1
|
Venditti S. Remodeling the Epigenome Through Meditation: Effects on Brain, Body, and Well-being. Subcell Biochem 2025; 108:231-260. [PMID: 39820865 DOI: 10.1007/978-3-031-75980-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Epigenetic mechanisms are key processes that constantly reshape genome activity carrying out physiological responses to environmental stimuli. Such mechanisms regulate gene activity without modifying the DNA sequence, providing real-time adaptation to changing environmental conditions. Both favorable and unfavorable lifestyles have been shown to influence body and brain by means of epigenetics, leaving marks on the genome that can either be rapidly reversed or persist in time and even be transmitted trans-generationally. Among virtuous habits, meditation seemingly represents a valuable way of activating inner resources to cope with adverse experiences. While unhealthy habits, stress, and traumatic early-life events may favor the onset of diseases linked to inflammation, neuroinflammation, and neuroendocrine dysregulation, the practice of mindfulness-based techniques was associated with the alleviation of many of the above symptoms, underlying the importance of lifestyles for health and well-being. Meditation influences brain and body systemwide, eliciting structural/morphological changes as well as modulating the levels of circulating factors and the expression of genes linked to the HPA axis and the immune and neuroimmune systems. The current chapter intends to give an overview of pioneering research showing how meditation can promote health through epigenetics, by reshaping the profiles of the three main epigenetic markers, namely DNA methylation, histone modifications, and non-coding RNAs.
Collapse
Affiliation(s)
- Sabrina Venditti
- Department of Biology and Biotechnologies C. Darwin, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
2
|
Dada T, Mahalingam K, Bhartiya S. Reversing Aging and Improving Health Span in Glaucoma Patients: The Next Frontier? J Curr Glaucoma Pract 2024; 18:87-93. [PMID: 39575133 PMCID: PMC11576344 DOI: 10.5005/jp-journals-10078-1451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024] Open
Abstract
How to cite this article: Dada T, Mahalingam K, Bhartiya S. Reversing Aging and Improving Health Span in Glaucoma Patients: The Next Frontier? J Curr Glaucoma Pract 2024;18(3):87-93.
Collapse
Affiliation(s)
- Tanuj Dada
- Department of Ophthalmology, Dr Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, Delhi, India
| | - Karthikeyan Mahalingam
- Department of Ophthalmology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Shibal Bhartiya
- Department of Ophthalmology and Community Outreach, Marengo Asia Hospitals, Gurugram and Faridabad, Haryana, India; Mayo Clinic, Jacksonville, Florida, United States
| |
Collapse
|
3
|
Lu Y, Oliva M, Pierce BL, Liu J, Chen LS. Integrative cross-omics and cross-context analysis elucidates molecular links underlying genetic effects on complex traits. Nat Commun 2024; 15:2383. [PMID: 38493154 PMCID: PMC10944527 DOI: 10.1038/s41467-024-46675-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 03/06/2024] [Indexed: 03/18/2024] Open
Abstract
Genetic effects on functionally related 'omic' traits often co-occur in relevant cellular contexts, such as tissues. Motivated by the multi-tissue methylation quantitative trait loci (mQTLs) and expression QTLs (eQTLs) analysis, we propose X-ING (Cross-INtegrative Genomics) for cross-omics and cross-context integrative analysis. X-ING takes as input multiple matrices of association statistics, each obtained from different omics data types across multiple cellular contexts. It models the latent binary association status of each statistic, captures the major association patterns among omics data types and contexts, and outputs the posterior mean and probability for each input statistic. X-ING enables the integration of effects from different omics data with varying effect distributions. In the multi-tissue cis-association analysis, X-ING shows improved detection and replication of mQTLs by integrating eQTL maps. In the trans-association analysis, X-ING reveals an enrichment of trans-associations in many disease/trait-relevant tissues.
Collapse
Affiliation(s)
- Yihao Lu
- Department of Public Health Sciences, The University of Chicago, Chicago, IL, USA
| | - Meritxell Oliva
- Department of Public Health Sciences, The University of Chicago, Chicago, IL, USA
- Genomics Research Center, AbbVie, North Chicago, IL, USA
| | - Brandon L Pierce
- Department of Public Health Sciences, The University of Chicago, Chicago, IL, USA
| | - Jin Liu
- School of Data Science, The Chinese University of Hong Kong-Shenzhen, Shenzhen, China.
| | - Lin S Chen
- Department of Public Health Sciences, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
4
|
Aghajanyan V, Bhupathy S, Sheikh S, Nausheen F. A Narrative Review of Telomere Length Modulation Through Diverse Yoga and Meditation Styles: Current Insights and Prospective Avenues. Cureus 2023; 15:e46130. [PMID: 37900433 PMCID: PMC10612486 DOI: 10.7759/cureus.46130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2023] [Indexed: 10/31/2023] Open
Abstract
Mindfulness practices have demonstrated the potential to positively impact various aspects of human health associated with telomere length (TL) - a recognized marker of healthy aging and susceptibility to age-related diseases. This review seeks to conduct an in-depth comparative analysis, examining methodological variations, outcome assessments, strengths, weaknesses, and gaps across mindfulness-focused studies concerning TL and attrition rates. While emerging data tentatively suggest a positive connection between mindfulness practices and TL, a notable research gap pertains to establishing the clinically recommended dosage of yoga/meditation and mindfulness interventions to effectively influence TL. To address this gap, upcoming research should prioritize meticulous structuring, pedagogical precision, and vigilant monitoring of mindfulness interventions to yield psychological and physiological benefits across an appropriate timeframe and intensity. The amalgamation of yoga/meditation or mindfulness emerges as a promising avenue for enhancing the quality of life while counteracting the influence of telomere attrition in the spectrum of age-related diseases. The core objective of this review is to meticulously investigate the interplay between yoga/meditation and mindfulness practices and their potential impact on TL - an essential biomarker indicative of age-related health and well-being. To achieve this, our study methodically compares various methodological approaches, outcome measures, strengths, and limitations within relevant research endeavors focused on TL and attrition rates. Through this scrutiny, we highlight prevailing research gaps. Our analysis underscores the need for comprehensive research efforts aimed at establishing the optimal therapeutic regimen for yielding significant clinical effects on TL and overall health. In summation, our exploration emphasizes the urgency of further studies to unravel the most effective approaches for positively influencing TL and its implications for holistic health.
Collapse
Affiliation(s)
- Vahe Aghajanyan
- Medical Education, California University of Science and Medicine, Colton, USA
| | - Supriya Bhupathy
- Medical Education, California University of Science and Medicine, Colton, USA
| | - Shazia Sheikh
- Medical Education, California University of Science and Medicine, Colton, USA
| | - Fauzia Nausheen
- Education, California University of Science and Medicine, Colton, USA
| |
Collapse
|
5
|
Dasanayaka NN, Sirisena ND, Samaranayake N. Associations of meditation with telomere dynamics: a case-control study in healthy adults. Front Psychol 2023; 14:1222863. [PMID: 37519381 PMCID: PMC10380951 DOI: 10.3389/fpsyg.2023.1222863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/22/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction Telomeres are protective end caps of chromosomes which naturally shorten with each cell division and thus with age. Short telomeres have been associated with many age-related diseases. Meditation has come to the fore as a mind-body practice which could influence the telomere dynamics underlying these phenomena. We previously reported meditation to be associated with higher telomerase levels, mindfulness and quality of life. Here, reporting on the same study population, we describe associations between long-term meditation and telomere length (TL), expression of hTERT and hTR genes and methylation of the promoter region of hTERT gene. Methods Thirty healthy meditators and matched non-meditators were recruited. TL was measured using quantitative PCR, gene expression was assessed using reverse transcriptase PCR, and methylation level was quantified by bisulfite-specific PCR followed by Sanger sequencing. Comparisons between meditators and controls were carried out using t-tests, while Pearson correlation was used to identify correlations, and regression was used to identify predictors. Results Males comprised 63.4% of each group with an average age of 43 years. On average, they had meditated daily for 5.82 h (±3.45) for 6.8 years (±3.27). Meditators had longer relative TLs (p = 0.020), and TL decreased with age (p < 0.001) but was not associated with other socio-demographic variables. Regression analysis showed that age (p < 0.001) and duration of meditation (p = 0.003) significantly predicted TL. The meditators showed higher relative expression of hTERT (p = 0.020) and hTR (p = 0.029) genes while the methylation level of the promoter region of hTERT gene was significantly lower when compared to non-meditators (p < 0.001). Negative correlations were identified between the methylation level of the promoter region of hTERT gene and the expression of the hTERT gene (p = 0.001) and duration of meditation (p = 0.001). Conclusion The findings suggest that meditation as a lifestyle practice has multi-level beneficial effects on telomere dynamics with potential to promote healthy aging.
Collapse
Affiliation(s)
- Nirodhi Namika Dasanayaka
- Research Promotion and Facilitation Centre, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - Nirmala Dushyanthi Sirisena
- Department of Anatomy, Genetics & Biomedical Informatics, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - Nilakshi Samaranayake
- Department of Parasitology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| |
Collapse
|
6
|
Wu C, Feng Y. Exploring the potential of mindfulness-based therapy in the prevention and treatment of neurodegenerative diseases based on molecular mechanism studies. Front Neurosci 2023; 17:1097067. [PMID: 37383106 PMCID: PMC10293639 DOI: 10.3389/fnins.2023.1097067] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 05/03/2023] [Indexed: 06/30/2023] Open
Abstract
Neurodegenerative diseases (ND) have received increasing attention due to their irreversibility, but there is still no means to completely cure ND in clinical practice. Mindfulness therapy (MT), including Qigong, Tai Chi, meditation, and yoga, etc., has become an effective complementary treatment modality in solving clinical and subclinical problems due to its advantages of low side effects, less pain, and easy acceptance by patients. MT is primarily used to treat mental and emotional disorders. In recent years, evidence has shown that MT has a certain therapeutic effect on ND with a potential molecular basis. In this review, we summarize the pathogenesis and risk factors of Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS), relating to telomerase activity, epigenetics, stress, and the pro-inflammatory transcription factor nuclear factor kappa B (NF-κB) mediated inflammatory response, and analyze the molecular mechanism basis of MT to prevent and treat ND, to provide possible explanations for the potential of MT treatments for ND.
Collapse
|
7
|
Salazar J, Durán P, Díaz MP, Chacín M, Santeliz R, Mengual E, Gutiérrez E, León X, Díaz A, Bernal M, Escalona D, Hernández LAP, Bermúdez V. Exploring the Relationship between the Gut Microbiota and Ageing: A Possible Age Modulator. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:5845. [PMID: 37239571 PMCID: PMC10218639 DOI: 10.3390/ijerph20105845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/20/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023]
Abstract
The gut microbiota (GM) has been the subject of intense research in recent years. Therefore, numerous factors affecting its composition have been thoroughly examined, and with them, their function and role in the individual's systems. The gut microbiota's taxonomical composition dramatically impacts older adults' health status. In this regard, it could either extend their life expectancy via the modulation of metabolic processes and the immune system or, in the case of dysbiosis, predispose them to age-related diseases, including bowel inflammatory and musculoskeletal diseases and metabolic and neurological disorders. In general, the microbiome of the elderly tends to present taxonomic and functional changes, which can function as a target to modulate the microbiota and improve the health of this population. The GM of centenarians is unique, with the faculty-promoting metabolic pathways capable of preventing and counteracting the different processes associated with age-related diseases. The molecular mechanisms by which the microbiota can exhibit anti-ageing properties are mainly based on anti-inflammatory and antioxidant actions. This review focuses on analysing the current knowledge of gut microbiota characteristics and modifiers, its relationship with ageing, and the GM-modulating approaches to increase life expectancy.
Collapse
Affiliation(s)
- Juan Salazar
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4001, Venezuela
| | - Pablo Durán
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4001, Venezuela
| | - María P. Díaz
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4001, Venezuela
| | - Maricarmen Chacín
- Centro de Investigaciones en Ciencias de la Vida, Universidad Simón Bolívar, Barranquilla 080002, Colombia
- Sociedad Internacional de Rejuvenecimiento Facial No Quirúrgico (SIRF), Barranquilla 080002, Colombia
| | - Raquel Santeliz
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4001, Venezuela
| | - Edgardo Mengual
- Biological Research Institute “Doctors Orlando Castejon and Haydee V Castejon”, Faculty of Medicine, University of Zulia, Maracaibo 4001, Venezuela
| | - Emma Gutiérrez
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4001, Venezuela
| | - Xavier León
- Instituto Ecuatoriano de Seguridad Social, Cuenca 010101, Ecuador
| | - Andrea Díaz
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4001, Venezuela
| | - Marycarlota Bernal
- Facultad de Ingenierias, Universidad Simón Bolívar, Cúcuta 540001, Colombia
| | - Daniel Escalona
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4001, Venezuela
| | | | - Valmore Bermúdez
- Centro de Investigaciones en Ciencias de la Vida, Universidad Simón Bolívar, Barranquilla 080002, Colombia
| |
Collapse
|
8
|
Carlund O, Norberg A, Osterman P, Landfors M, Degerman S, Hultdin M. DNA methylation variations and epigenetic aging in telomere biology disorders. Sci Rep 2023; 13:7955. [PMID: 37193737 DOI: 10.1038/s41598-023-34922-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/10/2023] [Indexed: 05/18/2023] Open
Abstract
Telomere Biology Disorders (TBDs) are characterized by mutations in telomere-related genes leading to short telomeres and premature aging but with no strict correlation between telomere length and disease severity. Epigenetic alterations are also markers of aging and we aimed to evaluate whether DNA methylation (DNAm) could be part of the pathogenesis of TBDs. In blood from 35 TBD cases, genome-wide DNAm were analyzed and the cases were grouped based on relative telomere length (RTL): short (S), with RTL close to normal controls, and extremely short (ES). TBD cases had increased epigenetic age and DNAm alterations were most prominent in the ES-RTL group. Thus, the differentially methylated (DM) CpG sites could be markers of short telomeres but could also be one of the mechanisms contributing to disease phenotype since DNAm alterations were observed in symptomatic, but not asymptomatic, cases with S-RTL. Furthermore, two or more DM-CpGs were identified in four genes previously linked to TBD or telomere length (PRDM8, SMC4, VARS, and WNT6) and in three genes that were novel in telomere biology (MAS1L, NAV2, and TM4FS1). The DM-CpGs in these genes could be markers of aging in hematological cells, but they could also be of relevance for the progression of TBD.
Collapse
Affiliation(s)
- Olivia Carlund
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Anna Norberg
- Department of Medical Biosciences, Medical and Clinical Genetics, Umeå University, Umeå, Sweden
| | - Pia Osterman
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Mattias Landfors
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Sofie Degerman
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Magnus Hultdin
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden.
| |
Collapse
|
9
|
Househam AM. Effects of stress and mindfulness on epigenetics. VITAMINS AND HORMONES 2023; 122:283-306. [PMID: 36863798 DOI: 10.1016/bs.vh.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Epigenetics are heritable changes in the rate of gene expression without any modification of the DNA sequence and occur in response to environmental changes. Tangible changes to the external surroundings may be practical causes for epigenetic modifications, playing a potential evolutionary role. While fight, flight, or freeze responses once served a concrete role in survival, modern humans may not face similar existential threats that warrant psychological stress. Yet, chronic mental stress is predominant in modern life. This chapter elucidates the deleterious epigenetic changes that occur due to chronic stress. In an exploration of mindfulness-based interventions (MBIs) as a potential antidote to such stress-induced epigenetic modifications, several pathways of action are uncovered. The epigenetic changes that occur because of mindfulness practice are demonstrated across the hypothalamic-pituitary-adrenal axis, serotonergic transmission, genomic health and aging, and neurological biomarkers.
Collapse
Affiliation(s)
- Ayman Mukerji Househam
- Department of Social Work, New York University, New York, NY, United States; Department of Psychology, New York University, New York, NY, United States.
| |
Collapse
|
10
|
Verdone L, Caserta M, Ben-Soussan TD, Venditti S. On the road to resilience: Epigenetic effects of meditation. VITAMINS AND HORMONES 2023; 122:339-376. [PMID: 36863800 DOI: 10.1016/bs.vh.2022.12.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Many environmental and lifestyle related factors may influence the physiology of the brain and body by acting on fundamental molecular pathways, such as the hypothalamus-pituitary-adrenal axis (HPA) and the immune system. For example, stressful conditions created by adverse early-life events, unhealthy habits and low socio-economic status may favor the onset of diseases linked to neuroendocrine dysregulation, inflammation and neuroinflammation. Beside pharmacological treatments used in clinical settings, much attention has been given to complementary treatments such as mind-body techniques involving meditation that rely on the activation of inner resources to regain health. At the molecular level, the effects of both stress and meditation are elicited epigenetically through a set of mechanisms that regulate gene expression as well as the circulating neuroendocrine and immune effectors. Epigenetic mechanisms constantly reshape genome activities in response to external stimuli, representing a molecular interface between organism and environment. In the present work, we aimed to review the current knowledge on the correlation between epigenetics, gene expression, stress and its possible antidote, meditation. After introducing the relationship between brain, physiology, and epigenetics, we will proceed to describe three basic epigenetic mechanisms: chromatin covalent modifications, DNA methylation and non-coding RNAs. Subsequently, we will give an overview of the physiological and molecular aspects related to stress. Finally, we will address the epigenetic effects of meditation on gene expression. The results of the studies reported in this review demonstrate that mindful practices modulate the epigenetic landscape, leading to increased resilience. Therefore, these practices can be considered valuable tools that complement pharmacological treatments when coping with pathologies related to stress.
Collapse
Affiliation(s)
- Loredana Verdone
- Institute of Molecular Biology and Pathology, National Research Council (CNR), Rome, Italy.
| | - Micaela Caserta
- Institute of Molecular Biology and Pathology, National Research Council (CNR), Rome, Italy
| | - Tal Dotan Ben-Soussan
- Cognitive Neurophysiology Laboratory, Research Institute for Neuroscience, Education and Didactics, Patrizio Paoletti Foundation for Development and Communication, Assisi, Italy
| | - Sabrina Venditti
- Dept. of Biology and biotechnologies, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
11
|
Zahir FR. Epigenomic impacts of meditative practices. Epigenomics 2022; 14:1593-1608. [PMID: 36891912 DOI: 10.2217/epi-2022-0306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023] Open
Abstract
Meditative practices (MPs) are an inherent lifestyle and healing practice employed in Eastern medicine and spirituality. Integrating MPs into world mainstream medicine (WMM) requires effective empirical investigation of psychophysiological impacts. Epigenomic regulation is a probable mechanism of action that is empirically assessable. Recently, WMM-styled studies have screened the epigenomic impacts of MPs with early encouraging results. This article discusses the variety of MPs extant across three major Eastern religio-spiritual-healing traditions and their integration into WMM via the lens of epigenomic modulation. MPs unanimously report positive impacts on stress-reduction pathways, known to be epigenomically sensitive. Early high-resolution assays show MPs are potent in altering the epigenome - dynamically and by inducing long-term changes. This suggests the importance of integrating MPs into WMM.
Collapse
Affiliation(s)
- Farah R Zahir
- Irfa'a Foundation, 5063 North Service Road, Burlington, ON, L7L 5H6 Canada
- Departent of Medical Genetics, University of British Columbia, Vancouver, BC, V6H 3N1 Canada
| |
Collapse
|
12
|
Porter N, Jason LA. Mindfulness Meditation Interventions for Long COVID: Biobehavioral Gene Expression and Neuroimmune Functioning. Neuropsychiatr Dis Treat 2022; 18:2599-2626. [PMID: 36387947 PMCID: PMC9653042 DOI: 10.2147/ndt.s379653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022] Open
Abstract
Some individuals infected with SARS CoV-2 have developed Post-Acute Sequelae of SARS CoV-2 infection (PASC) or what has been referred to as Long COVID. Efforts are underway to find effective treatment strategies for those with Long COVID. One possible approach involves alternative medical interventions, which have been widely used to treat and manage symptoms of a variety of medical problems including post-viral infections. Meditation has been found to reduce fatigue and unrefreshing sleep, and for those with post-viral infections, it has enhanced immunity, and reduced inflammatory-driven pathogenesis. Our article summarizes the literature on what is known about mindfulness meditation interventions, and reviews evidence on how it may apply to those with Long COVID and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). Evidence is reviewed suggesting effective and sustainable outcomes may be achieved for symptomatology and underlying pathology of post-viral fatigue (PASC and ME/CFS).
Collapse
Affiliation(s)
- Nicole Porter
- Center for Community Research, DePaul University, Chicago, IL, USA
| | - Leonard A Jason
- Center for Community Research, DePaul University, Chicago, IL, USA
| |
Collapse
|
13
|
Kazantseva AV, Davydova YD, Enikeeva RF, Mustafin RN, Lobaskova MM, Malykh SB, Khusnutdinova EK. Individual Differences in Relative Telomere Length in Mentally Healthy Subjects: The Effect of TERT Gene Polymorphism and Urban Residency. RUSS J GENET+ 2022; 58:1135-1144. [PMID: 36119151 PMCID: PMC9470233 DOI: 10.1134/s1022795422090101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/17/2022] [Accepted: 04/04/2022] [Indexed: 11/23/2022]
Abstract
The changes in the telomere length caused by the terminal underreplication in the existing literature are related to depressive disorders. However, the use of the telomere length as a biomarker of depressive states is ambiguous, which is due to the effect of various environmental factors on both the psychoemotional state and cellular aging of an organism. In order to identify the possible use of the relative telomere length (RTL) measured in peripheral blood leukocytes as a biomarker of enhanced liability to depression prior to the clinical symptoms, as well as to determine the link between telomere length, sociodemographic factors, allelic variants of the genes involved in the regulation of telomere elongation, and depression level, the association analysis of reverse transcriptase (TERT rs7726159), telomerase RNA component (TERC rs1317082), and the CST complex encoding protein (OBFC1 rs2487999) gene polymorphisms was performed with RTL and depression level in mentally healthy individuals (N = 1065) aged 18-25 years. Together with genetic variants, the examined regression models included various sociodemographic parameters as predictors. As a result of statistical analysis, we failed to observe the association between RTL and individual differences in depression level in the studied sample. Nevertheless, multiple regression analysis allowed us to construct a statistically significant model of individual variance in RTL (P = 4.3е-4; r 2 = 0.018), which included rs7726159 in the TERT gene (P = 0.020; β = 0.078) and such environmental predictors as age (P = 0.001; β = -0.027) and place of residence in childhood (urban/rural area) (P = 0.048; β = 0.063). The data obtained confirm the involvement of TERT gene variants and age in telomere length in mentally healthy individuals aged 18-25 years and indicate a negative effect of urban residency on telomere length shortening, which reflects the cellular aging of an organism.
Collapse
Affiliation(s)
- A V Kazantseva
- Institute of Biochemistry and Genetics-Subdivision of the Ufa Federal Research Centre, Russian Academy of Sciences, 450054 Ufa, Russia.,Bashkir State University, 450076 Ufa, Russia.,Ufa State Petroleum Technical University, 450064 Ufa, Russia
| | - Yu D Davydova
- Institute of Biochemistry and Genetics-Subdivision of the Ufa Federal Research Centre, Russian Academy of Sciences, 450054 Ufa, Russia.,Bashkir State University, 450076 Ufa, Russia
| | - R F Enikeeva
- Institute of Biochemistry and Genetics-Subdivision of the Ufa Federal Research Centre, Russian Academy of Sciences, 450054 Ufa, Russia.,Bashkir State University, 450076 Ufa, Russia
| | - R N Mustafin
- Bashkir State Medical University, 450008 Ufa, Russia
| | - M M Lobaskova
- Psychological Institute, Russian Academy of Education, 125009 Moscow, Russia
| | - S B Malykh
- Psychological Institute, Russian Academy of Education, 125009 Moscow, Russia.,Moscow State University, 119991 Moscow, Russia
| | - E K Khusnutdinova
- Institute of Biochemistry and Genetics-Subdivision of the Ufa Federal Research Centre, Russian Academy of Sciences, 450054 Ufa, Russia.,Bashkir State University, 450076 Ufa, Russia.,Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
14
|
Dasanayaka NN, Sirisena ND, Samaranayake N. Impact of Meditation-Based Lifestyle Practices on Mindfulness, Wellbeing, and Plasma Telomerase Levels: A Case-Control Study. Front Psychol 2022; 13:846085. [PMID: 35310206 PMCID: PMC8931770 DOI: 10.3389/fpsyg.2022.846085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Meditation involves psychophysical training which can result in a range of benefits including creating a calm mind and increasing self-awareness, relaxation, and tranquility. Increasing evidence, mostly based on short-term focused interventions, suggests that meditation-based activities may also have favorable effects on physical wellbeing including cellular aging. Hence, the aim of this study was to investigate if continued practice of meditation benefited quality of life, state of mindfulness, and plasma telomerase level in healthy adults. 30 long-term and skilled meditators were recruited from meditation centers in different parts of the island following a two-tier screening process of 70 eligible participants and 30 age- and gender-matched healthy non-meditators were recruited from the community. Mindfulness level and the quality of life were measured using the Five Facet Mindfulness Questionnaire (FFMQ) and Quality of Life Questionnaire, respectively, while the levels of plasma telomerase enzyme were measured using Enzyme-Linked Immunosorbent Assay. Skilled meditators had a better mindfulness level (p < 0.001) and quality of life (QOL; p < 0.001) than those in the comparison group. Similarly, higher plasma telomerase levels were observed in skilled meditators compared to non-meditators (p = 0.002). Trait mindfulness level and plasma telomerase level showed a significant relationship with the duration of meditation practice (p = 0.046 and p = 0.011, respectively). Regression analysis indicated that trait mindfulness level (p < 0.001) significantly predicts the plasma telomerase level. The findings of this comparative study add to the evidence on sustained benefits of meditation on wellbeing and healthy aging and supports incorporating meditation-based activities into lifestyle practices.
Collapse
Affiliation(s)
- Nirodhi Namika Dasanayaka
- Research Promotion and Facilitation Centre, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
- *Correspondence: Nirodhi Namika Dasanayaka,
| | - Nirmala Dushyanthi Sirisena
- Department of Anatomy, Genetics and Biomedical Informatics, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - Nilakshi Samaranayake
- Department of Parasitology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| |
Collapse
|
15
|
Sun S, Sheridan M, Tyrka A, Donofry SD, Erickson K, Loucks E. Addressing the biological embedding of early life adversities (ELA) among adults through mindfulness: Proposed mechanisms and review of converging evidence. Neurosci Biobehav Rev 2022; 134:104526. [PMID: 34998833 PMCID: PMC8844271 DOI: 10.1016/j.neubiorev.2022.104526] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 12/21/2021] [Accepted: 01/03/2022] [Indexed: 12/18/2022]
Abstract
Early life adversities (ELA) are prevalent and have a profound and adverse impact across the lifespan, including on age-related health outcomes, yet interventions to remediate its adverse impact are scarce. This paper presents evidence for mindfulness training to reduce the elevated mental and physical health risks linked to ELA among adults by targeting biological mechanisms of ELA leading to these adverse health outcomes. We first provide a brief overview of ELA, its adverse health impacts, and mechanisms that might be responsible. Next, we review converging evidence that demonstrates that mindfulness training influences key biological pathways involved in ELA-linked negative health consequences, including (a) brain networks involved in self-regulation, (b) immunity and inflammation, (c) telomere biology, and (d) epigenetic modifications. Further, we review preliminary evidence from mindfulness-based trials that focused on populations impacted by ELA. We discuss limitations of this review and provide recommendations for future research. If effective, a mindfulness-based approach could be an important public health strategy for remediating the adverse mental and physical health consequences of ELA.
Collapse
Affiliation(s)
- Shufang Sun
- Department of Behavioral and Social Sciences, Brown University School of Public Health, United States; Mindfulness Center at Brown University, United States.
| | - Margaret Sheridan
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Audrey Tyrka
- Initiative on Stress, Trauma, and Resilience, Department of Psychiatry and Human Behavior, Brown University Alpert Medical School
| | | | - Kirk Erickson
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA,Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA,Center for the Neural Basis of Cognition, Pittsburgh, PA
| | - Eric Loucks
- Department of Behavioral and Social Sciences, Brown University School of Public Health,Mindfulness Center at Brown University
| |
Collapse
|
16
|
Buz J, Á Gómez-Martínez M, Crego A, Yela JR, Sánchez-Zaballos E. Validity Evidence of the Spanish Version of the Mindful Attention Awareness Scale Using the Rasch Measurement Model. Assessment 2021; 29:1576-1592. [PMID: 34041960 DOI: 10.1177/10731911211018855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Mindful Attention Awareness Scale (MAAS) is the most cited instrument to measure dispositional mindfulness. However, some aspects of its validity are still under debate. We aimed to assess different sources of validity evidence (i.e., response processes, content, internal structure, reliability, and relations with external variables) of the MAAS scores in a sample of Spanish-speaking participants (N = 812) applying Rasch modeling. The items formed an essentially unidimensional structure, the item hierarchy was similar to that of previous comparable studies, the items were well targeted, and the ordering of persons along the construct was adequate. Moreover, measures were invariant across four age groups and three groups based on meditation practice, and correlated as expected with a variety of well-being variables. In sum, our findings supported the interpretation of MAAS scores as a measure of mindfulness in our sample of Spanish-speaking participants. Any other specific inference should be tested.
Collapse
Affiliation(s)
- José Buz
- University of Salamanca, Salamanca, Spain
| | | | - Antonio Crego
- Pontifical University of Salamanca, Salamanca, Spain
| | - José R Yela
- Pontifical University of Salamanca, Salamanca, Spain
| | | |
Collapse
|
17
|
Dasanayaka NN, Sirisena ND, Samaranayake N. The effects of meditation on length of telomeres in healthy individuals: a systematic review. Syst Rev 2021; 10:151. [PMID: 34020720 PMCID: PMC8139075 DOI: 10.1186/s13643-021-01699-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 05/10/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Meditation-based practices have been suggested to result in many biological benefits which include reduction of attrition of telomeres, the protective nucleotide-protein complexes at termini of eukaryotic chromosomes. This systematic review evaluated the effects of meditation on telomere length (TL) in healthy adults. METHODS Randomized controlled trials (RCTs) and observational studies conducted to determine the effects of meditation on TL in healthy individuals, published up to July 2020 were retrieved by searching seven electronic databases (PubMed, Scopus, PsycINFO, EMBASE, Cochrane Library, CINAHL and Google Scholar). The methodological quality of RCTs and observational studies was assessed using the Cochrane Collaboration Risk of Bias Tool and Joanna Briggs Institute critical appraisal checklist, respectively. The data was synthesized narratively and the effect estimates of TL in the RCTs were synthesized using alternative methods as a meta-analysis was not conducted. The certainty of evidence was classified according to the GRADE system. RESULTS A total of 1740 articles were screened. Five studies comprising two RCTs and three case-control studies (CCS) were included in the final review based on the inclusion and exclusion criteria. The combined sample consisted of 615 participants with 41.7% males. Average age of participants was 47.7 years. One CCS and one RCT reported significant beneficial effects of meditation on TL while the two remaining CCS and the RCT showed positive effects of meditation on TL which were not significant. For all CCS and one RCT, the methodological quality was high while the remaining RCT was of moderate quality. The quality of evidence for the primary outcome was moderate in RCTs. CONCLUSION The effect of meditation on TL per se is still unclear. Strictly designed and well-reported RCTs with larger sample sizes are required to provide evidence of higher quality. SYSTEMATIC REVIEW REGISTRATION The protocol of this review was registered with the International Prospective Register of Systematic Reviews (PROSPERO) database (registration number: CRD42020153977 ).
Collapse
Affiliation(s)
- Nirodhi N Dasanayaka
- Research Promotion and Facilitation Centre, Faculty of Medicine, University of Colombo, Colombo, 00800, Sri Lanka
| | - Nirmala D Sirisena
- Human Genetics Unit, Department of Anatomy, Faculty of Medicine, University of Colombo, Colombo, 00800, Sri Lanka
| | - Nilakshi Samaranayake
- Department of Parasitology, Faculty of Medicine, University of Colombo, Colombo, 00800, Sri Lanka.
| |
Collapse
|
18
|
Yang HJ, Koh E, Sung MK, Kang H. Changes Induced by Mind-Body Intervention Including Epigenetic Marks and Its Effects on Diabetes. Int J Mol Sci 2021; 22:ijms22031317. [PMID: 33525677 PMCID: PMC7865217 DOI: 10.3390/ijms22031317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 12/20/2022] Open
Abstract
Studies have evidenced that epigenetic marks associated with type 2 diabetes (T2D) can be inherited from parents or acquired through fetal and early-life events, as well as through lifelong environments or lifestyles, which can increase the risk of diabetes in adulthood. However, epigenetic modifications are reversible, and can be altered through proper intervention, thus mitigating the risk factors of T2D. Mind-body intervention (MBI) refers to interventions like meditation, yoga, and qigong, which deal with both physical and mental well-being. MBI not only induces psychological changes, such as alleviation of depression, anxiety, and stress, but also physiological changes like parasympathetic activation, lower cortisol secretion, reduced inflammation, and aging rate delay, which are all risk factors for T2D. Notably, MBI has been reported to reduce blood glucose in patients with T2D. Herein, based on recent findings, we review the effects of MBI on diabetes and the mechanisms involved, including epigenetic modifications.
Collapse
Affiliation(s)
- Hyun-Jeong Yang
- Korea Institute of Brain Science, Seoul 06022, Korea; (M.-K.S.); (H.K.)
- Department of Integrative Health Care, University of Brain Education, Cheonan 31228, Korea
- Correspondence:
| | - Eugene Koh
- Temasek Life Sciences Laboratories, Singapore 117604, Singapore;
| | - Min-Kyu Sung
- Korea Institute of Brain Science, Seoul 06022, Korea; (M.-K.S.); (H.K.)
| | - Hojung Kang
- Korea Institute of Brain Science, Seoul 06022, Korea; (M.-K.S.); (H.K.)
| |
Collapse
|
19
|
|
20
|
Herrmann W, Herrmann M. The Importance of Telomere Shortening for Atherosclerosis and Mortality. J Cardiovasc Dev Dis 2020; 7:jcdd7030029. [PMID: 32781553 PMCID: PMC7570376 DOI: 10.3390/jcdd7030029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/11/2022] Open
Abstract
Telomeres are the protective end caps of chromosomes and shorten with every cell division. Short telomeres are associated with older age and adverse lifestyle factors. Leucocyte telomere length (LTL) has been proposed as a biomarker of biological age. The shortening of LTL with age is the result of the end-replication problem, environmental, and lifestyle-related factors. Epidemiologic studies have shown that LTL predicts cardiovascular disease, all-cause mortality, and death from vascular causes. Age appears to be an important co-variate that explains a substantial fraction of this effect. Although it has been proposed that short telomeres promote atherosclerosis and impair the repair of vascular lesions, existing results are inconsistent. Oxidative stress and chronic inflammation can both accelerate telomere shortening. Multiple factors, including homocysteine (HCY), vitamin B6, and vitamin B12 modulate oxidative stress and inflammation through direct and indirect mechanisms. This review provides a compact overview of telomere physiology and the utility of LTL measurements in atherosclerosis and cardiovascular disease. In addition, it summarizes existing knowledge regarding the impact of oxidative stress, inflammation, HCY, and B-vitamins on telomere function.
Collapse
Affiliation(s)
- Wolfgang Herrmann
- Department of Clinical Chemistry, Medical School of the Saarland University, 66421 Homburg, Saar, Germany;
| | - Markus Herrmann
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, 8036 Graz, Austria
- Correspondence: or ; Tel.: +43-316-385-13145; Fax: +43-316-385-13430
| |
Collapse
|