primer (TP) versus an accelerator-free primer using real-time Fourier-transform infrared spectroscopy (RT-FTIR) and attenuated total reflection (ATR)-FTIR. Interfacial bond strength was measured in shear mode, the accelerator composition confirmed by X-ray fluorescence analysis (XRF), and the interfacial interaction of TP and composite cement with dentin investigated by X-ray diffraction (XRD), focused-ion-beam scanning electron microscopy (FIB-SEM) with 3-dimensional interface reconstruction, and transmission electron microscopy (TEM). RT/ATR-FTIR revealed the significantly highest DC when the composite cement was applied with the accelerator-containing primer. XRF disclosed a vanadium compound as a novel chemical accelerator within TP, instead of a classic chemical curing initiator system, to set off touch cure as soon the cement contacts the previously applied primer. Although the TP contains the acidic functional monomer 10-MDP for adhesion to tooth tissue, touch cure using the accelerator-containing TP combined the fastest/highest DC with the highest bond strength. FIB-SEM and TEM confirmed the tight interfacial interaction at dentin with submicron hybridization along with stable 10-MDP also Ca-salt nanolayering.
Collapse
Affiliation(s)
- K Yoshihara
- National Institute of Advanced Industrial Science and Technology (AIST), Health and Medical Research Institute, Takamatsu, Kagawa, Japan.,Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Department of Pathology & Experimental Medicine, Okayama, Japan
| | - N Nagaoka
- Okayama University Dental School, Advanced Research of Center for Oral and Craniofacial Science, Okayama, Japan
| | - Y Benino
- Okayama University, Graduate School of Environmental and Life Science, Okayama, Japan
| | - A Nakamura
- National Institute for Materials Science (NIMS), Electron Microscopy Analysis Station, Tsukuba, Ibaraki, Japan
| | - T Hara
- National Institute for Materials Science (NIMS), Electron Microscopy Analysis Station, Tsukuba, Ibaraki, Japan
| | - Y Maruo
- Department of Occlusion and Removable Prosthodontics, Okayama University Hospital, Okayama, Japan
| | - Y Yoshida
- Hokkaido University, Faculty of Dental Medicine, Department of Biomaterials and Bioengineering, Sapporo, Hokkaido, Japan
| | - B Van Meerbeek
- KU Leuven (University of Leuven), Department of Oral Health Sciences, BIOMAT & UZ Leuven (University Hospitals Leuven), Dentistry, Leuven, Belgium
| |
Collapse
|
17
|
Modeling the age-related shift in the mineral content of hard tissues in two Mediterranean deer species. Arch Oral Biol 2020; 122:104999. [PMID: 33340922 DOI: 10.1016/j.archoralbio.2020.104999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 11/23/2022]
Abstract
OBJECTIVE In this paper we aim to provide baseline data and model the changes of Ca, P and Mg throughout life in the mandibular bone, enamel and dentin of red (Cervus elaphus) and fallow deer (Dama dama) in Mediterranean ecosystems. DESIGN Through a cross-sectional study of cervids from 1.5 to 20 yrs old, hunted between 1990 and 1997, we apply generalized additive models (GAMs) with data from scanning-electron-microscope with energy-dispersive X-ray (FESEM-EDX) and inductively coupled plasma-mass spectrometry (ICP-MS) analyses. RESULTS The mineral content varied in a similar range to that reported for other ruminants. However, we detected lower Ca content values, while more similar results were obtained for P and Mg contents, which led to relatively lower Ca/P ratios and higher Ca/Mg in our deer at that time. A significantly lesser pattern of decreasing mineral content with aging was detected in the fallow deer males, similarities were found between the sexes, and significantly less resistance to demineralization was observed in dentin compared to bone. We discuss how the basic macromineral elements involved in the biomineralization process vary with age throughout life depending on deer species, sex and hard tissues. CONCLUSION Allowing for possible inferences of differential changes in the mineralization state at the main stages in life history, our methodological approach opens up new possibilities in zooarchaeological, paleontological, and wildlife research.
Collapse
|