1
|
Šebela M. The use of matrix-assisted laser desorption/ionization mass spectrometry in enzyme activity assays and its position in the context of other available methods. MASS SPECTROMETRY REVIEWS 2023; 42:1008-1031. [PMID: 34549449 DOI: 10.1002/mas.21733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/28/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Activity assays are indispensable for studying biochemical properties of enzymes. The purposes of measuring activity are wide ranging from a simple detection of the presence of an enzyme to kinetic experiments evaluating the substrate specificity, reaction mechanisms, and susceptibility to inhibitors. Common activity assay methods include spectroscopy, electrochemical sensors, or liquid chromatography coupled with various detection techniques. This review focuses on the use of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) as a growing and modern alternative, which offers high speed of analysis, sensitivity, versatility, possibility of automation, and cost-effectiveness. It may reveal reaction intermediates, side products or measure more enzymes at once. The addition of an internal standard or calculating the ratios of the substrate and product peak intensities and areas overcome the inherent inhomogeneous distribution of analyte and matrix in the sample spot, which otherwise results in a poor reproducibility. Examples of the application of MALDI-TOF MS for assaying hydrolases (including peptidases and β-lactamases for antibiotic resistance tests) and other enzymes are provided. Concluding remarks summarize advantages and challenges coming from the present experience, and draw future perspectives such as a screening of large libraries of chemical compounds for their substrate or inhibitory properties towards enzymes.
Collapse
Affiliation(s)
- Marek Šebela
- Department of Biochemistry, Faculty of Science, and CATRIN, Palacký University, Olomouc, Czech Republic
| |
Collapse
|
2
|
de Almeida MP, Rodrigues C, Novais Â, Grosso F, Leopold N, Peixe L, Franco R, Pereira E. Silver Nanostar-Based SERS for the Discrimination of Clinically Relevant Acinetobacter baumannii and Klebsiella pneumoniae Species and Clones. BIOSENSORS 2023; 13:149. [PMID: 36831915 PMCID: PMC9953856 DOI: 10.3390/bios13020149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/12/2023] [Accepted: 01/14/2023] [Indexed: 06/18/2023]
Abstract
The development of rapid, reliable, and low-cost methods that enable discrimination among clinically relevant bacteria is crucial, with emphasis on those listed as WHO Global Priority 1 Critical Pathogens, such as carbapenem-resistant Acinetobacter baumannii and carbapenem-resistant or ESBL-producing Klebsiella pneumoniae. To address this problem, we developed and validated a protocol of surface-enhanced Raman spectroscopy (SERS) with silver nanostars for the discrimination of A. baumannii and K. pneumoniae species, and their globally disseminated and clinically relevant antibiotic resistant clones. Isolates were characterized by mixing bacterial colonies with silver nanostars, followed by deposition on filter paper for SERS spectrum acquisition. Spectral data were processed with unsupervised and supervised multivariate data analysis methods, including principal component analysis (PCA) and partial least-squares discriminant analysis (PLSDA), respectively. Our proposed SERS procedure using silver nanostars adsorbed to the bacteria, followed by multivariate data analysis, enabled differentiation between and within species. This pilot study demonstrates the potential of SERS for the rapid discrimination of clinically relevant A. baumannii and K. pneumoniae species and clones, displaying several advantages such as the ease of silver nanostars synthesis and the possible use of a handheld spectrometer, which makes this approach ideal for point-of-care applications.
Collapse
Affiliation(s)
- Miguel Peixoto de Almeida
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| | - Carla Rodrigues
- UCIBIO—Applied Molecular Biosciences Unit, Department of Biological Sciences, Laboratory of Microbiology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Ângela Novais
- UCIBIO—Applied Molecular Biosciences Unit, Department of Biological Sciences, Laboratory of Microbiology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- 4TOXRUN, Toxicology Research Unit, University Institute of Health Sciences, CESPU (IUCS-CESPU), 4585-116 Gandra, Portugal
| | - Filipa Grosso
- UCIBIO—Applied Molecular Biosciences Unit, Department of Biological Sciences, Laboratory of Microbiology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Nicolae Leopold
- Faculty of Physics, Babeş-Bolyai University, 400084 Cluj-Napoca, Romania
| | - Luísa Peixe
- UCIBIO—Applied Molecular Biosciences Unit, Department of Biological Sciences, Laboratory of Microbiology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Ricardo Franco
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Departamento de Química, School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal
| | - Eulália Pereira
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| |
Collapse
|
3
|
Wang H, Zhang W, Tang YW. Clinical Microbiology in Detection and Identification of Emerging Microbial Pathogens: Past, Present and Future. Emerg Microbes Infect 2022; 11:2579-2589. [PMID: 36121351 PMCID: PMC9639501 DOI: 10.1080/22221751.2022.2125345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Clinical microbiology has possessed a marvellous past, an important present and a bright future. Western medicine modernization started with the discovery of bacterial pathogens, and from then, clinical bacteriology became a cornerstone of diagnostics. Today, clinical microbiology uses standard techniques including Gram stain morphology, in vitro culture, antigen and antibody assays, and molecular biology both to establish a diagnosis and monitor the progression of microbial infections. Clinical microbiology has played a critical role in pathogen detection and characterization for emerging infectious diseases as evidenced by the ongoing COVID-19 pandemic. Revolutionary changes are on the way in clinical microbiology with the application of “-omic” techniques, including transcriptomics and metabolomics, and optimization of clinical practice configurations to improve outcomes of patients with infectious diseases.
Collapse
Affiliation(s)
- Hui Wang
- Department of Laboratory Medicine, Peking University People's Hospital, Beijing 100044, China
| | - Wenhong Zhang
- Department of Infectious Diseases, Fudan University Huashan Hospital, Shanghai 200040, China
| | - Yi-Wei Tang
- Medical Affairs, Danaher Diagnostic Platform China/Cepheid, Shanghai 200325, China
| |
Collapse
|
4
|
Speckmeier E, Pommereau A, Grosser KC, Mors H, Maier TC, Licher T, Bärenz F. A high-throughput screening assay for mutant isocitrate dehydrogenase 1 using acoustic droplet ejection mass spectrometry. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2022; 27:298-305. [PMID: 35460923 DOI: 10.1016/j.slasd.2022.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/23/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
Acoustic droplet ejection mass spectrometry (ADE-MS) has recently emerged as a promising label-free, MS-based readout method for high throughput screening (HTS) campaigns in early pharmaceutical drug discovery, since it enables high-speed analysis directly from 384- or 1536-well plates. In this manuscript we describe our characterization of an ADE-MS based high sample content enzymatic assay for mutant isocitrate dehydrogenase 1 (IDH1) R132H with a strong focus on assay development. IDH1 R132H has become a very attractive therapeutic target in the field of antitumor drug discovery, and several pharmaceutical companies have attempted to develop novel small molecule inhibitors against mutant IDH1. With the development of an mIDH1 ADE-MS based HTS assay and a detailed comparison of this new readout technique to the commonly used fluorescence intensity mIDH1 assay, we demonstrated good correlation of both methods and were able to identify new potent inhibitors of mIDH1.
Collapse
Affiliation(s)
- Elisabeth Speckmeier
- Sanofi, Integrated Drug Discovery, Industriepark Hoechst, Frankfurt am Main, Hessen, Germany.
| | - Antje Pommereau
- Sanofi, Integrated Drug Discovery, Industriepark Hoechst, Frankfurt am Main, Hessen, Germany
| | - Kay-Christoph Grosser
- Sanofi, Integrated Drug Discovery, Industriepark Hoechst, Frankfurt am Main, Hessen, Germany
| | - Hartmut Mors
- Sanofi, Integrated Drug Discovery, Industriepark Hoechst, Frankfurt am Main, Hessen, Germany
| | - Thomas C Maier
- Sanofi, Integrated Drug Discovery, Industriepark Hoechst, Frankfurt am Main, Hessen, Germany
| | - Thomas Licher
- Sanofi, Integrated Drug Discovery, Industriepark Hoechst, Frankfurt am Main, Hessen, Germany
| | - Felix Bärenz
- Sanofi, Integrated Drug Discovery, Industriepark Hoechst, Frankfurt am Main, Hessen, Germany.
| |
Collapse
|
5
|
Tang H, Li R, Xu H, Lu G, Liu Z, Yang W, Xia Z, Zhu Y, Shen J. Direct-on-Target Microdroplet Growth Assay for Detection of Bacterial Resistance in Positive Blood Cultures. Infect Drug Resist 2021; 14:4611-4617. [PMID: 34785912 PMCID: PMC8579891 DOI: 10.2147/idr.s336987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/28/2021] [Indexed: 12/17/2022] Open
Abstract
Introduction The recently developed DOT-MGA (direct-on-target microdroplet growth assay) has shown the desirability of direct application of this approach in positive blood cultures and its good performance in detection. This study selected 44 Enterobacteriaceae strains and implemented a DOT-MGA assay on blood cultures to detect their resistance to seven antibiotics. The results of DOT-MGA were compared with the other two antimicrobial susceptibility testing (AST) methods to analyze the detection performance of DOT-MGA. Methods We adopted the differential centrifugation to process positive blood-culture (BC). Processed BC broth was directly used for rapid AST using DOT-MGA. Droplets of 6 µL with and without antibiotics at the EUCAST breakpoint concentration were spotted in triplicates onto the surface of a MALDI target. The plates were incubated in a wet box for 4 h before the broth was removed with filter paper. Bruker Biotyper software was used to analyze the test results compared with standard database, and the scores were used to quantify and determine the results. Results DOT-MGA results were compared with the direct-from-BC disk-diffusion method and results were reported by broth microdilution method, respectively. The comparison demonstrated a 100% growth efficiency in DOT-MGA, a 100% classification consistency for ampicillin, ceftriaxone, and gentamicin, and >93% classification consistency for tobramycin, aztreonam, trimethoprim-sulfamethoxazole (TMP-SMX), and ceftazidime. Discussion These study results have shown that DOT-MGA is suitable for directly identifying bacterial resistance to positive blood cultures in clinical microbiology laboratories. Furthermore, it is conducive for early diagnosis and treatment of patients with bloodstream infection due to its convenience, time efficiency, and good performance in identifying multiple antibiotic-insensitive bacteria.
Collapse
Affiliation(s)
- Hao Tang
- The Fourth Affiliated Hospital of Anhui Medical University Laboratory Department, Hefei, People's Republic of China
| | - Rongrong Li
- The First Affiliated Hospital of Anhui Medical University Laboratory Department, Hefei, People's Republic of China
| | - Huaming Xu
- The Fourth Affiliated Hospital of Anhui Medical University Laboratory Department, Hefei, People's Republic of China
| | - Guoping Lu
- Laboratory Department of Fuyang Hospital Affiliated to Anhui Medical University, Fuyang, Anhui, 236000, People's Republic of China
| | - Zhen Liu
- The Fourth Affiliated Hospital of Anhui Medical University Laboratory Department, Hefei, People's Republic of China
| | - Wensu Yang
- The Fourth Affiliated Hospital of Anhui Medical University Laboratory Department, Hefei, People's Republic of China
| | - Zhaoxin Xia
- The Fourth Affiliated Hospital of Anhui Medical University Laboratory Department, Hefei, People's Republic of China
| | - Yi Zhu
- The Fourth Affiliated Hospital of Anhui Medical University Laboratory Department, Hefei, People's Republic of China
| | - Jilu Shen
- The Fourth Affiliated Hospital of Anhui Medical University Laboratory Department, Hefei, People's Republic of China
| |
Collapse
|
6
|
Idelevich EA, Nix ID, Busch JA, Sparbier K, Drews O, Kostrzewa M, Becker K. Rapid Simultaneous Testing of Multiple Antibiotics by the MALDI-TOF MS Direct-on-Target Microdroplet Growth Assay. Diagnostics (Basel) 2021; 11:diagnostics11101803. [PMID: 34679499 PMCID: PMC8534412 DOI: 10.3390/diagnostics11101803] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 11/16/2022] Open
Abstract
Accelerating antimicrobial susceptibility testing (AST) is a priority in the development of novel microbiological methods. The MALDI-TOF MS-based direct-on-target microdroplet growth assay (DOT-MGA) has recently been described as a rapid phenotypic AST method. In this proof-of-principle study, we expanded this method to simultaneously test 24 antimicrobials. An Enterobacterales panel was designed and evaluated using 24 clinical isolates. Either one or two (only for antimicrobials with the EUCAST “I” category) breakpoint concentrations were tested. Microdroplets containing bacterial suspensions with antimicrobials and growth controls were incubated directly on the spots of a disposable MALDI target inside a humidity chamber for 6, 8 or 18 h. Broth microdilution was used as the standard method. After 6 and 8 h of incubation, the testing was valid (i.e., growth control was successfully detected) for all isolates and the overall categorical agreement was 92.0% and 92.7%, respectively. Although the overall assay performance applying short incubation times is promising, the lower performance with some antimicrobials and when using the standard incubation time of 18 h indicates the need for thorough standardization of assay conditions. While using “homebrew” utensils and provisional evaluation algorithms here, technical solutions such as dedicated incubation chambers, tools for broth removal and improved software analyses are needed.
Collapse
Affiliation(s)
- Evgeny A. Idelevich
- Friedrich Loeffler-Institute of Medical Microbiology, University Medicine Greifswald, 17475 Greifswald, Germany;
- Institute of Medical Microbiology, University Hospital Münster, 48149 Münster, Germany; (I.D.N.); (J.A.B.)
| | - Ilka D. Nix
- Institute of Medical Microbiology, University Hospital Münster, 48149 Münster, Germany; (I.D.N.); (J.A.B.)
- Bruker Daltonics GmbH & Co. KG, 28359 Bremen, Germany; (K.S.); (O.D.); (M.K.)
| | - Janika A. Busch
- Institute of Medical Microbiology, University Hospital Münster, 48149 Münster, Germany; (I.D.N.); (J.A.B.)
| | - Katrin Sparbier
- Bruker Daltonics GmbH & Co. KG, 28359 Bremen, Germany; (K.S.); (O.D.); (M.K.)
| | - Oliver Drews
- Bruker Daltonics GmbH & Co. KG, 28359 Bremen, Germany; (K.S.); (O.D.); (M.K.)
| | - Markus Kostrzewa
- Bruker Daltonics GmbH & Co. KG, 28359 Bremen, Germany; (K.S.); (O.D.); (M.K.)
| | - Karsten Becker
- Friedrich Loeffler-Institute of Medical Microbiology, University Medicine Greifswald, 17475 Greifswald, Germany;
- Correspondence: ; Tel.: +49-3834-86-5560
| |
Collapse
|
7
|
Application and Perspectives of MALDI-TOF Mass Spectrometry in Clinical Microbiology Laboratories. Microorganisms 2021; 9:microorganisms9071539. [PMID: 34361974 PMCID: PMC8307939 DOI: 10.3390/microorganisms9071539] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/06/2021] [Accepted: 07/18/2021] [Indexed: 12/11/2022] Open
Abstract
Early diagnosis of severe infections requires of a rapid and reliable diagnosis to initiate appropriate treatment, while avoiding unnecessary antimicrobial use and reducing associated morbidities and healthcare costs. It is a fact that conventional methods usually require more than 24–48 h to culture and profile bacterial species. Mass spectrometry (MS) is an analytical technique that has emerged as a powerful tool in clinical microbiology for identifying peptides and proteins, which makes it a promising tool for microbial identification. Matrix assisted laser desorption ionization–time of flight MS (MALDI–TOF MS) offers a cost- and time-effective alternative to conventional methods, such as bacterial culture and even 16S rRNA gene sequencing, for identifying viruses, bacteria and fungi and detecting virulence factors and mechanisms of resistance. This review provides an overview of the potential applications and perspectives of MS in clinical microbiology laboratories and proposes its use as a first-line method for microbial identification and diagnosis.
Collapse
|
8
|
Xie J, Mu R, Fang M, Cheng Y, Senchyna F, Moreno A, Banaei N, Rao J. A dual-caged resorufin probe for rapid screening of infections resistant to lactam antibiotics. Chem Sci 2021; 12:9153-9161. [PMID: 34276945 PMCID: PMC8261730 DOI: 10.1039/d1sc01471d] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 05/19/2021] [Indexed: 12/04/2022] Open
Abstract
The alarming increase of antimicrobial resistance urges rapid diagnosis and pathogen specific infection management. This work reports a rapid screening assay for pathogenic bacteria resistant to lactam antibiotics. We designed a fluorogenic N-cephalosporin caged 3,7-diesterphenoxazine probe CDA that requires sequential activations to become fluorescent resorufin. A series of studies with recombinant β-lactamases and clinically prevalent pathogens including Escherichia coli, Klebsiella pneumoniae, Enterobacter cloacae and Serratia marcescens demonstrated that CDA possessed superior sensitivity in reporting the activity of β-lactamases including cephalosporinases and carbapenemases. After a simple filtration, lactam-resistant bacteria in urine samples could be detected at 103 colony-forming units per milliliter within 2 hours.
Collapse
Affiliation(s)
- Jinghang Xie
- Departments of Radiology and Chemistry, Molecular Imaging Program at Stanford, Stanford University School of Medicine Stanford CA 94305 USA
| | - Ran Mu
- Departments of Radiology and Chemistry, Molecular Imaging Program at Stanford, Stanford University School of Medicine Stanford CA 94305 USA
| | - Mingxi Fang
- Departments of Radiology and Chemistry, Molecular Imaging Program at Stanford, Stanford University School of Medicine Stanford CA 94305 USA
| | - Yunfeng Cheng
- Departments of Radiology and Chemistry, Molecular Imaging Program at Stanford, Stanford University School of Medicine Stanford CA 94305 USA
| | - Fiona Senchyna
- Department of Pathology, Stanford University School of Medicine Stanford CA 94305 USA
| | - Angel Moreno
- Department of Pathology, Stanford University School of Medicine Stanford CA 94305 USA
| | - Niaz Banaei
- Department of Pathology, Stanford University School of Medicine Stanford CA 94305 USA
- Clinical Microbiology Laboratory, Stanford University Medical Center Palo Alto CA 94304 USA
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine Stanford CA 94305 USA
| | - Jianghong Rao
- Departments of Radiology and Chemistry, Molecular Imaging Program at Stanford, Stanford University School of Medicine Stanford CA 94305 USA
| |
Collapse
|
9
|
Abstract
The advent of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) in clinical microbiology has dramatically improved the accuracy and speed of diagnostics. However, this progress has mainly been limited to the identification of microorganisms, whereas the practical improvement of antimicrobial susceptibility testing (AST) still lags behind. MALDI-TOF MS-based approaches include the detection of selected resistance mechanisms and the universal phenotypic AST. This minireview focuses on the discussion of those MALDI-TOF MS methods that allow universal growth-based phenotypic AST. The method of minimal profile change concentrations (MPCC) is based on detecting proteome modification in presence of an antimicrobial. Using stable-isotope labeling, characteristic mass shifts in the presence of an antimicrobial indicate the incorporation of the isotopic labels, and, thus, the viability and resistance of the microorganism. For MALDI Biotyper antibiotic susceptibility test rapid assay (MBT-ASTRA), microorganisms are incubated with or without an antimicrobial, followed by cell lysis, protein extraction, and transfer of the cell lysate onto a MALDI target plate. Using the internal standard, peak intensities are correlated to the amount of microbial proteins, and the relative microbial growth is calculated. Most recent development in the field is the direct-on-target microdroplet growth assay (DOT-MGA). Here, incubation of microorganisms with antimicrobials takes place directly on spots of a MALDI target in form of microdroplets. After incubation, nutrient medium is removed by dabbing with absorptive material. Resistant microorganisms grow despite the presence of antimicrobial, and their amplified biomass is detected by MALDI-TOF MS. Finally, an outlook is provided for further assay improvements.
Collapse
|
10
|
Wang L, Jia H, Sun Y, Zhang Y, Liu S, Lin Y, Liao W, Ye J, Zhou T. Evaluation of NitroSpeed-Carba NP test for rapid identification among different classes of carbapenemases in Enterobacterales and Pseudomonas aeruginosa. Int J Infect Dis 2021; 106:415-420. [PMID: 33864920 DOI: 10.1016/j.ijid.2021.04.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVES This study aimed to evaluate the performance of the NitroSpeed-Carba NP test for detecting carbapenemases in the clinical strains of Enterobacterales and Pseudomonas aeruginosa (P. aeruginosa), and analyze its advantages and limitations. METHODS The antimicrobial susceptibility tests were performed according to the agar dilution method. Using the modified carbapenemase inactivation method (mCIM), polymerase chain reaction (PCR), and sequencing, the production of carbapenemase and the prevalence of genes were studied. The NitroSpeed-Carba NP test was performed to detect different types of carbapenemases in Enterobacterales and P. aeruginosa. The results of PCR and sequencing were used as the gold standard. RESULTS Among 144 carbapenemase-producing and 54 carbapenemase-negative strains of Enterobacterales and P. aeruginosa, the NitroSpeed-Carba NP test correctly detected 143 of 144 carbapenemase producers and 51 of 54 non-carbapenemase producers. Moreover, the sensitivity and specificity of all tested isolates were 99.31% and 94.44%, respectively (99.28% and 92.86% for Enterobacterales; 100% and 100% for P. aeruginosa). The sensitivity was 100% for class A (56 of 56), 100% for class B (60 of 60), and 100% for class D (27 of 27). CONCLUSIONS The results suggest that NitroSpeed-Carba NP test is a simple and valuable assay that could be used as a rapid and stable detection method to identify the carbapenemases in Enterobacterales and P. aeruginosa strains.
Collapse
Affiliation(s)
- Lingbo Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Huaiyu Jia
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yao Sun
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Ying Zhang
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Shixing Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yishuai Lin
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Wenli Liao
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jianzhong Ye
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
11
|
Li R, Tang H, Xu H, Ren Y, Li S, Shen J. Direct-on-Target Microdroplet Growth Assay Applications for Clinical Antimicrobial Susceptibility Testing. Infect Drug Resist 2021; 14:1423-1425. [PMID: 33883910 PMCID: PMC8053884 DOI: 10.2147/idr.s303187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/22/2021] [Indexed: 11/23/2022] Open
Abstract
Direct-on-target microdroplet growth assay is a new technique for analysing bacterial sensitivity and mechanisms of resistance. It is based on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and allows for easy and rapid testing. Here, we describe the development and procedure of the direct-on-target microdroplet growth assay and summarise the latest clinical applications.
Collapse
Affiliation(s)
- Rongrong Li
- Department of Clinical Laboratory, Hefei Hospital Affiliated to Anhui Medical University the Second People's Hospital of Hefei City, Hefei, Anhui Province, People's Republic of China
| | - Hao Tang
- The Fourth Affiliated Hospital of Anhui Medical University Laboratory, Hefei, People's Republic of China
| | - Huaming Xu
- The Fourth Affiliated Hospital of Anhui Medical University Laboratory, Hefei, People's Republic of China
| | - Yingli Ren
- The Second Affiliated Hospital of Anhui Medical University Laboratory, Hefei, People's Republic of China
| | - Shujin Li
- Department of Clinical Laboratory, Hefei Hospital Affiliated to Anhui Medical University the Second People's Hospital of Hefei City, Hefei, Anhui Province, People's Republic of China
| | - Jilu Shen
- The Fourth Affiliated Hospital of Anhui Medical University Laboratory, Hefei, People's Republic of China
| |
Collapse
|
12
|
McGee WM, Verma A, Viirtola M, Kronewitter SR, Neil JR, Stephenson JL. Direct detection of OXA-48-like carbapenemase variants with and without co-expression of an extended-spectrum β-lactamase from bacterial cell lysates using mass spectrometry. J Mass Spectrom Adv Clin Lab 2021; 20:25-34. [PMID: 34820668 PMCID: PMC8601005 DOI: 10.1016/j.jmsacl.2021.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 05/24/2021] [Accepted: 05/24/2021] [Indexed: 01/04/2023] Open
Abstract
INTRODUCTION Antibiotic-resistant Gram-negative bacteria are of a growing concern globally, especially those producing enzymes conferring resistance. OXA-48-like carbapenemases hydrolyze most β-lactam antibiotics, with typically low-level hydrolysis of carbapenems, but have limited effect on broad-spectrum cephalosporins. These are frequently co-expressed with extended spectrum β-lactamases, especially CTX-M-15, which typically shows high level resistance to broad-spectrum cephalosporins, yet is carbapenem susceptible. The combined resistance profile makes the need for successful detection of these specific resistance determinants imperative for effective antibiotic therapy. OBJECTIVES The objective of this study is to detect and identify OXA-48-like and CTX-M-15 enzymes using mass spectrometry, and to subsequently develop a method for detection of both enzyme types in combination with liquid chromatography. METHODS Cells grown in either broth or on agar were harvested, lysed, and, in some cases buffer-exchanged. Lysates produced from bacterial cells were separated and analyzed via liquid chromatography with mass spectrometry (LC-MS) and tandem mass spectrometry (LC-MS/MS). RESULTS The intact proteins of OXA-48, OXA-181, and OXA-232 (collectively OXA-48-like herein) and CTX-M-15 were characterized and detected. Acceptance criteria based on sequence-informative fragments from each protein group were established as confirmatory markers for the presence of the protein(s). A total of 25 isolates were successfully tested for OXA-48 like (2), CTX-M-15 (3), or expression of both (7) enzymes. Thirteen isolates served as negative controls. CONCLUSIONS Here we present a method for the direct and independent detection of both OXA-48-like carbapenemases and CTX-M-15 β-lactamases using LC-MS/MS. The added sensitivity of MS/MS allows for simultaneous detection of at least two co-eluting, co-isolated and co-fragmented proteins from a single mass spectrum.
Collapse
Key Words
- ATCC, American Type Culture Collection
- Antimicrobial-resistant organisms
- CDC, Centers for Disease Control and Prevention
- CPO, carbapenemase-producing organism
- CRE, carbapenem-resistant Enterobacterales
- CSD, charge state distribution
- CTX-M-15
- Carbapenem-resistant Enterobacterales
- Carbapenemase
- Carbapenemase-producing organisms
- ESBL, extended-spectrum β-lactamase
- ESI, electrospray ionization
- LC, liquid chromatography
- Liquid chromatography
- MALDI, matrix-assisted laser desorption ionization
- MS, mass spectrometry
- MS/MS, tandem mass spectrometry
- MW, molecular weight
- Mass Spectrometry
- OXA-48
- OXA-48-like
- PCR, polymerase chain reaction
- TOF, time-of-flight (mass spectrometry)
- Tandem mass spectrometry
- m/z, mass-to-charge ratio
- β-Lactamase
Collapse
|
13
|
RamalloGuevara C, Paulssen D, Popova AA, Hopf C, Levkin PA. Fast Nanoliter-Scale Cell Assays Using Droplet Microarray-Mass Spectrometry Imaging. Adv Biol (Weinh) 2021; 5:e2000279. [PMID: 33729695 DOI: 10.1002/adbi.202000279] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/23/2020] [Indexed: 12/21/2022]
Abstract
In pharmaceutical research and development, cell-based assays are primarily used with readout that rely on fluorescence-based and other label-dependent techniques for analysis of different cellular processes. Superhydrophobic-hydrophilic droplet microarrays (DMA) and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) have recently emerged as key technologies for miniaturized high-throughput cell assays and for label-free molecular high-content drug profiling, respectively. Here, nanoliter-scale cell assays are integrated on DMAs with MALDI-MS imaging (MALDI-MSI) approaches to a droplet microarray-mass spectrometry imaging (DMA-MSI) platform. Using A549 lung cancer cells, concentration-response profiling of a pharmaceutical compound, the fatty acid synthase inhibitor GSK2194069, are demonstrated. Direct cell culture on DMAs enables combination of microscopy and high speed, high molecular content analysis using MALDI-MSI. Miniaturization of array spots down to 0.5 mm confining 40 nL droplets allows for MALDI imaging analysis of as few as ten cells per spot. Partial automation ensures a fast sample preparation workflow. Taken together, the integrated DMA-MSI platform that combines MALDI-MSI, as a label-free analytical readout, with the miniaturized droplet microarray platform is a valuable complement to high throughput cell-based assays technologies.
Collapse
Affiliation(s)
- Carina RamalloGuevara
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack Str. 10, Mannheim, 68163, Germany
| | - Dorothea Paulssen
- Karlsruhe Institute of Technology (KIT), Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany
| | - Anna A Popova
- Karlsruhe Institute of Technology (KIT), Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany
| | - Carsten Hopf
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack Str. 10, Mannheim, 68163, Germany
| | - Pavel A Levkin
- Karlsruhe Institute of Technology (KIT), Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany
| |
Collapse
|
14
|
Sorensen M, Chandler CE, Gardner FM, Ramadan S, Khot PD, Leung LM, Farrance CE, Goodlett DR, Ernst RK, Nilsson E. Rapid microbial identification and colistin resistance detection via MALDI-TOF MS using a novel on-target extraction of membrane lipids. Sci Rep 2020; 10:21536. [PMID: 33299017 PMCID: PMC7725828 DOI: 10.1038/s41598-020-78401-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 11/20/2020] [Indexed: 12/18/2022] Open
Abstract
Rapid infection diagnosis is critical to improving patient treatment and outcome. Recent studies have shown microbial lipids to be sensitive and selective biomarkers for identifying bacterial and fungal species and antimicrobial resistance. Practical procedures for microbial lipid biomarker analysis will therefore improve patient outcomes and antimicrobial stewardship. However, current lipid extraction methods require significant hands-on time and are thus not suited for direct adoption as a clinical assay for microbial identification. Here, we have developed a method for lipid extraction directly on the surface of stainless-steel matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) plates, termed fast lipid analysis technique or FLAT, which facilitates the identification of bacterial and fungal species using a sub-60-minute workflow. Additionally, our method detects lipid A modifications in Gram-negative bacteria that are associated with antimicrobial resistance, including to colistin.
Collapse
Affiliation(s)
| | - Courtney E Chandler
- Pataigin, LLC, Seattle, WA, USA
- University of Maryland, Baltimore, Baltimore, MD, 21201, USA
- Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Francesca M Gardner
- Pataigin, LLC, Seattle, WA, USA
- University of Maryland, Baltimore, Baltimore, MD, 21201, USA
| | | | | | - Lisa M Leung
- Maryland Department of Health and Mental Hygiene, Baltimore, MD, 21205, USA
- U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | | | - David R Goodlett
- University of Maryland, Baltimore, Baltimore, MD, 21201, USA
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdańsk, Poland
| | - Robert K Ernst
- University of Maryland, Baltimore, Baltimore, MD, 21201, USA.
| | | |
Collapse
|
15
|
Gao Y, Ryu J, Liu L, Choi S. A simple, inexpensive, and rapid method to assess antibiotic effectiveness against exoelectrogenic bacteria. Biosens Bioelectron 2020; 168:112518. [PMID: 32862095 DOI: 10.1016/j.bios.2020.112518] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/07/2020] [Accepted: 08/13/2020] [Indexed: 01/05/2023]
Abstract
A sufficiently fast and simple antimicrobial susceptibility testing (AST) is urgently required to guide effective antibiotic usages and to surveil the antimicrobial resistance rate. Here, we establish a rapid, quantitative, and high-throughput phenotypic AST by measuring electrons transferred from the interiors of microbial cells to external electrodes. Because the transferred electrons are based on microbial metabolic activities and are inversely proportional to the concentration of potential antibiotics, the changes in electrical outputs can be readily used as a transducing signal to efficiently monitor bacterial growth and antibiotic susceptibility. The sensing is performed by directly measuring the total energy, or all the accumulated microbial electricity, generated by microbial fuel cells (MFCs) arranged in a large-capacity disposable, paper-based testbed. A common Gram-negative pathogenic bacterium Pseudomonas aeruginosa wild-type PAO1 and first-line antibiotic gentamicin (GEN) are used in our experiments. The minimum inhibitory concentration (MIC) values generated from our technique are validated by the gold standard broth microdilution (BMD). Our new approach provides quantitative, actionable MIC results within just 5 h because it measures electricity produced by bacterial metabolism instead of the days needed for growth-observation methods. Moreover, as the equipment needed is simple, common, and inexpensive, our test has immense potential to be adopted in the field or resource-limited hospitals and labs to provide insightful assessments for research and clinical practices.
Collapse
Affiliation(s)
- Yang Gao
- Bioelectronics & Microsystems Laboratory, Department of Electrical & Computer Engineering, State University of New York at Binghamton, 4400, Vestal Pkwy East, Binghamton, NY, USA
| | - Jihyun Ryu
- Bioelectronics & Microsystems Laboratory, Department of Electrical & Computer Engineering, State University of New York at Binghamton, 4400, Vestal Pkwy East, Binghamton, NY, USA
| | - Lin Liu
- Bioelectronics & Microsystems Laboratory, Department of Electrical & Computer Engineering, State University of New York at Binghamton, 4400, Vestal Pkwy East, Binghamton, NY, USA
| | - Seokheun Choi
- Bioelectronics & Microsystems Laboratory, Department of Electrical & Computer Engineering, State University of New York at Binghamton, 4400, Vestal Pkwy East, Binghamton, NY, USA.
| |
Collapse
|
16
|
Neonakis IK, Spandidos DA. [Comment] MALDI-TOF MS-based direct-on-target microdroplet growth assay: Latest developments. Exp Ther Med 2020; 20:2555-2556. [PMID: 32765747 PMCID: PMC7401853 DOI: 10.3892/etm.2020.8976] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 07/08/2020] [Indexed: 11/18/2022] Open
Abstract
The matrix-assisted laser desorption-ionization time-of-flight mass spectrometry direct-on-target microdroplet growth assay for the rapid susceptibility testing and the detection of the underlying antibiotic resistance mechanisms of microbia has been recently introduced. In the present study, we review the latest developments in the field.
Collapse
Affiliation(s)
- Ioannis K Neonakis
- Department of Clinical Microbiology and Microbial Pathogenesis, University Hospital of Heraklion, 71201 Heraklion, Greece
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| |
Collapse
|