1
|
Cooper RC, Wang J, Yang H. Injectable Dendrimer Hydrogel Delivers Melphalan in Both Conjugated and Free Forms for Retinoblastoma. Biomacromolecules 2024; 25:5928-5937. [PMID: 39189328 PMCID: PMC11443594 DOI: 10.1021/acs.biomac.4c00597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
We report the successful synthesis of an injectable dendrimer hydrogel (DH) carrying melphalan, a clinical drug for retinoblastoma treatment, in both conjugated and free forms. Polyamidoamine (PAMAM) dendrimer generation 5 (G5) is surface-modified with an acid-sensitive acetal-dibenzocyclooctyne linker and then undergoes azide-alkyne cycloaddition with melphalan-PEG-N3 conjugate to form G5-acetal-melphalan. During the DH gelation between G5-acetal-melphalan and PEG-diacrylate, free melphalan is added, resulting in a hydrogel (G5-acetal-melphalan-DH/melphalan) that carries the drug in both conjugated and free forms. Melphalan is slowly released from G5-acetal-melphalan-DH/melphalan, with the conjugated melphalan released more quickly at pH 5.3 due to acid-triggered acetal bond cleavage. The formulation's in vitro safety and efficacy were established on human corneal epithelia (HCE-2) and retinoblastoma cells (Y79). In an in vivo Y79 tumor xenograft model of retinoblastoma, intratumorally injected G5-melphalan-DH formulation prolonged tumor suppression. This injectable, multimodal, pH-responsive formulation shows promise for intravitreal injection to treat retinoblastoma.
Collapse
Affiliation(s)
- Remy C. Cooper
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Juan Wang
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Hu Yang
- Linda and Bipin Doshi Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| |
Collapse
|
2
|
Zebret S, Hadiji M, Romano-deGea J, Bornet A, Ortiz D, Fadaei-Tirani F, Stathopoulos C, Nowak-Sliwinska P, Munier FL, Dyson PJ. New melphalan derivatives for the treatment of retinoblastoma in combination with thermotherapy. RSC Med Chem 2024; 15:2300-2304. [PMID: 39026655 PMCID: PMC11253858 DOI: 10.1039/d4md00211c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/19/2024] [Indexed: 07/20/2024] Open
Abstract
Of the different modalities used to treat retinoblastoma, a chemothermotherapeutic regimen combining carboplatin and thermotherapy (also termed focal therapy), and the application of melphalan as a monotherapy, are particularly successful. Some studies indicate that melphalan shows potential when applied in combination with focal therapy, and yet is not applied in this combination. Here we describe a series of synthetically modified melphalan derivatives that display enhanced cytotoxicity relative to melphalan itself, with some displaying further enhancements in cytotoxicity when applied in combination with heat (used as a model for thermotherapy). The synthetic approach, which involves modifying melphalan with perfluorous chains of varying lengths via an ester linker, could lead to a more effective treatment option for retinoblastoma with reduced side-effects, which is a key limitation of melphalan.
Collapse
Affiliation(s)
- Soumaila Zebret
- Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Mouna Hadiji
- Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Jan Romano-deGea
- Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Aurélien Bornet
- Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Daniel Ortiz
- Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Farzaneh Fadaei-Tirani
- Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Christina Stathopoulos
- Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, University of Lausanne 1004 Lausanne Switzerland
| | - Patrycja Nowak-Sliwinska
- School of Pharmaceutical Sciences, University of Geneva 1211 Geneva Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva 1211 Geneva Switzerland
| | - Francis L Munier
- Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, University of Lausanne 1004 Lausanne Switzerland
| | - Paul J Dyson
- Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| |
Collapse
|
3
|
Mishra R, Thunuguntla P, Perkin A, Duraiyan D, Bagwill K, Gonzales S, Brizuela V, Daly S, Chang YJ, Abebe M, Rajana Y, Wichmann K, Bolick C, King J, Fiala M, Fortier J, Jayasinghe R, Schroeder M, Ding L, Vij R, Silva-Fisher J. LINC01432 binds to CELF2 in newly diagnosed multiple myeloma promoting short progression-free survival to standard therapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.27.600975. [PMID: 38979159 PMCID: PMC11230414 DOI: 10.1101/2024.06.27.600975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Multiple Myeloma (MM) is a highly prevalent and incurable form of cancer that arises from malignant plasma cells, with over 35,000 new cases diagnosed annually in the United States. While there are a growing number of approved therapies, MM remains incurable and nearly all patients will relapse and exhaust all available treatment options. Mechanisms for disease progression are unclear and in particular, little is known regarding the role of long non-coding RNAs (lncRNA) in mediating disease progression and response to treatment. In this study, we used transcriptome sequencing to compare newly diagnosed MM patients who had short progression-free survival (PFS) to standard first-line treatment (PFS < 24 months) to patients who had prolonged PFS (PFS > 24 months). We identified 157 differentially upregulated lncRNAs with short PFS and focused our efforts on characterizing the most upregulated lncRNA, LINC01432. We investigated LINC01432 overexpression and CRISPR/Cas9 knockdown in MM cell lines to show that LINC01432 overexpression significantly increases cell viability and reduces apoptosis, while knockdown significantly reduces viability and increases apoptosis, supporting the clinical relevance of this lncRNA. Next, we used individual-nucleotide resolution cross-linking immunoprecipitation with RT-qPCR to show that LINC01432 directly interacts with the RNA binding protein, CELF2. Lastly, we showed that LINC01432-targeted locked nucleic acid antisense oligonucleotides reduce viability and increases apoptosis. In summary, this fundamental study identified lncRNAs associated with short PFS to standard NDMM treatment and further characterized LINC01432, which inhibits apoptosis.
Collapse
|
4
|
Lin Z, Chu B, Qu Y, Wei X, Huang J, Wang F, Feng Y, Wang X, Luo H, Zhai X, Xu J, Liu X, Zhang L, Chen F, Wu Y, Zheng Y. Liposome-Encapsulated Melphalan Exhibits Potent Antimyeloma Activity and Reduced Toxicity. ACS OMEGA 2023; 8:1693-1701. [PMID: 36643473 PMCID: PMC9835516 DOI: 10.1021/acsomega.2c07555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Multiple myeloma (MM), a plasma cell cancer in bone marrow, remains an incurable disease. Melphalan, an alkylating agent, is a conventional anticancer drug that is still widely used for MM treatment in clinics. However, melphalan-induced organ toxicity and side effects are common. In this study, we loaded melphalan into a liposomal capsule and constituted liposomal melphalan (liposomal MEL). Liposomal MEL particles were approximately 120 nm in size and stable in vitro. The liposomal particles could be effectively taken up by MM cells. In vitro cytotoxicity assays using MM cell lines and primary MM cells showed that liposomal MEL exhibited similar anti-MM activity compared to an equivalent amount of free melphalan (free MEL) compound. In animal models, liposomal particles had bone marrow enrichment and prolonged half-life in vivo. Liposomal MEL exposure resulted in less liver and colon organ toxicity than exposure to an equivalent amount of free MEL-treated mice. Importantly, liposomal MEL had potent anti-MM activity in vivo in a human MM xenograft mouse model. Overall, our findings suggested that liposome-encapsulated melphalan was an effective drug modification of the melphalan compound and showed promise in MM treatment.
Collapse
Affiliation(s)
- Zhimei Lin
- Department
of Hematology, West China Hospital, Sichuan
University, Chengdu610041, P. R. China
- Department
of Hematology, The Affiliated Hospital of
Chengdu University, Chengdu610081, P. R. China
| | - Bingyang Chu
- State
Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan610041, P. R. China
| | - Ying Qu
- Department
of Hematology, West China Hospital, Sichuan
University, Chengdu610041, P. R. China
- State
Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan610041, P. R. China
| | - Xue Wei
- Department
of Hematology, West China Hospital, Sichuan
University, Chengdu610041, P. R. China
| | - Jingcao Huang
- Department
of Hematology, West China Hospital, Sichuan
University, Chengdu610041, P. R. China
| | - Fangfang Wang
- Department
of Hematology, West China Hospital, Sichuan
University, Chengdu610041, P. R. China
| | - Yu Feng
- Department
of Hematology, West China Hospital, Sichuan
University, Chengdu610041, P. R. China
| | - Xin Wang
- Department
of Hematology, West China Hospital, Sichuan
University, Chengdu610041, P. R. China
| | - Hongmei Luo
- Department
of Hematology, West China Hospital, Sichuan
University, Chengdu610041, P. R. China
| | - Xinyu Zhai
- Department
of Hematology, West China Hospital, Sichuan
University, Chengdu610041, P. R. China
| | - Juan Xu
- Department
of Hematology, West China Hospital, Sichuan
University, Chengdu610041, P. R. China
| | - Xiang Liu
- Department
of Hematology, West China Hospital, Sichuan
University, Chengdu610041, P. R. China
| | - Li Zhang
- Department
of Hematology, West China Hospital, Sichuan
University, Chengdu610041, P. R. China
| | - Fengjiao Chen
- Department
of Hematology, West China Hospital, Sichuan
University, Chengdu610041, P. R. China
| | - Yu Wu
- Department
of Hematology, West China Hospital, Sichuan
University, Chengdu610041, P. R. China
| | - Yuhuan Zheng
- Department
of Hematology, West China Hospital, Sichuan
University, Chengdu610041, P. R. China
| |
Collapse
|
5
|
Newly Synthesized Melphalan Analogs Induce DNA Damage and Mitotic Catastrophe in Hematological Malignant Cancer Cells. Int J Mol Sci 2022; 23:ijms232214258. [PMID: 36430734 PMCID: PMC9693175 DOI: 10.3390/ijms232214258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Myeloablative therapy with highdoses of the cytostatic drug melphalan (MEL) in preparation for hematopoietic cell transplantation is the standard of care for multiple myeloma (MM) patients. Melphalan is a bifunctional alkylating agent that covalently binds to nucleophilic sites in the DNA and effective in the treatment, but unfortunately has limited therapeutic benefit. Therefore, new approaches are urgently needed for patients who are resistant to existing standard treatment with MEL. Regulating the pharmacological activity of drug molecules by modifying their structure is one method for improving their effectiveness. The purpose of this work was to analyze the physicochemical and biological properties of newly synthesized melphalan derivatives (EE-MEL, EM-MEL, EM-MOR-MEL, EM-I-MEL, EM-T-MEL) obtained through the esterification of the carboxyl group and the replacement of the the amino group with an amidine group. Compounds were selected based on our previous studies for their improved anticancer properties in comparison with the original drug. For this, we first evaluated the physicochemical properties using the circular dichroism technique, then analyzed the zeta potential and the hydrodynamic diameters of the particles. Then, the in vitro biological properties of the analogs were tested on multiple myeloma (RPMI8226), acute monocytic leukemia (THP1), and promyelocytic leukemia (HL60) cells as model systems for hematological malignant cells. DNA damage was assessed by immunostaining γH2AX, cell cycle distribution changes by propidium iodide (PI) staining, and cell death by the activation of caspase 2. We proved that the newly synthesized derivatives, in particular EM-MOR-MEL and EM-T-MEL, affected the B-DNA conformation, thus increasing the DNA damage. As a result of the DNA changes, the cell cycle was arrested in the S and G2/M phases. The cell death occurred by activating a mitotic catastrophe. Our investigations suggest that the analogs EM-MOR-MEL and EM-T-MEL have better anti-cancer activity in multiple myeloma cells than the currently used melphalan.
Collapse
|
6
|
Unnam S, Manjappa AS, Muddana Eswara BR, Salawi A, Gunti P. Liposomal Melphalan: Approach to obtain improved plasma stability, pharmacokinetics, and in vitro and in vivo anticancer efficacy in combination with liposomal simvastatin against mouse RPMI-8226 multiple myeloma model. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Gralewska P, Gajek A, Rybaczek D, Marczak A, Rogalska A. The Influence of PARP, ATR, CHK1 Inhibitors on Premature Mitotic Entry and Genomic Instability in High-Grade Serous BRCAMUT and BRCAWT Ovarian Cancer Cells. Cells 2022; 11:cells11121889. [PMID: 35741017 PMCID: PMC9221516 DOI: 10.3390/cells11121889] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022] Open
Abstract
Olaparib is a poly (ADP-ribose) polymerase inhibitor (PARPi) that inhibits PARP1/2, leading to replication-induced DNA damage that requires homologous recombination repair. Olaparib is often insufficient to treat BRCA-mutated (BRCAMUT) and BRCA wild-type (BRCAWT) high-grade serous ovarian carcinomas (HGSOCs). We examined the short-term (up to 48 h) efficacy of PARPi treatment on a DNA damage response pathway mediated by ATR and CHK1 kinases in BRCAMUT (PEO-1) and BRCAWT (SKOV-3 and OV-90) cells. The combination of ATRi/CHK1i with PARPi was not more cytotoxic than ATR and CHK1 monotherapy. The combination of olaparib with inhibitors of the ATR/CHK1 pathway generated chromosomal abnormalities, independent on BRCAMUT status of cells and formed of micronuclei (MN). However, the beneficial effect of the PARPi:ATRi combination on MN was seen only in the PEO1 BRCAMUT line. Monotherapy with ATR/CHK1 inhibitors reduced BrdU incorporation due to a slower rate of DNA synthesis, which resulted from elevated levels of replication stress, while simultaneous blockade of PARP and ATR caused beneficial effects only in OV-90 cells. Inhibition of ATR/CHK1 increased the formation of double-strand breaks as measured by increased γH2AX expression at collapsed replication forks, resulting in increased levels of apoptosis. Our findings indicate that ATR and CHK1 inhibitors provoke premature mitotic entry, leading to genomic instability and ultimately cell death.
Collapse
Affiliation(s)
- Patrycja Gralewska
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (P.G.); (A.G.); (A.M.)
| | - Arkadiusz Gajek
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (P.G.); (A.G.); (A.M.)
| | - Dorota Rybaczek
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland;
| | - Agnieszka Marczak
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (P.G.); (A.G.); (A.M.)
| | - Aneta Rogalska
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (P.G.); (A.G.); (A.M.)
- Correspondence: ; Tel.: +48-42-635-44-77
| |
Collapse
|
8
|
Modi S, Gibson T, Vigneswaran G, Patel S, Wheater M, Karydis I, Gupta S, Takhar A, Pearce N, Ottensmeier C, Stedman B. Chemosaturation with percutaneous hepatic perfusion of melphalan for metastatic uveal melanoma. Melanoma Res 2022; 32:103-111. [PMID: 35254333 PMCID: PMC8893121 DOI: 10.1097/cmr.0000000000000806] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/04/2022] [Indexed: 11/26/2022]
Abstract
Uveal melanoma, the most common primary ocular malignancy in adults, carries a poor prognosis: 50% of patients develop the metastatic disease with a 10-25% 1-year survival and no established standard of care treatment. Prior studies of melphalan percutaneous hepatic perfusion (M-PHP) have shown promise in metastatic uveal melanoma (mUM) patients with liver predominant disease but are limited by small sample sizes. We contribute our findings on the safety and efficacy of the procedure in the largest sample population to date. A retrospective analysis of outcome and safety data for all mUM patients receiving M-PHP was performed. Tumour response and treatment toxicity were evaluated using RECIST 1.1 and Common Terminology Criteria for Adverse Events v5.03, respectively. 250 M-PHP procedures were performed in 81 patients (median of three per patient). The analysis demonstrated a hepatic disease control rate of 88.9% (72/81), a hepatic response rate of 66.7% (54/81), and an overall response rate of 60.5% (49/81). After a median follow-up of 12.9 months, median overall progression-free (PFS) and median overall survival (OS) were 8.4 and 14.9 months, respectively. There were no fatal treatment-related adverse events (TRAE). Forty-three grade 3 (29) or 4 (14) TRAE occurred in 23 (27.7%) patients with a significant reduction in such events between procedures performed in 2016-2020 vs. 2012-2016 (0.17 vs. 0.90 per patient, P < 0.001). M-PHP provides excellent response rates and PFS compared with other available treatments, with decreasing side effect profile with experience. Combination therapy with systemic agents may be viable to further advance OS.
Collapse
Affiliation(s)
- Sachin Modi
- Department of Interventional Radiology, University Hospital Southampton NHS Foundation Trust
| | - Tom Gibson
- Department of Interventional Radiology, University Hospital Southampton NHS Foundation Trust
| | - Ganesh Vigneswaran
- Department of Interventional Radiology, University Hospital Southampton NHS Foundation Trust
- University of Southampton
| | - Shian Patel
- Department of Interventional Radiology, University Hospital Southampton NHS Foundation Trust
| | - Matthew Wheater
- Department of Medical Oncology, University Hospital Southampton NHS Foundation Trust
| | - Ioannis Karydis
- University of Southampton
- Department of Medical Oncology, University Hospital Southampton NHS Foundation Trust
| | - Sanjay Gupta
- Department of Anaesthesia, University Hospital Southampton NHS Foundation Trust
| | - Arjun Takhar
- Department of Surgery, University Hospital Southampton NHS Foundation Trust, Southampton
| | - Neil Pearce
- Department of Surgery, University Hospital Southampton NHS Foundation Trust, Southampton
| | - Christian Ottensmeier
- Institute of Systems, Molecular and Integrative Biology (ISMIB), University of Liverpool, Liverpool, UK
| | - Brian Stedman
- Department of Interventional Radiology, University Hospital Southampton NHS Foundation Trust
| |
Collapse
|
9
|
An ex vivo organ culture screening model revealed that low temperature conditions prevent side effects of anticancer drugs. Sci Rep 2022; 12:3093. [PMID: 35197531 PMCID: PMC8866511 DOI: 10.1038/s41598-022-06945-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 02/09/2022] [Indexed: 11/08/2022] Open
Abstract
Development of chemotherapy has led to a high survival rate of cancer patients; however, the severe side effects of anticancer drugs, including organ hypoplasia, persist. To assume the side effect of anticancer drugs, we established a new ex vivo screening model and described a method for suppressing side effects. Cyclophosphamide (CPA) is a commonly used anticancer drug and causes severe side effects in developing organs with intensive proliferation, including the teeth and hair. Using the organ culture model, we found that treatment with CPA disturbed the growth of tooth germs by inducing DNA damage, apoptosis and suppressing cellular proliferation and differentiation. Furthermore, low temperature suppressed CPA-mediated inhibition of organ development. Our ex vivo and in vitro analysis revealed that low temperature impeded Rb phosphorylation and caused cell cycle arrest at the G1 phase during CPA treatment. This can prevent the CPA-mediated cell damage of DNA replication caused by the cross-linking reaction of CPA. Our findings suggest that the side effects of anticancer drugs on organ development can be avoided by maintaining the internal environment under low temperature.
Collapse
|
10
|
Poczta A, Krzeczyński P, Tobiasz J, Rogalska A, Gajek A, Marczak A. Synthesis and In Vitro Activity of Novel Melphalan Analogs in Hematological Malignancy Cells. Int J Mol Sci 2022; 23:1760. [PMID: 35163680 PMCID: PMC8836188 DOI: 10.3390/ijms23031760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/24/2022] [Accepted: 02/01/2022] [Indexed: 11/16/2022] Open
Abstract
Despite the continuous developments in pharmacology and the high therapeutic effect of new treatment options for patients with hematological malignancies, these diseases remain a major health issue. Our study aimed to synthesize, analyze in silico, and determine the biological properties of new melphalan derivatives. We obtained three methyl esters of melphalan having in their structures amidine moieties substituted with thiomorpholine (EM-T-MEL), indoline (EM-I-MEL), or 4-(4-morpholinyl) piperidine (EM-MORPIP-MEL). These have not yet been described in the literature. The in vitro anticancer properties of the analogs were determined against THP1, HL60, and RPMI8226 cells. Melphalan derivatives were evaluated for cytotoxicity (resazurin viability assay), genotoxicity (alkaline comet assay), and their ability to induce apoptosis (Hoechst33342/propidium iodide double staining method; phosphatidylserine translocation; and caspase 3/7, 8, and 9 activity measurements). Changes in mitochondrial membrane potential were examined using the specific fluorescence probe JC-1 (5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazol carbocyanine). The EM-T-MEL derivative had the highest biological activity, showing higher cytotoxic and genotoxic properties than the parent drug. Moreover, it showed a high ability to induce apoptosis in the tested cancer cells. This compound also had a beneficial effect in peripheral blood mononuclear cells (PBMC). In conclusion, we verified and confirmed the hypothesis that chemical modifications of the melphalan structure improved its anticancer properties. The conducted study allowed the selection of the compound with the highest biological activity and provided a basis for chemical structure-biological activity analyses.
Collapse
Affiliation(s)
- Anastazja Poczta
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland; (A.R.); (A.G.); (A.M.)
| | - Piotr Krzeczyński
- Department of Pharmacy, Cosmetic Chemistry and Biotechnology, Team of Chemistry, Łukasiewicz Research Network—Industrial Chemistry Institute, 8 Rydygiera Street, 01-793 Warsaw, Poland; (P.K.); (J.T.)
| | - Joanna Tobiasz
- Department of Pharmacy, Cosmetic Chemistry and Biotechnology, Team of Chemistry, Łukasiewicz Research Network—Industrial Chemistry Institute, 8 Rydygiera Street, 01-793 Warsaw, Poland; (P.K.); (J.T.)
| | - Aneta Rogalska
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland; (A.R.); (A.G.); (A.M.)
| | - Arkadiusz Gajek
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland; (A.R.); (A.G.); (A.M.)
| | - Agnieszka Marczak
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland; (A.R.); (A.G.); (A.M.)
| |
Collapse
|
11
|
Sambamoorthy U, Manjappa AS, Eswara BRM, Sanapala AK, Nagadeepthi N. Vitamin E Oil Incorporated Liposomal Melphalan and Simvastatin: Approach to Obtain Improved Physicochemical Characteristics of Hydrolysable Melphalan and Anticancer Activity in Combination with Simvastatin Against Multiple Myeloma. AAPS PharmSciTech 2021; 23:23. [PMID: 34907484 DOI: 10.1208/s12249-021-02177-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 11/04/2021] [Indexed: 12/20/2022] Open
Abstract
The objective of this research was to develop vitamin E oil (VEO)-loaded liposomes for intravenous delivery and to study the VEO effect on melphalan (MLN) loading, release, and stability. Further, the research aim was to determine the in vitro anticancer activity and in vivo systemic toxicity of MLN and simvastatin (SVN) combinations, for repurposing SVN in multiple myeloma. The liposomes were prepared by thin-film hydration technique. The optimized liposomes were surface modified with Pluronic F108, lyophilized, and evaluated for mean particle size, MLN content and release behavior, and in vitro hemolysis, cytotoxicity, and macrophage uptake characteristics. Further, in vivo acute toxicity of plain MLN + SVN combination was determined in comparison to their liposomal combination. The VEO alone and in combination with D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) has significantly increased the MLN and SVN loading. The reconstituted liposomes showed the mean particle size below 200 nm (cryo-transmission electron microscope analysis also revealed the liposome formation). In presence of VEO, the liposomes have shown substantially controlled drug release, lower hemolysis, sustained cytotoxicity, lower phagocytosis, and moderately improved chemical stability. Besides, the effect of liposomal combination on mice bodyweight is found substantially lower than the plain drug combination. In conclusion, the VEO could be used along with phospholipids and cholesterol to develop liposomal drugs with improved physicochemical characteristics. Further, the interesting cytotoxicity study results indicated that SVN could be repurposed in combination with anticancer drug MLN against multiple myeloma; liposomal drugs could be preferred to obtain improved efficacy with decreased systemic toxicity.
Collapse
|
12
|
Tereshkina YA, Torkhovskaya TI, Sanzhakov MA, Kostryukova LV, Khudoklinova YY, Tikhonova EG. [The effect of lipid derivative of anti-tumor drug sarcolysin embedded in phospholipid nanoparticles in the experiments in vivo]. BIOMEDITSINSKAIA KHIMIIA 2021; 67:491-499. [PMID: 34964443 DOI: 10.18097/pbmc20216706491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
To improve the therapeutic properties of the antitumor agent Sarcolysin, we have previously developed and characterized a dosage form representing its ester conjugate with decanol embedded in ultra-small phospholipid nanoparticles less than 30 nm in size ("Sarcolysin-NP"). The effect of the resulting composition was investigated in vivo in comparison with the free substance of sarcolysin. The composition intravenous administration to mice showed an improvement in the pharmacokinetic parameters of sarcolysin associated with its initial higher (by 22%) level in the blood and prolonged circulation, which was also observed in mice with P388 tumor. In mice with three types of tumors - lymphocytic leukemia P388, lymphocytic leukemia L1210, and adenocarcinoma of the mammary gland Ca755 - administration of two doses of sarcolysin over a period of 7 days showed its predominant antitumor effect. The maximum tumor growth inhibition was noted for lymphocytic leukemia L1210 and adenocarcinoma of the mouse mammary gland Ca755 (at a dose of Sarcolysin-NP - 8,4 mg/kg), which was higher in comparison with free substance by more than 24% and 17%, respectively. Differences in the life span of the treated animals were revealed significantly at a dose of 10 mg/kg and amounted to 25% and 17,4% for lymphocytic leukemia P388 and L1210, respectively, and 11% for adenocarcinoma Ca755. In an experiment on rats, acute toxicity of Sarcolysin-NP administered intravenously showed that an average LD50 value 2-3 times exceeded a similar parameter for commercial preparations of free sarcolysin (Melphalan and Alkeran), which indicates its lower toxicity.
Collapse
|
13
|
Metformin Affects Olaparib Sensitivity through Induction of Apoptosis in Epithelial Ovarian Cancer Cell Lines. Int J Mol Sci 2021; 22:ijms221910557. [PMID: 34638899 PMCID: PMC8508816 DOI: 10.3390/ijms221910557] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 12/17/2022] Open
Abstract
This study examined the effect of combination treatment with the poly (ADP-ribose) polymerase inhibitor olaparib and metformin on homologous recombination (HR)-proficient epithelial ovarian cancer (EOC). Ovarian cancer cell lines (OV-90 and SKOV-3) were treated with olaparib, metformin, or a combination of both. Cell viability was assessed by MTT and colony formation assays. The production of reactive oxygen species (ROS) and changes in mitochondrial membrane potential were examined using the specific fluorescence probes, DCFH2-DA (2′,7′-dichloro-dihydrofluorescein diacetate) and JC-1 (5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazolcarbocyanine). Apoptotic and necrotic changes were measured by double staining with Hoechst 33258 and propidium iodide, orange acridine and ethidium bromide staining, phosphatidylserine externalization, TUNEL assay, caspase 3/7 activity, and cytochrome c and p53 expression. Compared with single-drug treatment, the combination of olaparib and metformin significantly inhibited cell proliferation and colony formation in HR-proficient ovarian cancer cells. ROS production preceded a decrease in mitochondrial membrane potential. The changes in ROS levels suggested their involvement in inducing apoptosis in response to combination treatment. The present results indicate a shift towards synergism in cells with mutant or null p53, treated with olaparib combined with metformin, providing a new approach to the treatment of gynecologic cancers. Taken together, the results support the use of metformin to sensitize EOC to olaparib therapy.
Collapse
|
14
|
Poczta A, Rogalska A, Marczak A. Treatment of Multiple Myeloma and the Role of Melphalan in the Era of Modern Therapies-Current Research and Clinical Approaches. J Clin Med 2021; 10:1841. [PMID: 33922721 PMCID: PMC8123041 DOI: 10.3390/jcm10091841] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/01/2021] [Accepted: 04/16/2021] [Indexed: 12/18/2022] Open
Abstract
Multiple myeloma (MM) accounts for 10% of all hematological malignancies, and it is the second most common hematological neoplasm for which chemotherapy is an important pharmacological treatment. High dose melphalan followed by autologous stem cell transplantation remains the standard of treatment for transplant-eligible patients with MM. In this review, we describe aspects of the pharmacokinetics and pharmacodynamics of melphalan therapy and related compounds. In addition, we describe the use of melphalan in innovative therapies for the treatment of MM, including the development of drug carriers to reduce systemic toxicity, combination therapy to improve the effectiveness of cancer therapy, and the chemical modification of the melphalan molecule to improve antitumor activity.
Collapse
Affiliation(s)
- Anastazja Poczta
- Department of Medical Biophysics, Faculty of Biology and Environmental Protection, Institute of Biophysics, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (A.R.); (A.M.)
| | | | | |
Collapse
|
15
|
Pinto-Díez C, Ferreras-Martín R, Carrión-Marchante R, González VM, Martín ME. Deeping in the Role of the MAP-Kinases Interacting Kinases (MNKs) in Cancer. Int J Mol Sci 2020; 21:ijms21082967. [PMID: 32340135 PMCID: PMC7215568 DOI: 10.3390/ijms21082967] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 02/05/2023] Open
Abstract
The mitogen-activated protein kinase (MAPK)-interacting kinases (MNKs) are involved in oncogenic transformation and can promote metastasis and tumor progression. In human cells, there are four MNKs isoforms (MNK1a/b and MNK2a/b), derived from two genes by alternative splicing. These kinases play an important role controlling the expression of specific proteins involved in cell cycle, cell survival and cell motility via eukaryotic initiation factor 4E (eIF4E) regulation, but also through other substrates such as heterogeneous nuclear ribonucleoprotein A1, polypyrimidine tract-binding protein-associated splicing factor and Sprouty 2. In this review, we provide an overview of the role of MNK in human cancers, describing the studies conducted to date to elucidate the mechanism involved in the action of MNKs, as well as the development of MNK inhibitors in different hematological cancers and solid tumors.
Collapse
|