1
|
Vastrad B, Vastrad C. Screening and identification of key biomarkers associated with endometriosis using bioinformatics and next-generation sequencing data analysis. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2024; 25:116. [DOI: 10.1186/s43042-024-00572-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 08/23/2024] [Indexed: 01/04/2025] Open
Abstract
Abstract
Background
Endometriosis is a common cause of endometrial-type mucosa outside the uterine cavity with symptoms such as painful periods, chronic pelvic pain, pain with intercourse and infertility. However, the early diagnosis of endometriosis is still restricted. The purpose of this investigation is to identify and validate the key biomarkers of endometriosis.
Methods
Next-generation sequencing dataset GSE243039 was obtained from the Gene Expression Omnibus database, and differentially expressed genes (DEGs) between endometriosis and normal control samples were identified. After screening of DEGs, gene ontology (GO) and REACTOME pathway enrichment analyses were performed. Furthermore, a protein–protein interaction (PPI) network was constructed and modules were analyzed using the Human Integrated Protein–Protein Interaction rEference database and Cytoscape software, and hub genes were identified. Subsequently, a network between miRNAs and hub genes, and network between TFs and hub genes were constructed using the miRNet and NetworkAnalyst tool, and possible key miRNAs and TFs were predicted. Finally, receiver operating characteristic curve analysis was used to validate the hub genes.
Results
A total of 958 DEGs, including 479 upregulated genes and 479 downregulated genes, were screened between endometriosis and normal control samples. GO and REACTOME pathway enrichment analyses of the 958 DEGs showed that they were mainly involved in multicellular organismal process, developmental process, signaling by GPCR and muscle contraction. Further analysis of the PPI network and modules identified 10 hub genes, including vcam1, snca, prkcb, adrb2, foxq1, mdfi, actbl2, prkd1, dapk1 and actc1. Possible target miRNAs, including hsa-mir-3143 and hsa-mir-2110, and target TFs, including tcf3 (transcription factor 3) and clock (clock circadian regulator), were predicted by constructing a miRNA-hub gene regulatory network and TF-hub gene regulatory network.
Conclusions
This investigation used bioinformatics techniques to explore the potential and novel biomarkers. These biomarkers might provide new ideas and methods for the early diagnosis, treatment and monitoring of endometriosis.
Collapse
|
2
|
Vernet-Tomas M, Vazquez I, Olivares F, Lopez D, Yelamos J, Comerma L. Human Leukocyte Antigen Class I Expression and Natural Killer Cell Infiltration and Its Correlation with Prognostic Features in Luminal Breast Cancers. BREAST CANCER (DOVE MEDICAL PRESS) 2024; 16:657-666. [PMID: 39387059 PMCID: PMC11463177 DOI: 10.2147/bctt.s476721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/17/2024] [Indexed: 10/12/2024]
Abstract
Purpose The aim of this study was to determine whether low HLA-I expression and NK cells infiltration are related to prognostic features in breast cancer, as observed in cancers in other locations and non-hormone dependent breast cancers. Particularly, we explored their relation to infiltrated axillary lymph nodes (ALNs), with the aim of finding new predictors helping to decide the extent of axillary surgery. Patients and Methods We conducted a retrospective correlational analysis of 35 breast cancers from 35 breast cancer patients showing axillary infiltration at diagnosis and with upfront surgery. HLA-I H-score and the number of NK cells x 50 high power fields (HPF) in the biopsy specimen were correlated with pathological variables of the surgical specimen: number of infiltrated ALNs, tumor size, histological type, the presence of ductal carcinoma in situ, focality, histological grade, necrosis, lymphovascular and perineural invasion, Her2Neu status, and the percentages of tumor-infiltrating lymphocytes (TILs), estrogen receptor, progesterone receptor, ki67, and p53. Results All tumors showed hormone receptor expression and three of them Her2Neu positivity. A positive correlation (p=0.001**) was found between HLA-I H-score and TILs and Ki67 expression. HLA H-score increased with histological grade and was higher in unifocal than in multifocal disease (p=0.044 and p=0.011, respectively). No other correlations were found. Conclusion High HLA-I H-score values correlated with features of poor prognosis in this cohort of luminal breast tumors, but not with infiltrated ALNs. This finding highlights the differences between luminal breast cancer, and cancers in other locations and non-hormone dependent breast cancers, in which low HLA-I expression tends to be associated with poor prognostic features.
Collapse
Affiliation(s)
- Maria Vernet-Tomas
- Breast Diseases Unit, Hospital Del Mar, Barcelona, Spain
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Ivonne Vazquez
- Breast Diseases Unit, Hospital Del Mar, Barcelona, Spain
- Department of Pathology; Hospital del Mar, Barcelona, Spain
| | | | - David Lopez
- Department of Pathology; Hospital del Mar, Barcelona, Spain
| | - Jose Yelamos
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
- Laboratory of Immunology, Department of Pathology; Hospital Del Mar, Barcelona, Spain
| | - Laura Comerma
- Breast Diseases Unit, Hospital Del Mar, Barcelona, Spain
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
- Department of Pathology; Hospital del Mar, Barcelona, Spain
| |
Collapse
|
3
|
Andres MP, Peloggia A, Abrao HM, Magalhaes TF, Neto JS, Abrão MS. Evaluation of HLA-DQ2 and HLA-DQ8 haplotypes in patients with endometriosis, A case-control study. Clinics (Sao Paulo) 2024; 79:100317. [PMID: 38432123 PMCID: PMC10914556 DOI: 10.1016/j.clinsp.2023.100317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 10/31/2023] [Accepted: 11/27/2023] [Indexed: 03/05/2024] Open
Abstract
OBJECTIVE To evaluate the relationship between genetic haplotypes associated with celiac disease (Human Leucocyte Antigen [HLA] DQ2 and DQ8) with the diagnosis, clinical presentation, and location of endometriosis in Brazilian women. METHOD A retrospective cross-sectional study, was conducted in a Tertiary hospital. PATIENTS Women aged 18-50 years who underwent HLA-DQ2 and HLA-DQ8 haplotype analysis. INTERVENTION The patients were divided into endometriosis and control groups and evaluated for symptoms; endometriosis location, American Society for Reproductive Medicine (ASRM) stage, and the presence of anti-tissue transglutaminase IgA (anti-TgA), HLA-DQ2, and HLA-DQ8 markers. RESULTS A total of 434 consecutive patients with (n = 315) and without (n = 119) endometriosis were included. Pain and infertility were more frequent in the endometriosis group than in the control group. The presence of HLA-DQ2, HLA-DQ8, and anti-TgA was similar between both groups. The presence of HLA-DQ2 and HLA-DQ8 markers did not differ based on age, pain symptoms, ASRM stage, or endometriosis location. CONCLUSION Although there are similarities in inflammatory markers and pathophysiology between celiac disease and endometriosis, this study found no significant associations in the presence of HLA-DQ2 or HLA-DQ8 haplotypes and endometriosis.
Collapse
Affiliation(s)
- Marina P. Andres
- Divisão de Clínica Ginecológica, Departamento de Obstetrícia e Ginecologia, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
- Divisão de Clínica Ginecológica, BP ‒ A Beneficência Portuguesa de São Paulo, São Paulo, SP, Brazil
| | - Alessandra Peloggia
- Centro de Pesquisa em Saúde Reprodutiva de Campinas (CEMICAMP), Campinas, SP, Brazil
| | - Henrique M. Abrao
- Divisão de Clínica Ginecológica, BP ‒ A Beneficência Portuguesa de São Paulo, São Paulo, SP, Brazil
| | - Thais F. Magalhaes
- Divisão de Clínica Ginecológica, Departamento de Obstetrícia e Ginecologia, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | - João Siufi Neto
- Divisão de Clínica Ginecológica, BP ‒ A Beneficência Portuguesa de São Paulo, São Paulo, SP, Brazil
| | - Mauricio Simões Abrão
- Divisão de Clínica Ginecológica, Departamento de Obstetrícia e Ginecologia, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
- Divisão de Clínica Ginecológica, BP ‒ A Beneficência Portuguesa de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
4
|
Nowak I, Bochen P. The Antigen-Processing Pathway via Major Histocompatibility Complex I as a New Perspective in the Diagnosis and Treatment of Endometriosis. Arch Immunol Ther Exp (Warsz) 2024; 72:aite-2024-0008. [PMID: 38478380 DOI: 10.2478/aite-2024-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/30/2024] [Indexed: 04/16/2024]
Abstract
Endometriosis is a debilitating gynecological disease defined as the presence of endometrium-like epithelium and/or stroma outside the uterine cavity. The most commonly affected sites are the pelvic peritoneum, ovaries, uterosacral ligaments, and the rectovaginal septum. The aberrant tissue responds to hormonal stimulation, undergoing cyclical growth and shedding similar to appropriately located endometrial tissue in the uterus. Common symptoms of endometriosis are painful periods and ovulation, severe pelvic cramping, heavy bleeding, pain during sex, urination and bowel pain, bleeding, and pain between periods. Numerous theories have been proposed to explain the pathogenesis of endometriosis. Sampson's theory of retrograde menstruation is considered to be the most accepted. This theory assumes that endometriosis occurs due to the retrograde flow of endometrial cells through the fallopian tubes during menstruation. However, it has been shown that this process takes place in 90% of women, while endometriosis is diagnosed in only 10% of them. This means that there must be a mechanism that blocks the immune system from removing endometrial cells and interferes with its function, leading to implantation of the ectopic endometrium and the formation of lesions. In this review, we consider the contribution of components of the Major Histocompatibility Complex (MHC)-I-mediated antigen-processing pathway, such as the ERAP, TAP, LMP, LNPEP, and tapasin, to the susceptibility, onset, and severity of endometriosis. These elements can induce significant changes in MHC-I-bound peptidomes that may influence the response of immune cells to ectopic endometrial cells.
Collapse
Affiliation(s)
- Izabela Nowak
- Department of Clinical Immunology, Laboratory of Immunogenetics and Tissue, Immunology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Patrycja Bochen
- Department of Clinical Immunology, Laboratory of Immunogenetics and Tissue, Immunology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| |
Collapse
|
5
|
Marques Da Costa ME, Zaidi S, Scoazec JY, Droit R, Lim WC, Marchais A, Salmon J, Cherkaoui S, Morscher RJ, Laurent A, Malinge S, Mercher T, Tabone-Eglinger S, Goddard I, Pflumio F, Calvo J, Redini F, Entz-Werlé N, Soriano A, Villanueva A, Cairo S, Chastagner P, Moro M, Owens C, Casanova M, Hladun-Alvaro R, Berlanga P, Daudigeos-Dubus E, Dessen P, Zitvogel L, Lacroix L, Pierron G, Delattre O, Schleiermacher G, Surdez D, Geoerger B. A biobank of pediatric patient-derived-xenograft models in cancer precision medicine trial MAPPYACTS for relapsed and refractory tumors. Commun Biol 2023; 6:949. [PMID: 37723198 PMCID: PMC10507044 DOI: 10.1038/s42003-023-05320-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 09/04/2023] [Indexed: 09/20/2023] Open
Abstract
Pediatric patients with recurrent and refractory cancers are in most need for new treatments. This study developed patient-derived-xenograft (PDX) models within the European MAPPYACTS cancer precision medicine trial (NCT02613962). To date, 131 PDX models were established following heterotopical and/or orthotopical implantation in immunocompromised mice: 76 sarcomas, 25 other solid tumors, 12 central nervous system tumors, 15 acute leukemias, and 3 lymphomas. PDX establishment rate was 43%. Histology, whole exome and RNA sequencing revealed a high concordance with the primary patient's tumor profile, human leukocyte-antigen characteristics and specific metabolic pathway signatures. A detailed patient molecular characterization, including specific mutations prioritized in the clinical molecular tumor boards are provided. Ninety models were shared with the IMI2 ITCC Pediatric Preclinical Proof-of-concept Platform (IMI2 ITCC-P4) for further exploitation. This PDX biobank of unique recurrent childhood cancers provides an essential support for basic and translational research and treatments development in advanced pediatric malignancies.
Collapse
Grants
- This work was supported by grants from Fondation Gustave Roussy; Fédération Enfants Cancers et Santé, Société Française de lutte contre les Cancers et les leucémies de l’Enfant et l’adolescent (SFCE), Association AREMIG and Thibault BRIET; Parrainage médecin-chercheur of Gustave Roussy; INSERM; Canceropôle Ile-de-France; Ligue Nationale Contre le Cancer (Equipe labellisée); Fondation ARC for the European projects ERA-NET on Translational Cancer Research (TRANSCAN 2) Joint Transnational Call 2014 (JTC 2014) ‘Targeting Of Resistance in PEDiatric Oncology (TORPEDO)’, ERA-NET TRANSCAN JTC 2014 (TRAN201501238), and TRANSCAN JTC 2017 (TRANS201801292); Agence Nationale de la Recherche (ANR-10-EQPX-03, Institut Curie Génomique d’Excellence (ICGex); IMI ITCC-P4 ; The Child Cancer Research Foundation (CCRF), Cancer Council Western Australia (CCWA); PAIR-Pédiatrie/CONECT-AML (INCa-ARC-LIGUE_11905 and Association Laurette Fugain), Ligue contre le cancer (Equipe labellisée, since 2016), OPALE Carnot institute; Dell; Fondation Bristol-Myers Squibb; Association Imagine for Margo; Association Manon Hope; L’Etoile de Martin; La Course de l’Espoir; M la vie avec Lisa; ADAM; Couleur Jade; Dans les pas du Géant; Courir pour Mathieu; Marabout de Ficelle; Olivier Chape; Les Bagouz à Manon; Association Hubert Gouin Enfance et Cancer; Les Amis de Claire; Kurt-und Senta Hermann Stiftung; Holcim Stiftung Wissen; Gertrud-Hagmann-Stiftung für Malignom-Forschung; Heidi Ras Grant Forschungszentrum fürs Kind; Children’s Liver Tumour European Research Network (ChiLTERN) EU H2020 projet (668596); Fundación FERO and the Rotary Clubs Barcelona Eixample, Barcelona Diagonal, Santa Coloma de Gramanet, München-Blutenburg, Sassella-Stiftung, Berger-Janser Stiftung and Krebsliga Zürich, Deutschland Gemeindienst e.V. and others from Barcelona and province, and No Limits Contra el Cáncer Infantil Association.
Collapse
Affiliation(s)
- Maria Eugénia Marques Da Costa
- INSERM U1015, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Sakina Zaidi
- INSERM U830, Equipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, SIREDO Oncology Centre, Institut Curie Research Centre, Paris, France
| | - Jean-Yves Scoazec
- Department of Pathology and Laboratory Medicine, Translational Research Laboratory and Biobank, AMMICA, INSERM US23/CNRS UMS3655, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Robin Droit
- INSERM U1015, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
- Gustave Roussy Cancer Campus, Bioinformatics Platform, AMMICA, INSERM US23/CNRS, UAR3655, Villejuif, France
| | - Wan Ching Lim
- INSERM U1015, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
- School of Data Sciences, Perdana University, Kuala Lumpur, Malaysia
| | - Antonin Marchais
- INSERM U1015, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Jerome Salmon
- INSERM U1015, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Sarah Cherkaoui
- INSERM U1015, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
- Division of Oncology and Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Raphael J Morscher
- INSERM U1015, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
- Division of Oncology and Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Anouchka Laurent
- Gustave Roussy Cancer Campus, INSERM U1170, Université Paris-Saclay, Equipe labellisée Ligue Nationale Contre le Cancer, PEDIAC program, Villejuif, France
| | - Sébastien Malinge
- Gustave Roussy Cancer Campus, INSERM U1170, Université Paris-Saclay, Equipe labellisée Ligue Nationale Contre le Cancer, PEDIAC program, Villejuif, France
- Telethon Kids Institute - Cancer Centre, Perth Children's Hospital, Nedlands, WA, Australia
| | - Thomas Mercher
- Gustave Roussy Cancer Campus, INSERM U1170, Université Paris-Saclay, Equipe labellisée Ligue Nationale Contre le Cancer, PEDIAC program, Villejuif, France
| | | | - Isabelle Goddard
- Small Animal Platform, Cancer Research Center of Lyon, INSERM U1052, CNRS UMR 5286, Centre Léon Bérard, Claude Bernard Université Lyon 1, Lyon, France
| | - Francoise Pflumio
- UMR-E008 Stabilité Génétique, Cellules Souches et Radiations, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Université de Paris-Université Paris-Saclay, 92260, Fontenay-aux-Roses, France
| | - Julien Calvo
- UMR-E008 Stabilité Génétique, Cellules Souches et Radiations, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Université de Paris-Université Paris-Saclay, 92260, Fontenay-aux-Roses, France
| | | | - Natacha Entz-Werlé
- Pediatric Onco-Hematology Unit, University Hospital of Strasbourg, Strasbourg, UMR CNRS 7021, team tumoral signaling and therapeutic targets, University of Strasbourg, Faculty of Pharmacy, Illkirch, France
| | - Aroa Soriano
- Vall d'Hebron Research Institute (VHIR), Childhood Cancer and Blood Disorders Research Group, Division of Pediatric Hematology and Oncology, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Alberto Villanueva
- Chemoresistance and Predictive Factors Group, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet del Llobregat, Xenopat SL, Parc Cientific de Barcelona (PCB), Barcelona, Spain
| | | | - Pascal Chastagner
- Children University Hospital, Vandoeuvre‑lès‑Nancy, University of Nancy, Nancy, France
| | - Massimo Moro
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Cormac Owens
- Paediatric Haematology/Oncology, Children's Health Ireland, Crumlin, Dublin, Republic of Ireland
| | | | - Raquel Hladun-Alvaro
- Vall d'Hebron Research Institute (VHIR), Childhood Cancer and Blood Disorders Research Group, Division of Pediatric Hematology and Oncology, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Pablo Berlanga
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | | | - Philippe Dessen
- INSERM U1015, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
- Gustave Roussy Cancer Campus, Bioinformatics Platform, AMMICA, INSERM US23/CNRS, UAR3655, Villejuif, France
| | - Laurence Zitvogel
- INSERM U1015, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Ludovic Lacroix
- Department of Pathology and Laboratory Medicine, Translational Research Laboratory and Biobank, AMMICA, INSERM US23/CNRS UMS3655, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Gaelle Pierron
- Unité de Génétique Somatique, Service d'oncogénétique, Institut Curie, Paris, France
| | - Olivier Delattre
- INSERM U830, Equipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, SIREDO Oncology Centre, Institut Curie Research Centre, Paris, France
- Unité de Génétique Somatique, Service d'oncogénétique, Institut Curie, Paris, France
- SiRIC RTOP (Recherche Translationnelle en Oncologie Pédiatrique); Translational Research Department, Institut Curie Research Center, PSL Research University, Institut Curie, Paris, France
| | - Gudrun Schleiermacher
- INSERM U830, Equipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, SIREDO Oncology Centre, Institut Curie Research Centre, Paris, France
- SiRIC RTOP (Recherche Translationnelle en Oncologie Pédiatrique); Translational Research Department, Institut Curie Research Center, PSL Research University, Institut Curie, Paris, France
| | - Didier Surdez
- INSERM U830, Equipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, SIREDO Oncology Centre, Institut Curie Research Centre, Paris, France
- Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Birgit Geoerger
- INSERM U1015, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France.
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, Villejuif, France.
| |
Collapse
|
6
|
Lesnak JB, Mazhar K, Price TJ. Neuroimmune Mechanisms Underlying Post-acute Sequelae of SARS-CoV-2 (PASC) Pain, Predictions from a Ligand-Receptor Interactome. Curr Rheumatol Rep 2023; 25:169-181. [PMID: 37300737 PMCID: PMC10256978 DOI: 10.1007/s11926-023-01107-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
PURPOSE OF REVIEW Individuals with post-acute sequelae of SARS-CoV-2 (PASC) complain of persistent musculoskeletal pain. Determining how COVID-19 infection produces persistent pain would be valuable for the development of therapeutics aimed at alleviating these symptoms. RECENT FINDINGS To generate hypotheses regarding neuroimmune interactions in PASC, we used a ligand-receptor interactome to make predictions about how ligands from PBMCs in individuals with COVID-19 communicate with dorsal root ganglia (DRG) neurons to induce persistent pain. In a structured literature review of -omics COVID-19 studies, we identified ligands capable of binding to receptors on DRG neurons, which stimulate signaling pathways including immune cell activation and chemotaxis, the complement system, and type I interferon signaling. The most consistent finding across immune cell types was an upregulation of genes encoding the alarmins S100A8/9 and MHC-I. This ligand-receptor interactome, from our hypothesis-generating literature review, can be used to guide future research surrounding mechanisms of PASC-induced pain.
Collapse
Affiliation(s)
- Joseph B Lesnak
- School for Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, BSB 14.102G, Richardson, TX, 75080, USA
| | - Khadijah Mazhar
- School for Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, BSB 14.102G, Richardson, TX, 75080, USA
| | - Theodore J Price
- School for Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, BSB 14.102G, Richardson, TX, 75080, USA.
| |
Collapse
|
7
|
Colamatteo A, Fusco C, Micillo T, D'Hooghe T, de Candia P, Alviggi C, Longobardi S, Matarese G. Immunobiology of pregnancy: from basic science to translational medicine. Trends Mol Med 2023; 29:711-725. [PMID: 37331882 DOI: 10.1016/j.molmed.2023.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 06/20/2023]
Abstract
Embryo implantation failure and spontaneous abortions represent the main causes of infertility in developed countries. Unfortunately, incomplete knowledge of the multiple factors involved in implantation and fetal development keeps the success rate of medically assisted procreation techniques relatively low. According to recent literature, cellular and molecular mechanisms of 'immunogenic tolerance' towards the embryo are crucial to establish an 'anti-inflammatory' state permissive of a healthy pregnancy. In this review we dissect the role played by the immune system in the endometrial-embryo crosstalk, with a particular emphasis towards the fork-head-box-p3 (Foxp3+) CD4+CD25+ regulatory T (Treg) cells and discuss the most recent therapeutic advances in the context of early immune-mediated pregnancy loss.
Collapse
Affiliation(s)
- Alessandra Colamatteo
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Napoli, Italy
| | - Clorinda Fusco
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Napoli, Italy; Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore", Consiglio Nazionale delle Ricerche, Napoli, Italy
| | - Teresa Micillo
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Napoli, Italy
| | - Thomas D'Hooghe
- Global Medical Affairs Fertility, Merck Healthcare KGaA, Darmstadt, Germany; Research Group Reproductive Medicine, Department of Development and Regeneration, Organ Systems, Group Biomedical Sciences, KU Leuven (University of Leuven), Leuven, Belgium; Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Paola de Candia
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Napoli, Italy
| | - Carlo Alviggi
- Dipartimento di Sanità Pubblica, Università degli Studi di Napoli "Federico II", Napoli, Italy
| | | | - Giuseppe Matarese
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Napoli, Italy; Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore", Consiglio Nazionale delle Ricerche, Napoli, Italy.
| |
Collapse
|
8
|
Lv SJ, Sun JN, Gan L, Sun J. Identification of molecular subtypes and immune infiltration in endometriosis: a novel bioinformatics analysis and In vitro validation. Front Immunol 2023; 14:1130738. [PMID: 37662927 PMCID: PMC10471803 DOI: 10.3389/fimmu.2023.1130738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 07/27/2023] [Indexed: 09/05/2023] Open
Abstract
Introduction Endometriosis is a worldwide gynacological diseases, affecting in 6-10% of women of reproductive age. The aim of this study was to investigate the gene network and potential signatures of immune infiltration in endometriosis. Methods The expression profiles of GSE51981, GSE6364, and GSE7305 were obtained from the Gene Expression Omnibus (GEO) database. Core modules and central genes related to immune characteristics were identified using a weighted gene coexpression network analysis. Bioinformatics analysis was performed to identify central genes in immune infiltration. Protein-protein interaction (PPI) network was used to identify the hub genes. We then constructed subtypes of endometriosis samples and calculated their correlation with hub genes. qRTPCR and Western blotting were used to verify our findings. Results We identified 10 candidate hub genes (GZMB, PRF1, KIR2DL1, KIR2DL3, KIR3DL1, KIR2DL4, FGB, IGFBP1, RBP4, and PROK1) that were significantly correlated with immune infiltration. Our study established a detailed immune network and systematically elucidated the molecular mechanism underlying endometriosis from the aspect of immune infiltration. Discussion Our study provides comprehensive insights into the immunology involved in endometriosis and might contribute to the development of immunotherapy for endometriosis. Furthermore, our study sheds light on the underlying molecular mechanism of endometriosis and might help improve the diagnosis and treatment of this condition.
Collapse
Affiliation(s)
- Si-ji Lv
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jia-ni Sun
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lei Gan
- Department of Gynaecology and Obstetrics, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Jing Sun
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
9
|
Reis JL, Rosa NN, Ângelo-Dias M, Martins C, Borrego LM, Lima J. Natural Killer Cell Receptors and Endometriosis: A Systematic Review. Int J Mol Sci 2022; 24:331. [PMID: 36613776 PMCID: PMC9820702 DOI: 10.3390/ijms24010331] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/12/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Endometriosis is a chronic inflammatory disorder, characterized by the presence of endometrial cells outside the uterine cavity. An increasing number of studies correlate the immune system with endometriosis, particularly NK receptors (NKR), which have been suggested to play an essential role in the pathogenesis of the disease. This systematic review aims to enlighten the role of NKR in endometriosis. A literature search was performed independently by two reviewers, to identify studies assessing the role of NKR in endometriosis. In total, 18 studies were included. Endometriosis pathogenesis seems to be marked by the overexpression of NK inhibitor receptors (KIRS), namely, CD158a+, KIR2DL1, CD94/NKG2A, PD-1, NKB1, and EB6, and inhibiting ligands such as PD-L1, HLA-E, HLA-G, and HLA-I. Concurrently, there is a decrease in NK-activating receptors and natural cytotoxicity receptors (NCRs), such as NKp46, NKp30, and NKG2D. The immune shift from NK surveillance to NK suppression is also apparent in the greater relative number of ITIM domains compared with ITAM domains in NKRs. In conclusion, NK receptor activity seems to dictate the immunocompetency of women to clear endometriotic cells from the peritoneal cavity. Future research could explore NKRs as therapeutic targets, such as that which is now well established in cancer therapy through immunotherapy.
Collapse
Affiliation(s)
- José Lourenço Reis
- Department of Obstetrics and Gynecology, LUZ SAÚDE, Hospital da Luz, 1500-650 Lisboa, Portugal
| | | | - Miguel Ângelo-Dias
- Comprehensive Health Research Centre (CHRC), NOVA Medical School|Faculdade de Ciências Médicas (NMS|FCM), Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
- Immunology Department, NOVA Medical School|Faculdade de Ciências Médicas (NMS|FCM), Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - Catarina Martins
- Comprehensive Health Research Centre (CHRC), NOVA Medical School|Faculdade de Ciências Médicas (NMS|FCM), Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
- Immunology Department, NOVA Medical School|Faculdade de Ciências Médicas (NMS|FCM), Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - Luís Miguel Borrego
- Comprehensive Health Research Centre (CHRC), NOVA Medical School|Faculdade de Ciências Médicas (NMS|FCM), Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
- Immunology Department, NOVA Medical School|Faculdade de Ciências Médicas (NMS|FCM), Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
- Department of Imunoallergy, LUZ SAÚDE, Hospital da Luz, 1500-650 Lisboa, Portugal
| | - Jorge Lima
- Department of Obstetrics and Gynecology, LUZ SAÚDE, Hospital da Luz, 1500-650 Lisboa, Portugal
- Comprehensive Health Research Centre (CHRC), NOVA Medical School|Faculdade de Ciências Médicas (NMS|FCM), Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
- Immunology Department, NOVA Medical School|Faculdade de Ciências Médicas (NMS|FCM), Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| |
Collapse
|
10
|
Xie M, Li Y, Meng YZ, Xu P, Yang YG, Dong S, He J, Hu Z. Uterine Natural Killer Cells: A Rising Star in Human Pregnancy Regulation. Front Immunol 2022; 13:918550. [PMID: 35720413 PMCID: PMC9198966 DOI: 10.3389/fimmu.2022.918550] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/09/2022] [Indexed: 12/28/2022] Open
Abstract
Uterine natural killer (uNK) cells are an immune subset located in the uterus. uNK cells have distinct tissue-specific characteristics compared to their counterparts in peripheral blood and lymphoid organs. Based on their location and the pregnancy status of the host, uNK cells are classified as endometrial NK (eNK) cells or decidua NK (dNK) cells. uNK cells are important in protecting the host from pathogen invasion and contribute to a series of physiological processes that affect successful pregnancy, including uterine spiral artery remodeling, fetal development, and immunity tolerance. Abnormal alterations in uNK cell numbers and/or impaired function may cause pregnancy complications, such as recurrent miscarriage, preeclampsia, or even infertility. In this review, we introduce recent advances in human uNK cell research under normal physiological or pathological conditions, and summarize their unique influences on the process of pregnancy complications or uterine diseases. Finally, we propose the potential clinical use of uNK cells as a novel cellular immunotherapeutic approach for reproductive disorders.
Collapse
Affiliation(s)
- Min Xie
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Changchun, China
| | - Yan Li
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Changchun, China
| | - Yi-Zi Meng
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Changchun, China
| | - Peng Xu
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Changchun, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Changchun, China.,International Center of Future Science, Jilin University, Changchun, China
| | - Shuai Dong
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Changchun, China
| | - Jin He
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China
| | - Zheng Hu
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
11
|
Alexandrova M, Manchorova D, Dimova T. Immunity at maternal-fetal interface: KIR/HLA (Allo)recognition. Immunol Rev 2022; 308:55-76. [PMID: 35610960 DOI: 10.1111/imr.13087] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 04/28/2022] [Accepted: 05/09/2022] [Indexed: 12/15/2022]
Abstract
Both KIR and HLA are the most variable gene families in the human genome. The recognition of the semi-allogeneic embryo-derived trophoblasts by maternal decidual NK (dNK) cells is essential for the establishment of the functional placenta. This recognition is based on the KIR-HLA interactions and trophoblast expresses a specific HLA profile that constitutes classical polymorphic HLA-C and non-classical oligomorphic HLA-E, HLA-F, and HLA-G molecules. This review highlights some features of the KIR/HLA-C (allo)recognition by decidual NK (dNK) cells as a main immune cell population specifically enriched at maternal-fetal interface during human early pregnancy. How KIR/HLA-C axis operates in pregnancy disorders and in the context of transplacental infections is discussed as well. We summarized old and new data on dNK-cell functional plasticity, their selective expression of KIR and fetal maternal/paternal HLA-C haplotypes present. Results showed that KIR-HLA-C combinations and the corresponding axis operate differently in each pregnancy, determined by the variability of both maternal KIR haplotypes and fetus' maternal/paternal HLA-C allotype combinations. Moreover, the maturation of NK cells strongly depends on if or not HLA allotypes for certain KIR are present. We suggest that the unique KIR/HLA combinations reached in each pregnancy (normal and pathological) should be studied according to well-defined guidelines and unified methodologies to have comparable results ease to interpret and use in clinics.
Collapse
Affiliation(s)
- Marina Alexandrova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Diana Manchorova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Tanya Dimova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
12
|
|
13
|
Sfakianoudis K, Rapani A, Grigoriadis S, Pantou A, Maziotis E, Kokkini G, Tsirligkani C, Bolaris S, Nikolettos K, Chronopoulou M, Pantos K, Simopoulou M. The Role of Uterine Natural Killer Cells on Recurrent Miscarriage and Recurrent Implantation Failure: From Pathophysiology to Treatment. Biomedicines 2021; 9:biomedicines9101425. [PMID: 34680540 PMCID: PMC8533591 DOI: 10.3390/biomedicines9101425] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/27/2021] [Accepted: 10/05/2021] [Indexed: 01/15/2023] Open
Abstract
Uterine natural killer (uNK) cells constitute a unique uterine leucocyte subpopulation facilitating implantation and maintaining pregnancy. Herein, we critically analyze current evidence regarding the role of uNK cells in the events entailed in recurrent implantation failure (RIF) and recurrent miscarriages (RM). Data suggest an association between RIF and RM with abnormally elevated uNK cells’ numbers, as well as with a defective biological activity leading to cytotoxicity. However, other studies do not concur on these associations. Robust data suggesting a definitive causative relationship between uNK cells and RIF and RM is missing. Considering the possibility of uNK cells involvement on RIF and RM pathophysiology, possible treatments including glucocorticoids, intralipids, and intravenous immunoglobulin administration have been proposed towards addressing uNK related RIF and RM. When considering clinical routine practice, this study indicated that solid evidence is required to report on efficiency and safety of these treatments as there are recommendations that clearly advise against their employment. In conclusion, defining a causative relationship between uNK and RIF–RM pathologies certainly merits investigation. Future studies should serve as a prerequisite prior to proposing the use of uNK as a biomarker or prior to targeting uNK cells for therapeutic purposes addressing RIF and RM.
Collapse
Affiliation(s)
- Konstantinos Sfakianoudis
- Centre for Human Reproduction, Genesis Athens Clinic, 14-16, Papanikoli, 15232 Athens, Greece; (K.S.); (A.P.); (M.C.); (K.P.)
| | - Anna Rapani
- Laboratory of Physiology, Medical School, National and Kapodistrian University of Athens, 75, Mikras Asias, 11527 Athens, Greece; (A.R.); (S.G.); (E.M.); (G.K.); (C.T.)
| | - Sokratis Grigoriadis
- Laboratory of Physiology, Medical School, National and Kapodistrian University of Athens, 75, Mikras Asias, 11527 Athens, Greece; (A.R.); (S.G.); (E.M.); (G.K.); (C.T.)
- Assisted Conception Unit, Second Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, 76, Vasilisis Sofias Avenue, 11528 Athens, Greece
| | - Agni Pantou
- Centre for Human Reproduction, Genesis Athens Clinic, 14-16, Papanikoli, 15232 Athens, Greece; (K.S.); (A.P.); (M.C.); (K.P.)
- Laboratory of Physiology, Medical School, National and Kapodistrian University of Athens, 75, Mikras Asias, 11527 Athens, Greece; (A.R.); (S.G.); (E.M.); (G.K.); (C.T.)
| | - Evangelos Maziotis
- Laboratory of Physiology, Medical School, National and Kapodistrian University of Athens, 75, Mikras Asias, 11527 Athens, Greece; (A.R.); (S.G.); (E.M.); (G.K.); (C.T.)
- Assisted Conception Unit, Second Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, 76, Vasilisis Sofias Avenue, 11528 Athens, Greece
| | - Georgia Kokkini
- Laboratory of Physiology, Medical School, National and Kapodistrian University of Athens, 75, Mikras Asias, 11527 Athens, Greece; (A.R.); (S.G.); (E.M.); (G.K.); (C.T.)
| | - Chrysanthi Tsirligkani
- Laboratory of Physiology, Medical School, National and Kapodistrian University of Athens, 75, Mikras Asias, 11527 Athens, Greece; (A.R.); (S.G.); (E.M.); (G.K.); (C.T.)
| | - Stamatis Bolaris
- Assisted Conception Unit, General-Maternity District Hospital "Elena Venizelou", Elenas Venizelou Avenue, 11521 Athens, Greece;
| | - Konstantinos Nikolettos
- Assisted Reproduction Unit of Thrace “Embryokosmogenesis”, Apalos, 68132 Alexandroupoli, Greece;
| | - Margarita Chronopoulou
- Centre for Human Reproduction, Genesis Athens Clinic, 14-16, Papanikoli, 15232 Athens, Greece; (K.S.); (A.P.); (M.C.); (K.P.)
| | - Konstantinos Pantos
- Centre for Human Reproduction, Genesis Athens Clinic, 14-16, Papanikoli, 15232 Athens, Greece; (K.S.); (A.P.); (M.C.); (K.P.)
| | - Mara Simopoulou
- Laboratory of Physiology, Medical School, National and Kapodistrian University of Athens, 75, Mikras Asias, 11527 Athens, Greece; (A.R.); (S.G.); (E.M.); (G.K.); (C.T.)
- Assisted Conception Unit, Second Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, 76, Vasilisis Sofias Avenue, 11528 Athens, Greece
- Correspondence: ; Tel.: +30-21-0746-2592
| |
Collapse
|
14
|
Margolis DJ, Mitra N, Hoffstad OJ, Kim BS, Monos DS, Phillips EJ. Association of KIR Genes and MHC Class I Ligands with Atopic Dermatitis. THE JOURNAL OF IMMUNOLOGY 2021; 207:1522-1529. [PMID: 34408014 DOI: 10.4049/jimmunol.2100379] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/16/2021] [Indexed: 11/19/2022]
Abstract
Atopic dermatitis (AD) is a chronic illness that is associated with immune dysregulation. NK cell function has previously been associated with AD. NK cells directly interact with polymorphic HLA class I ligand variants using killer cell Ig-like receptors (KIRs). The purpose of this study was to identify potential associations between NK cell function and AD by evaluating variation in the presence of KIR genes as well as KIR gene interactions with the appropriate HLA class I KIR-specific ligands. Human DNA from the genetics of AD case-control study was used to genotype HLA class I KIR-specific ligands and the presence of KIR genes. In the full cohort, an increased risk of AD was noted for KIR2DL5 (1.51 [1.13, 2.01]), KIR2DS5 (1.72 [1.26, 2.34]), and KIR2DS1 (1.41 [1.04, 1.91]). Individuals with KIR2DS5 or KIR2DS1 and the HLA-C*C2 epitope were at an increased risk of AD (1.74 [1.21, 2.51] and 1.48 [1.04, 2.12], respectively). The HLA-B*-21T (TT) leader sequence increased the risk of AD across ethnicity. African Americans with KIR2DL2, KIR2DS1, KIR2DL5, and KIR2DS5 are more likely to have AD, and the risk increased for KIR2DS1 and KIR2DS5 in the presence of appropriate HLA-C C2 epitope. The risk of AD also increased for individuals with the HLA-B*-21T leader sequence. Future studies should focus on KIR gene allelic variation as well as consider cell-based measurements of KIR and the associated HLA class I epitopes.
Collapse
Affiliation(s)
- David J Margolis
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; .,Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Nandita Mitra
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ole J Hoffstad
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Brian S Kim
- Center for the Study of Itch, Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Dimitri S Monos
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; and
| | | |
Collapse
|
15
|
Biology and pathology of the uterine microenvironment and its natural killer cells. Cell Mol Immunol 2021; 18:2101-2113. [PMID: 34426671 PMCID: PMC8429689 DOI: 10.1038/s41423-021-00739-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/12/2021] [Indexed: 02/07/2023] Open
Abstract
Tissues are the new frontier of discoveries in immunology. Cells of the immune system are an integral part of tissue physiology and immunity. Determining how immune cells inhabit, housekeep, and defend gut, lung, brain, liver, uterus, and other organs helps revealing the intimate details of tissue physiology and may offer new therapeutic targets to treat pathologies. The uterine microenvironment modulates the development and function of innate lymphoid cells [ILC, largely represented by natural killer (NK) cells], macrophages, T cells, and dendritic cells. These immune cells, in turn, contribute to tissue homeostasis. Regulated by ovarian hormones, the human uterine mucosa (endometrium) undergoes ~400 monthly cycles of breakdown and regeneration from menarche to menopause, with its fibroblasts, glands, blood vessels, and immune cells remodeling the tissue into the transient decidua. Even more transformative changes occur upon blastocyst implantation. Before the placenta is formed, the endometrial glands feed the embryo by histiotrophic nutrition while the uterine spiral arteries are stripped of their endothelial layer and smooth muscle actin. This arterial remodeling is carried out by invading fetal trophoblast and maternal immune cells, chiefly uterine NK (uNK) cells, which also assist fetal growth. The transformed arteries no longer respond to maternal stimuli and meet the increasing demands of the growing fetus. This review focuses on how the everchanging uterine microenvironment affects uNK cells and how uNK cells regulate homeostasis of the decidua, placenta development, and fetal growth. Determining these pathways will help understand the causes of major pregnancy complications.
Collapse
|
16
|
Mulder N, Zass L, Hamdi Y, Othman H, Panji S, Allali I, Fakim YJ. African Global Representation in Biomedical Sciences. Annu Rev Biomed Data Sci 2021; 4:57-81. [PMID: 34465182 DOI: 10.1146/annurev-biodatasci-102920-112550] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
African populations are diverse in their ethnicity, language, culture, and genetics. Although plagued by high disease burdens, until recently the continent has largely been excluded from biomedical studies. Along with limitations in research and clinical infrastructure, human capacity, and funding, this omission has resulted in an underrepresentation of African data and disadvantaged African scientists. This review interrogates the relative abundance of biomedical data from Africa, primarily in genomics and other omics. The visibility of African science through publications is also discussed. A challenge encountered in this review is the relative lack of annotation of data on their geographical or population origin, with African countries represented as a single group. In addition to the abovementioned limitations,the global representation of African data may also be attributed to the hesitation to deposit data in public repositories. Whatever the reason, the disparity should be addressed, as African data have enormous value for scientists in Africa and globally.
Collapse
Affiliation(s)
- Nicola Mulder
- Computational Biology Division, Department of Integrative Biomedical Sciences and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa; .,Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-AFRICA), Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Lyndon Zass
- Computational Biology Division, Department of Integrative Biomedical Sciences and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa;
| | - Yosr Hamdi
- Laboratory of Biomedical Genomics and Oncogenetics and Laboratory of Human and Experimental Pathology, Institut Pasteur de Tunis, University of Tunis El Manar, 1002 Tunis, Tunisia
| | - Houcemeddine Othman
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| | - Sumir Panji
- Computational Biology Division, Department of Integrative Biomedical Sciences and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa;
| | - Imane Allali
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, and Genomic Center of Human Pathologies, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, 1014 Rabat, Morocco
| | - Yasmina Jaufeerally Fakim
- Biotechnology Unit, Department of Agricultural and Food Science, Faculty of Agriculture, University of Mauritius, Réduit 80837, Mauritius
| |
Collapse
|
17
|
A Brief Analysis of Tissue-Resident NK Cells in Pregnancy and Endometrial Diseases: The Importance of Pharmacologic Modulation. IMMUNO 2021. [DOI: 10.3390/immuno1030011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
NK cells are lymphocytes involved in the innate and adaptative immune response. These cells are located in peripheral blood and tissues with ample functions, from immune vigilant to tolerogenic reactions. In the endometrium, NK cell populations vary depending on age, hormones, and inflammation. When pregnancy occurs, tissue-resident NK cells and conventional NK cells are recruited to protect the fetus, a tolerogenic response. On the contrary, in the inflamed endometrium, various inflammatory cells down-regulate NK tolerance and impair embryo implantation. Therefore, NK cells’ pharmacological modulation is difficult to achieve. Several strategies have been used, from progesterone, lipid emulsions to steroids; the success has not been as expected. However, new therapeutic approaches have been proposed to decrease the endometrial inflammatory burden and increase pregnancy success based on understanding NK cell physiology.
Collapse
|
18
|
Liu L, Cheng J, Wei F, Pang L, Zhi Z, Yang W, Tan W. Lnc-RNA LINC01279 induces endometriosis via targeting of HOXA10. J Obstet Gynaecol Res 2021; 47:1825-1836. [PMID: 33657670 DOI: 10.1111/jog.14723] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 12/28/2020] [Accepted: 02/11/2021] [Indexed: 12/14/2022]
Abstract
AIM To explore the regulatory role and molecular mechanism of lncRNA-LINC01279 in endometriosis (EMs). METHODS Between September 2018 and July 2019, 20 EMs patients and 20 healthy subjects were recruited to detect the expression of lncRNA-LINC01279 in EMs and in normal endometrium via qRT-PCR. Autograft was used to establish EMs models on Spraque-Dawley (SD) rats, which was followed by taking volume measurements of EMs endometrium and observing pathological changes in the morphology of EMs via hematoxylin and eosin (H&E) staining. The qRT-PCR technique was further carried out to determine mRNA expression of lncRNA-LINC01279 and HOXA10 in the serum of EMs rats and LINC01279 shRNA-transfected rats, while the protein expression of HOXA10 was determined using a Western blot. RESULTS EMs patients presented with upregulation of lncRNA-LINC01279 and downregulation of HOXA10 (p < 0.01 or 0.001). Online predictions further revealed that lncRNA-LINC01279 regulated the expression of HOXA10 via miRNA-135b. In EMs models, it was observed that there were a significantly enlarged endometrium and poor pathological morphology, significant upregulation of lncRNA-LINC01279, and downregulation of miR-135b and HOXA10 in serum (p < 0.05, 0.01 or 0.001). In the lncRNA-LINC01279 shRNA group, EMs rats, following treatment, had a sharp decrease in the volume of EMs endometrium, and an improvement in pathological morphology, while lncRNA-LINC01279 was downregulated, with upregulation of miR-135b and HOXA10 (p < 0.05, 0.01 or 0.001). CONCLUSION LncRNA-LINC01279, by the mechanism of targeting miR-135b, has the potential to downregulate the expression of HOXA10, and therefore, can promote the development and progression of EMs.
Collapse
Affiliation(s)
- Liling Liu
- Department of Reproductive Medicine and Genetics Center, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Junping Cheng
- Department of Reproductive Medicine and Genetics Center, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Fu Wei
- Department of Reproductive Medicine and Genetics Center, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Lihong Pang
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of GuangXi Medical University, Nanning, Guangxi, China
| | - Zhifu Zhi
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of GuangXi Medical University, Nanning, Guangxi, China
| | - Wenmei Yang
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of GuangXi Medical University, Nanning, Guangxi, China
| | - Weihong Tan
- Department of Reproductive Medicine and Genetics Center, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| |
Collapse
|
19
|
Inhibitory KIR2DL2 Gene: Risk for Deep Endometriosis in Euro-descendants. Reprod Sci 2020; 28:291-304. [PMID: 32661880 DOI: 10.1007/s43032-020-00255-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 05/30/2020] [Accepted: 06/30/2020] [Indexed: 01/04/2023]
Abstract
Endometriosis (EDT) is an inflammatory disease characterized by implantation/growth of endometrial tissue, glands, and/or stroma, outside the uterus. Reduced NK cell cytotoxic activity has been implicated in its pathogenesis, together with other immunologic alterations. We investigated the influence of KIR gene polymorphisms and their HLA ligand combinations in deep endometriosis (DE) susceptibility. One hundred sixty women with a histological diagnosis of DE and 202 control women without the disease, who underwent laparoscopy, were enrolled. The DE group was subdivided into initial (I/II; n = 60) and advanced stages (III/IV, n = 100). KIR and HLA class I gene polymorphisms were typed by PCR-SSP and sequence-based-typing (SBT), respectively. We observed a significant association of KIR2DL2, an inhibitory gene of B haplotype, conferring risk for DE in Euro-descendants. Positive associations of Bx haplotype and centromeric AB segments were also found. However, no association with KIR-HLA ligand combination was observed. Our data suggest KIR2DL2 gene to be a relevant factor favoring NK inhibition in DE in Euro-descendants, contributing to the defective NK cytotoxic activity and impaired clearance of ectopic endometrial cells in the disease.
Collapse
|