1
|
Anisman H, Doubad D, Asokumar A, Matheson K. Psychosocial and neurobiological aspects of the worldwide refugee crisis: From vulnerability to resilience. Neurosci Biobehav Rev 2024; 165:105859. [PMID: 39159733 DOI: 10.1016/j.neubiorev.2024.105859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 08/06/2024] [Accepted: 08/15/2024] [Indexed: 08/21/2024]
Abstract
Anisman, H., Doubad, D., Asokumar, A. & Matheson, K. Psychosocial and neurobiological aspects of the worldwide refugee crisis: From vulnerability to resilience. NEUROSCI BIOBEHAV REV, XXXX. Immigration occurs between countries either to obtain employment, for family reunification or to escape violence and other life-threatening conditions. Refugees and asylum seekers are often obligated to overcome a uniquely challenging set of circumstances prior to and during migration. Settlement following immigration may pose yet another set of stressors related to acculturation to the host country, as well as financial insecurity, discrimination, language barriers, and social isolation. Here we discuss the multiple consequences of immigration experiences, focusing on the health disturbances that frequently develop in adults and children. Aside from the psychosocial influences, immigration-related challenges may cause hormonal, inflammatory immune, and microbiota changes that favor psychological and physical illnesses. Some biological alterations are subject to modification by epigenetic changes, which have implications for intergenerational trauma transmission, as might disruptions in parenting behaviors and family dysfunction. Despite the hardships experienced, many immigrants and their families exhibit positive psychological adjustment after resettlement. We provide information to diminish the impacts associated with immigration and offer strength-based approaches that may foster resilience.
Collapse
Affiliation(s)
- H Anisman
- Carleton University, Department of Neuroscience, Ottawa, Ontario K1S 5B6, Canada.
| | - D Doubad
- Carleton University, Department of Neuroscience, Ottawa, Ontario K1S 5B6, Canada
| | - A Asokumar
- Carleton University, Department of Neuroscience, Ottawa, Ontario K1S 5B6, Canada
| | - K Matheson
- Carleton University, Department of Neuroscience, Ottawa, Ontario K1S 5B6, Canada
| |
Collapse
|
2
|
Jones AC, Patki A, Srinivasasainagendra V, Hidalgo BA, Tiwari HK, Limdi NA, Armstrong ND, Chaudhary NS, Minniefield B, Absher D, Arnett DK, Lange LA, Lange EM, Young BA, Diamantidis CJ, Rich SS, Mychaleckyj JC, Rotter JI, Taylor KD, Kramer HJ, Tracy RP, Durda P, Kasela S, Lappalinen T, Liu Y, Johnson WC, Van Den Berg DJ, Franceschini N, Liu S, Mouton CP, Bhatti P, Horvath S, Whitsel EA, Irvin MR. A methylation risk score for chronic kidney disease: a HyperGEN study. Sci Rep 2024; 14:17757. [PMID: 39085340 PMCID: PMC11291488 DOI: 10.1038/s41598-024-68470-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024] Open
Abstract
Chronic kidney disease (CKD) impacts about 1 in 7 adults in the United States, but African Americans (AAs) carry a disproportionately higher burden of disease. Epigenetic modifications, such as DNA methylation at cytosine-phosphate-guanine (CpG) sites, have been linked to kidney function and may have clinical utility in predicting the risk of CKD. Given the dynamic relationship between the epigenome, environment, and disease, AAs may be especially sensitive to environment-driven methylation alterations. Moreover, risk models incorporating CpG methylation have been shown to predict disease across multiple racial groups. In this study, we developed a methylation risk score (MRS) for CKD in cohorts of AAs. We selected nine CpG sites that were previously reported to be associated with estimated glomerular filtration rate (eGFR) in epigenome-wide association studies to construct a MRS in the Hypertension Genetic Epidemiology Network (HyperGEN). In logistic mixed models, the MRS was significantly associated with prevalent CKD and was robust to multiple sensitivity analyses, including CKD risk factors. There was modest replication in validation cohorts. In summary, we demonstrated that an eGFR-based CpG score is an independent predictor of prevalent CKD, suggesting that MRS should be further investigated for clinical utility in evaluating CKD risk and progression.
Collapse
Affiliation(s)
- Alana C Jones
- Medical Scientist Training Program, University of Alabama at Birmingham, 912 18th St S, Birmingham, AL, 35233, USA.
- Department of Epidemiology, University of Alabama at Birmingham, 912 18th St S, Birmingham, AL, 35233, USA.
| | - Amit Patki
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Bertha A Hidalgo
- Department of Epidemiology, University of Alabama at Birmingham, 912 18th St S, Birmingham, AL, 35233, USA
| | - Hemant K Tiwari
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nita A Limdi
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nicole D Armstrong
- Department of Epidemiology, University of Alabama at Birmingham, 912 18th St S, Birmingham, AL, 35233, USA
| | | | - Bré Minniefield
- Department of Biology, Florida State University-Panama City, Panama City, FL, USA
| | - Devin Absher
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Donna K Arnett
- Office of the Provost, University of South Carolina, Columbia, SC, USA
| | - Leslie A Lange
- Department of Biomedical Informatics, University of Colorado-Anschutz, Aurora, CO, USA
| | - Ethan M Lange
- Department of Biomedical Informatics, University of Colorado-Anschutz, Aurora, CO, USA
| | - Bessie A Young
- Division of Nephrology, University of Washington, Seattle, WA, USA
| | | | - Stephen S Rich
- Department of Genome Sciences, University of Virginia, Charlottesville, VA, USA
| | - Josyf C Mychaleckyj
- Department of Public Health Sciences, Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Holly J Kramer
- Departments of Public Health Sciences and Medicine, Loyola University Medical Center, Taywood, IL, USA
| | - Russell P Tracy
- Department of Pathology and Laboratory Medicine, University of Vermont, Colchester, VT, USA
| | - Peter Durda
- Department of Pathology and Laboratory Medicine, University of Vermont, Colchester, VT, USA
| | - Silva Kasela
- Department of Systems Biology, New York Genome Center, Columbia University, New York, NY, USA
| | - Tuuli Lappalinen
- Department of Systems Biology, New York Genome Center, Columbia University, New York, NY, USA
| | - Yongmei Liu
- Department of Medicine, Cardiology and Neurology, Duke University Medical Center, Durham, NC, USA
| | - W Craig Johnson
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - David J Van Den Berg
- Department of Population and Public Health Sciences, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Nora Franceschini
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Simin Liu
- Department of Epidemiology, School of Public Health, Brown University, Providence, RI, USA
| | - Charles P Mouton
- Department of Family Medicine, University of Texas Medical Branch Health, Galveston, TX, USA
| | - Parveen Bhatti
- Department of Medicine, School of Population and Public Health, University of British Columbia, Vancouver, BC, CAN, USA
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, Gonda Research Center, Los Angeles, CA, USA
- Altos Labs, San Diego, CA, USA
| | - Eric A Whitsel
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Marguerite R Irvin
- Department of Epidemiology, University of Alabama at Birmingham, 912 18th St S, Birmingham, AL, 35233, USA
| |
Collapse
|
3
|
Watkins SH, Testa C, Simpkin AJ, Smith GD, Coull B, De Vivo I, Tilling K, Waterman PD, Chen JT, Diez-Roux AV, Krieger N, Suderman M, Relton C. An epigenome-wide analysis of DNA methylation, racialized and economic inequities, and air pollution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.07.570610. [PMID: 38105971 PMCID: PMC10723401 DOI: 10.1101/2023.12.07.570610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Importance DNA methylation (DNAm) provides a plausible mechanism by which adverse exposures become embodied and contribute to health inequities, due to its role in genome regulation and responsiveness to social and biophysical exposures tied to societal context. However, scant epigenome-wide association studies (EWAS) have included structural and lifecourse measures of exposure, especially in relation to structural discrimination. Objective Our study tests the hypothesis that DNAm is a mechanism by which racial discrimination, economic adversity, and air pollution become biologically embodied. Design A series of cross-sectional EWAS, conducted in My Body My Story (MBMS, biological specimens collected 2008-2010, DNAm assayed in 2021); and the Multi Ethnic Study of Atherosclerosis (MESA; biological specimens collected 2010-2012, DNAm assayed in 2012-2013); using new georeferenced social exposure data for both studies (generated in 2022). Setting MBMS was recruited from four community health centers in Boston; MESA was recruited from four field sites in: Baltimore, MD; Forsyth County, NC; New York City, NY; and St. Paul, MN. Participants Two population-based samples of US-born Black non-Hispanic (Black NH), white non-Hispanic (white NH), and Hispanic individuals (MBMS; n=224 Black NH and 69 white NH) and (MESA; n=229 Black NH, n=555 white NH and n=191 Hispanic). Exposures Eight social exposures encompassing racial discrimination, economic adversity, and air pollution. Main outcome Genome-wide changes in DNAm, as measured using the Illumina EPIC BeadChip (MBMS; using frozen blood spots) and Illumina 450k BeadChip (MESA; using purified monocytes). Our hypothesis was formulated after data collection. Results We observed the strongest associations with traffic-related air pollution (measured via black carbon and nitrogen oxides exposure), with evidence from both studies suggesting that air pollution exposure may induce epigenetic changes related to inflammatory processes. We also found suggestive associations of DNAm variation with measures of structural racial discrimination (e.g., for Black NH participants, born in a Jim Crow state; adult exposure to racialized economic residential segregation) situated in genes with plausible links to effects on health. Conclusions and Relevance Overall, this work suggests that DNAm is a biological mechanism through which structural racism and air pollution become embodied and may lead to health inequities.
Collapse
Affiliation(s)
- Sarah Holmes Watkins
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Christian Testa
- Department of Social and Behavioral Sciences, Harvard T H Chan School of Public Health, Harvard University, Boston, MA 02115, USA
- Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115, USA
| | - Andrew J. Simpkin
- School of Mathematical and Statistical Sciences, University of Galway, Galway, Ireland
| | - George Davey Smith
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Brent Coull
- Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115, USA
| | - Immaculata De Vivo
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Kate Tilling
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Pamela D. Waterman
- Department of Social and Behavioral Sciences, Harvard T H Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| | - Jarvis T. Chen
- Department of Social and Behavioral Sciences, Harvard T H Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| | - Ana V. Diez-Roux
- Department of Epidemiology and Biostatistics and Urban Health Collaborative, Dornsife School of Public Health, Drexel University, Philadelphia, USA
| | - Nancy Krieger
- Department of Social and Behavioral Sciences, Harvard T H Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| | - Matthew Suderman
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Caroline Relton
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| |
Collapse
|
4
|
Zhang X, Ammous F, Lin L, Ratliff SM, Ware EB, Faul JD, Zhao W, Kardia SLR, Smith JA. The Interplay of Epigenetic, Genetic, and Traditional Risk Factors on Blood Pressure: Findings from the Health and Retirement Study. Genes (Basel) 2022; 13:1959. [PMID: 36360196 PMCID: PMC9689874 DOI: 10.3390/genes13111959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/11/2022] [Accepted: 10/19/2022] [Indexed: 01/21/2023] Open
Abstract
The epigenome likely interacts with traditional and genetic risk factors to influence blood pressure. We evaluated whether 13 previously reported DNA methylation sites (CpGs) are associated with systolic (SBP) or diastolic (DBP) blood pressure, both individually and aggregated into methylation risk scores (MRS), in 3070 participants (including 437 African ancestry (AA) and 2021 European ancestry (EA), mean age = 70.5 years) from the Health and Retirement Study. Nine CpGs were at least nominally associated with SBP and/or DBP after adjusting for traditional hypertension risk factors (p < 0.05). MRSSBP was positively associated with SBP in the full sample (β = 1.7 mmHg per 1 standard deviation in MRSSBP; p = 2.7 × 10-5) and in EA (β = 1.6; p = 0.001), and MRSDBP with DBP in the full sample (β = 1.1; p = 1.8 × 10-6), EA (β = 1.1; p = 7.2 × 10-5), and AA (β = 1.4; p = 0.03). The MRS and BP-genetic risk scores were independently associated with blood pressure in EA. The effects of both MRSs were weaker with increased age (pinteraction < 0.01), and the effect of MRSDBP was higher among individuals with at least some college education (pinteraction = 0.02). In AA, increasing MRSSBP was associated with higher SBP in females only (pinteraction = 0.01). Our work shows that MRS is a potential biomarker of blood pressure that may be modified by traditional hypertension risk factors.
Collapse
Affiliation(s)
- Xinman Zhang
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Farah Ammous
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lisha Lin
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Scott M. Ratliff
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Erin B. Ware
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI 48104, USA
| | - Jessica D. Faul
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI 48104, USA
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI 48104, USA
| | - Sharon L. R. Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jennifer A. Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI 48104, USA
| |
Collapse
|
5
|
Lawrence JA, Kawachi I, White K, Bassett MT, Priest N, Masunga JG, Cory HJ, Mita C, Williams DR. A systematic review and meta-analysis of the Everyday Discrimination Scale and biomarker outcomes. Psychoneuroendocrinology 2022; 142:105772. [PMID: 35490482 PMCID: PMC9997446 DOI: 10.1016/j.psyneuen.2022.105772] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 03/01/2022] [Accepted: 04/17/2022] [Indexed: 02/08/2023]
Abstract
Discrimination has consistently been associated with multiple adverse health outcomes. Like other psychosocial stressors, discrimination is thought to impact health through stress-related physiologic pathways including hypothalamic-pituitary-adrenal (HPA) axis activation, dysregulation of inflammation responses, and accelerated cellular aging. Given growing attention to research examining the biological pathways through which discrimination becomes embodied, this systematic review and meta-analysis synthesizes empirical evidence examining relationships between self-reported discrimination and four biomarker outcomes (i.e., cortisol, C-reactive protein (CRP), interleukin-6 (IL-6), and telomere length) among studies that have used the Everyday Discrimination Scale. We conducted a systematic review of studies discussing self-reported, everyday, or chronic discrimination in the context of health by searching Medline / PubMed (National Library of Medicine, NCBI), PsycInfo (APA, Ebsco) and Web of Science Core Collection (Clarivate). Twenty-five articles met the criteria for meta-analysis, with several reporting on multiple outcomes. Discrimination was associated with elevated CRP levels (r = 0.11; 95% CI: 0.01, 0.20, k = 10), though not cortisol (r = 0.05; 95% CI: -0.06, 0.16, k = 9), IL-6 (r = 0.05; 95% CI: -0.32, 0.42, k = 5), or telomere length (r = 0.03; 95% CI: -0.01, 0.07, k = 6). We identify several points of consideration for future research including addressing heterogeneity in assessment of biomarker outcomes and the need for longitudinal assessments of relationships between discrimination and biomarker outcomes.
Collapse
Affiliation(s)
- Jourdyn A Lawrence
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Population Health Sciences, Harvard Graduate School of Arts and Sciences, Cambridge, MA, USA; François-Xavier Bagnoud (FXB) Center for Health and Human Rights, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Ichiro Kawachi
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Kellee White
- Department of Health Policy and Management, University of Maryland School of Public Health, College Park, MD, USA
| | - Mary T Bassett
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA; François-Xavier Bagnoud (FXB) Center for Health and Human Rights, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Naomi Priest
- Centre for Social Research and Methods, Australian National University, Canberra, Australian Capital Territory, Australia; Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Joan Gakii Masunga
- Center for Bioethics, Harvard Medical School, Boston, MA, USA; Department of Global Health and Social Medicine, Harvard Medical School, Boston, MA, USA
| | - Hannah J Cory
- Population Health Sciences, Harvard Graduate School of Arts and Sciences, Cambridge, MA, USA; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Carol Mita
- Countway Library, Harvard Medical School, Boston, MA, USA
| | - David R Williams
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of African and African American Studies, Harvard University, Cambridge, MA, USA
| |
Collapse
|
6
|
Mannens MMAM, Lombardi MP, Alders M, Henneman P, Bliek J. Further Introduction of DNA Methylation (DNAm) Arrays in Regular Diagnostics. Front Genet 2022; 13:831452. [PMID: 35860466 PMCID: PMC9289263 DOI: 10.3389/fgene.2022.831452] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 06/08/2022] [Indexed: 12/01/2022] Open
Abstract
Methylation tests have been used for decades in regular DNA diagnostics focusing primarily on Imprinting disorders or specific loci annotated to specific disease associated gene promotors. With the introduction of DNA methylation (DNAm) arrays such as the Illumina Infinium HumanMethylation450 Beadchip array or the Illumina Infinium Methylation EPIC Beadchip array (850 k), it has become feasible to study the epigenome in a timely and cost-effective way. This has led to new insights regarding the complexity of well-studied imprinting disorders such as the Beckwith Wiedemann syndrome, but it has also led to the introduction of tests such as EpiSign, implemented as a diagnostic test in which a single array experiment can be compared to databases with known episignatures of multiple genetic disorders, especially neurodevelopmental disorders. The successful use of such DNAm tests is rapidly expanding. More and more disorders are found to be associated with discrete episignatures which enables fast and definite diagnoses, as we have shown. The first examples of environmentally induced clinical disorders characterized by discrete aberrant DNAm are discussed underlining the broad application of DNAm testing in regular diagnostics. Here we discuss exemplary findings in our laboratory covering this broad range of applications and we discuss further use of DNAm tests in the near future.
Collapse
|
7
|
Martin CL, Ghastine L, Lodge EK, Dhingra R, Ward-Caviness CK. Understanding Health Inequalities Through the Lens of Social Epigenetics. Annu Rev Public Health 2022; 43:235-254. [PMID: 35380065 PMCID: PMC9584166 DOI: 10.1146/annurev-publhealth-052020-105613] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Longstanding racial/ethnic inequalities in morbidity and mortality persist in the United States. Although the determinants of health inequalities are complex, social and structural factors produced by inequitable and racialized systems are recognized as contributing sources. Social epigenetics is an emerging area of research that aims to uncover biological pathways through which social experiences affect health outcomes. A growing body of literature links adverse social exposures to epigenetic mechanisms, namely DNA methylation, offering a plausible pathway through which health inequalities may arise. This review provides an overview of social epigenetics and highlights existing literature linking social exposures-i.e., psychosocial stressors, racism, discrimination, socioeconomic position, and neighborhood social environment-to DNA methylation in humans. We conclude with a discussion of social epigenetics as a mechanistic link to health inequalities and provide suggestions for future social epigenetics research on health inequalities.
Collapse
Affiliation(s)
- Chantel L Martin
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA;
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Lea Ghastine
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA;
| | - Evans K Lodge
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA;
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Radhika Dhingra
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Institute of Environmental Health Solutions, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Cavin K Ward-Caviness
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Chapel Hill, North Carolina, USA
| |
Collapse
|
8
|
Chilunga FP, Henneman P, Venema A, Meeks KAC, Gonzalez JR, Ruiz-Arenas C, Requena-Méndez A, Beune E, Spranger J, Smeeth L, Bahendeka S, Owusu-Dabo E, Klipstein-Grobusch K, Adeyemo A, Mannens MMAM, Agyemang C. DNA methylation as the link between migration and the major noncommunicable diseases: the RODAM study. Epigenomics 2021; 13:653-666. [PMID: 33890479 PMCID: PMC8173498 DOI: 10.2217/epi-2020-0329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 03/29/2021] [Indexed: 01/19/2023] Open
Abstract
Aim: We assessed epigenome-wide DNA methylation (DNAm) differences between migrant and non-migrant Ghanaians. Materials & methods: We used the Illumina Infinium® HumanMethylation450 BeadChip to profile DNAm of 712 Ghanaians in whole blood. We used linear models to detect differentially methylated positions (DMPs) associated with migration. We performed multiple post hoc analyses to validate our findings. Results: We identified 13 DMPs associated with migration (delta-beta values: 0.2-4.5%). Seven DMPs in CPLX2, EIF4E3, MEF2D, TLX3, ST8SIA1, ANG and CHRM3 were independent of extrinsic genomic influences in public databases. Two DMPs in NLRC5 were associated with duration of stay in Europe among migrants. All DMPs were biologically linked to migration-related factors. Conclusion: Our findings provide the first insights into DNAm differences between migrants and non-migrants.
Collapse
Affiliation(s)
- Felix P Chilunga
- Department of Public Health, Amsterdam Public Health Research Institute, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Peter Henneman
- Department of Clinical Genetics, Amsterdam Reproduction & Development Research Institute, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Andrea Venema
- Department of Clinical Genetics, Amsterdam Reproduction & Development Research Institute, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Karlijn AC Meeks
- Center for Research on Genomics & Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20894, USA
| | - Juan R Gonzalez
- Barcelona Institute for Global Health (ISGlobal, University of Barcelona), 08003 Barcelona, Spain
| | - Carlos Ruiz-Arenas
- Barcelona Institute for Global Health (ISGlobal, University of Barcelona), 08003 Barcelona, Spain
| | - Ana Requena-Méndez
- Barcelona Institute for Global Health (ISGlobal, University of Barcelona), 08003 Barcelona, Spain
- Department of Global Public Health, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Erik Beune
- Department of Public Health, Amsterdam Public Health Research Institute, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Joachim Spranger
- Department of Endocrinology, Diabetes & Metabolism, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Liam Smeeth
- Department of Non-communicable Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, 1E 7HT, UK
| | - Silver Bahendeka
- Department of Medicine, MKPGMS-Uganda Martyrs University, 8H33+5M Kampala, Uganda
| | - Ellis Owusu-Dabo
- School of Public Health, Kwame Nkrumah University of Science & Technology, MCFH+R9 Kumasi, Ghana
| | - Kerstin Klipstein-Grobusch
- Julius Global Health, Julius Center for Health Sciences & Primary Care, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
- Division of Epidemiology and Biostatistics, School of Public Health, Faculty of Health Sciences, University of The Witwatersrand, 2193 Johannesburg, South Africa
| | - Adebowale Adeyemo
- Center for Research on Genomics & Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20894, USA
| | - Marcel MAM Mannens
- Department of Clinical Genetics, Amsterdam Reproduction & Development Research Institute, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Charles Agyemang
- Department of Public Health, Amsterdam Public Health Research Institute, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|