Sogabe T, Ueda H, Ito Y, Taniguchi Y, Kobayashi T. Dependence of stimulus-induced rotary saturation on the direction of target oscillating magnetic fields: A phantom and simulation study.
JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2020;
321:106849. [PMID:
33128915 DOI:
10.1016/j.jmr.2020.106849]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/23/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
Several noninvasive techniques for the direct measurement of the neuronal activity using magnetic resonance imaging (MRI) have recently been reported. As a promising candidate, we focus on a spin-lock MRI sequence (i.e., stimulus-induced rotary saturation (SIRS)) directly measuring a tiny oscillating magnetic field. Previous phantom studies on SIRS have applied the target oscillating magnetic field parallel to the direction of the static magnetic field B0. However, in practice, the neuromagnetic fields are not always aligned in the same direction as in such a condition. This study investigates the MR signal changes during SIRS when the target magnetic field direction is not the same as that of the B0 field through both phantom experiments and Bloch simulations. The experimental results indicate that only the target magnetic field component along the B0 field affects the signal change, indicating that SIRS has partial sensitivity, even if the target magnetic fields are tilted from the B0 field. Furthermore, the simulation results show good agreements with the experimental results. These results clarify the sensitivity direction of SIRS-based fMRI and lead to the possibility that the direction of the generated neuromagnetic fields can be estimated, such that we can separate directional information from the other information contained in neuromagnetic fields (e.g., phase information).
Collapse