1
|
Salama EA, Elgammal Y, Wijeratne A, Lanman NA, Utturkar SM, Farhangian A, Li J, Meunier B, Hazbun TR, Seleem MN. Lansoprazole interferes with fungal respiration and acts synergistically with amphotericin B against multidrug-resistant Candida auris. Emerg Microbes Infect 2024; 13:2322649. [PMID: 38431850 PMCID: PMC10911247 DOI: 10.1080/22221751.2024.2322649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/20/2024] [Indexed: 03/05/2024]
Abstract
Candida auris has emerged as a problematic fungal pathogen associated with high morbidity and mortality. Amphotericin B (AmB) is the most effective antifungal used to treat invasive fungal candidiasis, with resistance rarely observed among clinical isolates. However, C. auris possesses extraordinary resistant profiles against all available antifungal drugs, including AmB. In our pursuit of potential solutions, we screened a panel of 727 FDA-approved drugs. We identified the proton pump inhibitor lansoprazole (LNP) as a potent enhancer of AmB's activity against C. auris. LNP also potentiates the antifungal activity of AmB against other medically important species of Candida and Cryptococcus. Our investigations into the mechanism of action unveiled that LNP metabolite(s) interact with a crucial target in the mitochondrial respiratory chain (complex III, known as cytochrome bc1). This interaction increases oxidative stress within fungal cells. Our results demonstrated the critical role of an active respiratory function in the antifungal activity of LNP. Most importantly, LNP restored the efficacy of AmB in an immunocompromised mouse model, resulting in a 1.7-log (∼98%) CFU reduction in the burden of C. auris in the kidneys. Our findings strongly advocate for a comprehensive evaluation of LNP as a cytochrome bc1 inhibitor for combating drug-resistant C. auris infections.
Collapse
Affiliation(s)
- Ehab A. Salama
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for One Health Research, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Yehia Elgammal
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for One Health Research, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Aruna Wijeratne
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Nadia A. Lanman
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, Indiana, USA
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana, USA
| | - Sagar M. Utturkar
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, Indiana, USA
| | - Atena Farhangian
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Jianing Li
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Brigitte Meunier
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Tony R. Hazbun
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, Indiana, USA
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Mohamed N. Seleem
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for One Health Research, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| |
Collapse
|
2
|
Sfogliarini C, Tran LH, Cesta CM, Allegretti M, Locati M, Vegeto E. AEBS inhibition in macrophages: Augmenting reality for SERMs repurposing against infections. Biochem Pharmacol 2024; 229:116544. [PMID: 39293500 DOI: 10.1016/j.bcp.2024.116544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/31/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024]
Abstract
Beyond their clinical use as selective estrogen receptor modulators (SERMs), raloxifene and tamoxifen have attracted recent attention for their favorable activity against a broad range of dangerous human pathogens. While consistently demonstrated to occur independently on classic estrogen receptors, the mechanisms underlying SERMs antimicrobial efficacy remain still poorly elucidated, but fundamental to benefit from repurposing strategies of these drugs. Macrophages are innate immune cells that protect from infections by rapidly reprogramming their metabolic state, particularly cholesterol disposal, which is at the center of an appropriate macrophage immune response as well as of the anabolic requirements of both the pathogen and the host cells. The microsomal antiestrogen binding site (AEBS) comprises enzymes involved in the last stages of cholesterol biosynthesis and is a high affinity off-target site for SERMs. We review here recent findings from our laboratory and other research groups in support of the hypothesis that AEBS multiprotein complex represents the candidate pre-genomic target of SERMs immunomodulatory activity. The cholesterol restriction resulting from SERMs-mediated AEBS inhibition may be responsible for boosting inflammatory and antimicrobial pathways that include inflammasome activation, modulation of Toll-like receptors (TLRs) responses, induction of interferon regulatory factor (IRF3) and nuclear factor erythroid 2-related factor 2 (NRF2)-mediated transcriptional programs and, noteworthy, the mitigation of excessive inflammatory and proliferative responses, leading to the overall potentiation of the macrophage response to infections.
Collapse
Affiliation(s)
- Chiara Sfogliarini
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Lien Hong Tran
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | | | | | - Massimo Locati
- IRCCS Humanitas Research Hospital, Rozzano, Italy; Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Elisabetta Vegeto
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy.
| |
Collapse
|
3
|
Toepfer S, Keniya MV, Lackner M, Monk BC. Azole Combinations and Multi-Targeting Drugs That Synergistically Inhibit Candidozyma auris. J Fungi (Basel) 2024; 10:698. [PMID: 39452650 PMCID: PMC11508803 DOI: 10.3390/jof10100698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 10/26/2024] Open
Abstract
Limited antifungal treatment options and drug resistance require innovative approaches to effectively combat fungal infections. Combination therapy is a promising strategy that addresses these pressing issues by concurrently targeting multiple cellular sites. The drug targets usually selected for combination therapy are from different cellular pathways with the goals of increasing treatment options and reducing development of resistance. However, some circumstances can prevent the implementation of combination therapy in clinical practice. These could include the increased risk of adverse effects, drug interactions, and even the promotion of drug resistance. Furthermore, robust clinical evidence supporting the superiority of combination therapy over monotherapy is limited and underscores the need for further research. Despite these challenges, synergies detected with different antifungal classes, such as the azoles and echinocandins, suggest that treatment strategies can be optimized by better understanding the underlying mechanisms. This review provides an overview of multi-targeting combination strategies with a primary focus on Candidozyma auris infections.
Collapse
Affiliation(s)
- Stephanie Toepfer
- Sir John Walsh Research Institute, University of Otago, Dunedin 9016, New Zealand;
- Institute of Hygiene and Medical Microbiology, Medical University Innsbruck, 6020 Innsbruck, Austria;
| | - Mikhail V. Keniya
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA;
| | - Michaela Lackner
- Institute of Hygiene and Medical Microbiology, Medical University Innsbruck, 6020 Innsbruck, Austria;
| | - Brian C. Monk
- Sir John Walsh Research Institute, University of Otago, Dunedin 9016, New Zealand;
| |
Collapse
|
4
|
Dakalbab S, Hamdy R, Holigová P, Abuzaid EJ, Abu-Qiyas A, Lashine Y, Mohammad MG, Soliman SSM. Uniqueness of Candida auris cell wall in morphogenesis, virulence, resistance, and immune evasion. Microbiol Res 2024; 286:127797. [PMID: 38851008 DOI: 10.1016/j.micres.2024.127797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Candida auris has drawn global attention due to its alarming multidrug resistance and the emergence of pan resistant strains. C. auris poses a significant risk in nosocomial candidemia especially among immunocompromised patients. C. auris showed unique virulence characteristics associated with cell wall including cell polymorphism, adaptation, endurance on inanimate surfaces, tolerance to external conditions, and immune evasion. Notably, it possesses a distinctive cell wall composition, with an outer mannan layer shielding the inner 1,3-β glucan from immune recognition, thereby enabling immune evasion and drug resistance. This review aimed to comprehend the association between unique characteristics of C. auris's cell wall and virulence, resistance mechanisms, and immune evasion. This is particularly relevant since the fungal cell wall has no human homology, providing a potential therapeutic target. Understanding the complex interactions between the cell wall and the host immune system is essential for devising effective treatment strategies, such as the use of repurposed medications, novel therapeutic agents, and immunotherapy like monoclonal antibodies. This therapeutic targeting strategy of C. auris holds promise for effective eradication of this resilient pathogen.
Collapse
Affiliation(s)
- Salam Dakalbab
- Research Institute for Medical and Health sciences, University of Sharjah, P.O. Box, Sharjah 27272, United Arab Emirates; College of Medicine, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Rania Hamdy
- Research Institute for Science and Engineering (RISE), University of Sharjah, Sharjah 27272, United Arab Emirates; Faculty of Pharmacy, Zagazig University, P.O. Box 44519, Egypt
| | | | - Eman J Abuzaid
- Research Institute for Medical and Health sciences, University of Sharjah, P.O. Box, Sharjah 27272, United Arab Emirates
| | - Ameera Abu-Qiyas
- Research Institute for Medical and Health sciences, University of Sharjah, P.O. Box, Sharjah 27272, United Arab Emirates
| | - Yasmina Lashine
- Research Institute for Medical and Health sciences, University of Sharjah, P.O. Box, Sharjah 27272, United Arab Emirates; Faculty of Pharmacy, Zagazig University, P.O. Box 44519, Egypt
| | - Mohammad G Mohammad
- Research Institute for Medical and Health sciences, University of Sharjah, P.O. Box, Sharjah 27272, United Arab Emirates; Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Sameh S M Soliman
- Research Institute for Medical and Health sciences, University of Sharjah, P.O. Box, Sharjah 27272, United Arab Emirates; Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates.
| |
Collapse
|
5
|
Alkashef NM, Seleem MN. Novel combinatorial approach: Harnessing HIV protease inhibitors to enhance amphotericin B's antifungal efficacy in cryptococcosis. PLoS One 2024; 19:e0308216. [PMID: 39088434 PMCID: PMC11293717 DOI: 10.1371/journal.pone.0308216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/18/2024] [Indexed: 08/03/2024] Open
Abstract
Cryptococcosis is a fungal infection that is becoming increasingly prevalent worldwide, particularly among individuals with compromised immune systems, such as HIV patients. Amphotericin B (AmB) is the first-line treatment mainly combined with flucytosine. The scarcity and the prohibitive cost of this regimen urge the use of fluconazole as an alternative, leading to increased rates of treatment failure and relapses. Therefore, there is a critical need for efficient and cost-effective therapy to enhance the efficacy of AmB. In this study, we evaluated the efficacy of the HIV protease inhibitors (PIs) to synergize the activity of AmB in the treatment of cryptococcosis. Five PIs (ritonavir, atazanavir, saquinavir, lopinavir, and nelfinavir) were found to synergistically potentiate the killing activity of AmB against Cryptococcus strains with ƩFICI ranging between 0.09 and 0.5 against 20 clinical isolates. This synergistic activity was further confirmed in a time-kill assay, where different AmB/PIs combinations exhibited fungicidal activity within 24 hrs. Additionally, PIs in combination with AmB exhibited an extended post-antifungal effect on treated cryptococcal cells for approximately 10 hrs compared to 4 hours with AmB alone. This promising activity against cryptococcal cells did not exhibit increased cytotoxicity towards treated kidney cells, ruling out the risk of drug combination-induced nephrotoxicity. Finally, we evaluated the efficacy of AmB/PIs combinations in the Caenorhabditis elegans model of cryptococcosis, where these combinations significantly reduced the fungal burden of the treated nematodes by approximately 2.44 Log10 CFU (92.4%) compared to the untreated worms and 1.40 Log10 ((39.4%) compared to AmB alone. The cost-effectiveness and accessibility of PIs in resource-limited geographical areas compared to other antifungal agents, such as flucytosine, make them an appealing choice for combination therapy.
Collapse
Affiliation(s)
- Nour M. Alkashef
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
- Center for One Health Research, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, Alsharkia, Egypt
| | - Mohamed N. Seleem
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
- Center for One Health Research, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| |
Collapse
|
6
|
Engle K, Kumar G. Tackling multi-drug resistant fungi by efflux pump inhibitors. Biochem Pharmacol 2024; 226:116400. [PMID: 38945275 DOI: 10.1016/j.bcp.2024.116400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/22/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
The emergence of multidrug-resistant fungi is of grave concern, and its infections are responsible for significant deaths among immunocompromised patients. The treatment of fungal infections primarily relies on a clinical class of antibiotics, including azoles, polyenes, echinocandins, polyketides, and a nucleotide analogue. However, the incidence of fungal infections is increasing as the treatment for human and plant fungal infections overlaps with antifungal drugs. The need for new antifungal agents acting on different targets than known targets is undeniable. Also, the pace at which loss of fungal susceptibility to antibiotics cannot be undermined. There are several modes by which fungi can develop resistance to antibiotics, including reduced drug uptake, drug target alteration, and a reduction in the cellular concentration of the drug due to active extrusions and biofilm formation. The efflux pump's overexpression in the fungi primarily reduced the antibiotic's concentration to a sub-lethal concentration, thus responsible for developing resistant fungus strains. Several strategies are used to check antibiotic resistance in multi-drug resistant fungi, including synthesizing antibiotic analogs and giving antibiotics in combination therapies. Among them, the efflux pump protein inhibitors are considered potential adjuvants to antibiotics and can block the efflux of antibiotics by inhibiting efflux pump protein transporters. Moreover, it can sensitize the antifungal drugs to multi-drug resistant fungi with overexpressed efflux pump proteins. This review discusses the natural lead molecules, repurposable drugs, and formulation strategies to overcome the efflux pump activity in the fungi.
Collapse
Affiliation(s)
- Kritika Engle
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Balanagar 500037, India
| | - Gautam Kumar
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India.
| |
Collapse
|
7
|
Elgammal Y, Salama EA, Seleem MN. Enhanced antifungal activity of posaconazole against Candida auris by HIV protease inhibitors, atazanavir and saquinavir. Sci Rep 2024; 14:1571. [PMID: 38238403 PMCID: PMC10796399 DOI: 10.1038/s41598-024-52012-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/12/2024] [Indexed: 01/22/2024] Open
Abstract
The increasing incidence and dissemination of multidrug-resistant Candida auris represents a serious global threat. The emergence of pan-resistant C. auris exhibiting resistance to all three classes of antifungals magnifies the need for novel therapeutic interventions. We identified that two HIV protease inhibitors, atazanavir and saquinavir, in combination with posaconazole exhibited potent activity against C. auris in vitro and in vivo. Both atazanavir and saquinavir exhibited a remarkable synergistic activity with posaconazole against all tested C. auris isolates and other medically important Candida species. In a time-kill assay, both drugs restored the fungistatic activity of posaconazole, resulting in reduction of 5 and 5.6 log10, respectively. Furthermore, in contrast to the individual drugs, the two combinations effectively inhibited the biofilm formation of C. auris by 66.2 and 81.2%, respectively. Finally, the efficacy of the two combinations were tested in a mouse model of C. auris infection. The atazanavir/posaconazole and saquinavir/posaconazole combinations significantly reduced the C. auris burden in mice kidneys by 2.04- (99.1%) and 1.44-log10 (96.4%) colony forming unit, respectively. Altogether, these results suggest that the combination of posaconazole with the HIV protease inhibitors warrants further investigation as a new therapeutic regimen for the treatment of C. auris infections.
Collapse
Affiliation(s)
- Yehia Elgammal
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, 1410 Prices Fork Rd, Blacksburg, VA, 24061, USA
- Center for One Health Research, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Ehab A Salama
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, 1410 Prices Fork Rd, Blacksburg, VA, 24061, USA
- Center for One Health Research, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Mohamed N Seleem
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, 1410 Prices Fork Rd, Blacksburg, VA, 24061, USA.
- Center for One Health Research, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
| |
Collapse
|
8
|
Hernando-Ortiz A, Eraso E, Jauregizar N, de Groot PW, Quindós G, Mateo E. Efficacy of the combination of amphotericin B and echinocandins against Candida auris in vitro and in the Caenorhabditis elegans host model. Microbiol Spectr 2024; 12:e0208623. [PMID: 38018978 PMCID: PMC10783041 DOI: 10.1128/spectrum.02086-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 10/27/2023] [Indexed: 11/30/2023] Open
Abstract
IMPORTANCE Multidrug resistance is a rising problem among non-Candida albicans species, such as Candida auris. This therapeutic problem has been very important during the COVID-19 pandemic. The World Health Organization has included C. auris in its global priority list of health-threatening fungi, to study this emerging multidrug-resistant species and to develop effective alternative therapies. In the present study, the synergistic effect of the combination of amphotericin B and echinocandins has been demonstrated against blood isolates of C. auris. Different susceptibility responses were also observed between aggregative and non-aggregative phenotypes. The antifungal activity of these drug combinations against C. auris was also demonstrated in the Caenorhabditis elegans host model of candidiasis, confirming the suitability and usefulness of this model in the search for solutions to antimicrobial resistance.
Collapse
Affiliation(s)
- Ainara Hernando-Ortiz
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Elena Eraso
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Nerea Jauregizar
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Piet W.J. de Groot
- Regional Center for Biomedical Research, University of Castilla-La Mancha, Albacete, Spain
| | - Guillermo Quindós
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Estibaliz Mateo
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Bilbao, Spain
| |
Collapse
|
9
|
Mensah E, Fourie PB, Peters RPH. Antimicrobial effects of Medicines for Malaria Venture Pathogen Box compounds on strains of Neisseria gonorrhoeae. Antimicrob Agents Chemother 2023; 67:e0034823. [PMID: 37791750 PMCID: PMC10648949 DOI: 10.1128/aac.00348-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/02/2023] [Indexed: 10/05/2023] Open
Abstract
Therapeutic options for Neisseria gonorrhoeae are limited due to emerging global resistance. New agents and treatment options to treat patients with susceptible and multi-extensively drug-resistant N. gonorrhoeae is a high priority. This study used an in vitro approach to explore the antimicrobial potential, as well as synergistic effects of Medicine for Malaria Venture (MMV) Pathogen Box compounds against ATCC and clinical N. gonorrhoeae strains. Microbroth dilution assay was used to determine pathogen-specific minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the Pathogen Box compounds against susceptible and resistant N. gonorrhoeae strains, with modification, by adding PrestoBlue HS Cell Viability Reagent. A checkerboard assay was used to determine synergy between the active compounds and in conjunction with ceftriaxone. Time-kill kinetics was performed to determine if the compounds were either bactericidal or bacteriostatic. The Pathogen Box compounds: MMV676501, MMV002817, MMV688327, MMV688508, MMV024937, MMV687798 (levofloxacin), MMV021013, and MMV688978 (auranofin) showed potent activity against resistant strains of N. gonorrhoeae at an MIC and MBC of ≤10 µM. Besides the eight compounds, MMV676388 and MMV272144 were active against susceptible N. gonorrhoeae strains, also at MIC and MBC of ≤10 µM. All the compounds were bactericidal and were either synergistic or additive with fractional inhibitory concentration index ranging between 0.40 and 1.8. The study identified novel Pathogen Box compounds with potent activity against N. gonorrhoeae strains and has the potential to be further investigated as primary or adjunctive therapy to treat gonococcal infections.
Collapse
Affiliation(s)
- Eric Mensah
- Department of Medical Microbiology, University of Pretoria, Pretoria, South Africa
| | - P. Bernard Fourie
- Department of Medical Microbiology, University of Pretoria, Pretoria, South Africa
| | - Remco P. H. Peters
- Department of Medical Microbiology, University of Pretoria, Pretoria, South Africa
- Foundation for Professional Development, Research Unit, East London, South Africa
| |
Collapse
|
10
|
Salama EA, Eldesouky HE, Elgammal Y, Abutaleb NS, Seleem MN. Lopinavir and ritonavir act synergistically with azoles against Candida auris in vitro and in a mouse model of disseminated candidiasis. Int J Antimicrob Agents 2023; 62:106906. [PMID: 37392947 PMCID: PMC10528984 DOI: 10.1016/j.ijantimicag.2023.106906] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 06/14/2023] [Accepted: 06/25/2023] [Indexed: 07/03/2023]
Abstract
INTRODUCTION AND OBJECTIVES The emergence of Candida auris has created a global health challenge. Azole antifungals are the most affected antifungal class because of the extraordinary capability of C. auris to develop resistance against these drugs. Here, we used a combinatorial therapeutic approach to sensitize C. auris to azole antifungals. METHODS AND RESULTS We have demonstrated the capability of the HIV protease inhibitors lopinavir and ritonavir, at clinically relevant concentrations, to be used with azole antifungals to treat C. auris infections both in vitro and in vivo. Both lopinavir and ritonavir exhibited potent synergistic interactions with the azole antifungals, particularly with itraconazole against 24/24 (100%) and 31/34 (91%) of tested C. auris isolates, respectively. Furthermore, ritonavir significantly interfered with the fungal efflux pump, resulting in a significant increase in Nile red fluorescence by 44%. In a mouse model of C. auris systemic infection, ritonavir boosted the activity of lopinavir to work synergistically with fluconazole and itraconazole and significantly reduced the kidney fungal burden by a 1.2 log (∼94%) and 1.6 log (∼97%) CFU, respectively. CONCLUSION Our results urge further comprehensive assessment of azoles and HIV protease inhibitors as a novel drug regimen for the treatment of serious invasive C. auris infections.
Collapse
Affiliation(s)
- Ehab A Salama
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia; Center for One Health Research, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Hassan E Eldesouky
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia; Center for One Health Research, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Yehia Elgammal
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia; Center for One Health Research, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Nader S Abutaleb
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia; Center for One Health Research, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Mohamed N Seleem
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia; Center for One Health Research, Virginia Polytechnic Institute and State University, Blacksburg, Virginia.
| |
Collapse
|
11
|
Abstract
Fungal infections are rising, with over 1.5 billion cases and more than 1 million deaths recorded each year. Among these, Candida infections are frequent in at-risk populations and the rapid development of drug resistance and tolerance contributes to their clinical persistence. Few antifungal drugs are available, and their efficacy is declining due to the environmental overuse and the expansion of multidrug-resistant species. One way to prolong their utility is by applying them in combination therapy. Here, we highlight recently described azole potentiators belonging to different categories: natural, repurposed, or novel compounds. We showcase examples of molecules and discuss their identified or proposed mode of action. We also emphasise the challenges in azole potentiator development, compounded by the lack of animal testing, the overreliance on Candida albicans and Candida auris, as well as the limited understanding of compound efficacy.
Collapse
Affiliation(s)
| | - Iuliana V. Ene
- Institut Pasteur, Université Paris Cité, Fungal Heterogeneity Group, Paris, France
| |
Collapse
|
12
|
Toepfer S, Lackner M, Keniya MV, Zenz LM, Friemert M, Bracher F, Monk BC. Clorgyline Analogs Synergize with Azoles against Drug Efflux in Candida auris. J Fungi (Basel) 2023; 9:663. [PMID: 37367600 DOI: 10.3390/jof9060663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/28/2023] Open
Abstract
Concern about the global emergence of multidrug-resistant fungal pathogens led us to explore the use of combination therapy to combat azole resistance in Candida auris. Clorgyline had previously been shown to be a multi-target inhibitor of Cdr1 and Mdr1 efflux pumps of Candida albicans and Candida glabrata. A screen for antifungal sensitizers among synthetic analogs of Clorgyline detected interactions with the C. auris efflux pump azole substrates Posaconazole and Voriconazole. Of six Clorgyline analogs, M19 and M25 were identified as potential sensitizers of azole resistance. M19 and M25 were found to act synergistically with azoles against resistant C. auris clade I isolates and recombinant Saccharomyces cerevisiae strains overexpressing C. auris efflux pumps. Nile Red assays with the recombinant strains showed M19 and M25 inhibited the activity of Cdr1 and Mdr1 efflux pumps that are known to play key roles in azole resistance in C. auris clades I, III, and IV. While Clorgyline, M19 and M25 uncoupled the Oligomycin-sensitive ATPase activity of Cdr1 from C. albicans and C. auris, their mode of action is yet to be fully elucidated. The experimental combinations described herein provides a starting point to combat azole resistance dominated by overexpression of CauCdr1 in C. auris clades I and IV and CauMdr1 in C. auris clade III.
Collapse
Affiliation(s)
- Stephanie Toepfer
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
| | - Michaela Lackner
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Mikhail V Keniya
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, NJ 07110, USA
| | - Lisa-Maria Zenz
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Marianne Friemert
- Center for Drug Research, Department of Pharmacy, Ludwig-Maximilian University of Munich, 81377 Munich, Germany
| | - Franz Bracher
- Center for Drug Research, Department of Pharmacy, Ludwig-Maximilian University of Munich, 81377 Munich, Germany
| | - Brian C Monk
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
13
|
Juxtaposing Caenorhabditis elegans-Pathogenic Mould Model with Other Models; How Reliable Is This Nematode Model? A Mini Review. Curr Microbiol 2023; 80:105. [PMID: 36790616 DOI: 10.1007/s00284-023-03209-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/01/2023] [Indexed: 02/16/2023]
Abstract
The application of Caenorhabditis elegans as a pathogenic model has spanned decades. Its use for pathogenic mould modeling has been attracting some attention lately, though not without some reservations. Several studies have shown C. elegans to be a reliable model for evaluating moulds' virulence factors and patterns as well as for screening the pathogenicity of mutant strains alongside their parental/wild type and revertant/complementary strains. There is a very high degree of reported similarities between the virulence patterns demonstrated in C. elegans and those of other invertebrate and vertebrate models. We have here presented several works in which this nematode model was adopted for virulence evaluation, and other comparative research in which virulence in C. elegans model were juxtaposed with other models. We have further presented possible reasons why there might have been variations of virulence in a few cases, thereby validating C. elegans to be an effective and reliable tool in the study of pathogenic moulds.
Collapse
|
14
|
Tu J, Liu N, Huang Y, Yang W, Sheng C. Small molecules for combating multidrug-resistant superbug Candida auris infections. Acta Pharm Sin B 2022; 12:4056-4074. [PMID: 36386475 PMCID: PMC9643296 DOI: 10.1016/j.apsb.2022.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/09/2022] [Accepted: 07/25/2022] [Indexed: 01/12/2023] Open
Abstract
Candida auris is emerging as a major global threat to human health. C. auris infections are associated with high mortality due to intrinsic multi-drug resistance. Currently, therapeutic options for the treatment of C. auris infections are rather limited. We aim to provide a comprehensive review of current strategies, drug candidates, and lead compounds in the discovery and development of novel therapeutic agents against C. auris. The drug resistance profiles and mechanisms are briefly summarized. The structures and activities of clinical candidates, drug combinations, antifungal chemosensitizers, repositioned drugs, new targets, and new types of compounds will be illustrated in detail, and perspectives for guiding future research will be provided. We hope that this review will be helpful to prompting the drug development process to combat this fungal pathogen.
Collapse
Affiliation(s)
| | | | - Yahui Huang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Wanzhen Yang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Chunquan Sheng
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
15
|
Dhandapani K, Sivarajan K, Ravindhiran R, Sekar JN. Fungal Infections as an Uprising Threat to Human Health: Chemosensitization of Fungal Pathogens With AFP From Aspergillus giganteus. Front Cell Infect Microbiol 2022; 12:887971. [PMID: 35694549 PMCID: PMC9174459 DOI: 10.3389/fcimb.2022.887971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/19/2022] [Indexed: 11/20/2022] Open
Abstract
Occurrence and intensity of systemic invasive fungal infections have significantly risen in recent decades with large amount of mortality and morbidity rates at global level. Treatment therapy lies on the current antifungal interventions and are often limited due to the emergence of resistance to antifungal agents. Chemosensitization of fungal strains to the conventional antimycotic drugs are of growing concern. Current antifungal drugs often have been reported with poor activity and side effects to the host and have a few number of targets to manifest their efficacy on the pathogens. Indiscriminately, the aforementioned issues have been easily resolved by the development of new intervention strategies. One such approach is to employ combinational therapy that has exhibited a great level of inhibitions than that of a single compound. Chemosensitization of pathogenic mycoses to commercial antifungal drugs could be drastically enhanced by co-application of chemosensitizers along with the conventional drugs. Chemosensitizers could address the resistance mechanisms evolved in the pathogenic fungi and targeting the system to make the organism susceptible to commercially and clinically proven antifungal drugs. However, this strategy has not been overreached to the greater level, but it needs much attention to fight against not only with the pathogen but combat the resistance mechanisms of pathogens to drugs. Natural compounds including plant compounds and microbial proteins act as potential chemosensitizers to break the resistance in mycoses. Aspergillus giganteus, a filamentous fungus, is known to produce a cysteine rich extracellular protein called as antifungal protein (AFP). AFP has shown enhanced efficacy against several filamentous and non-filamentous fungal pathogens. On the basis of the reported studies on its targeted potential against pathogenic mycoses, AFP would be fabricated as a good chemosensitizer to augment the fungicidal efficacy of commercial antimycotic drugs. This paper reviews on breakthrough in the discovery of antifungal drugs along with the resistance patterns of mycoses to commercial drugs followed by the current intervention strategies applied to augment the fungicidal potential of drugs.
Collapse
|
16
|
Kane A, Carter DA. Augmenting Azoles with Drug Synergy to Expand the Antifungal Toolbox. Pharmaceuticals (Basel) 2022; 15:482. [PMID: 35455479 PMCID: PMC9027798 DOI: 10.3390/ph15040482] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 12/23/2022] Open
Abstract
Fungal infections impact the lives of at least 12 million people every year, killing over 1.5 million. Wide-spread use of fungicides and prophylactic antifungal therapy have driven resistance in many serious fungal pathogens, and there is an urgent need to expand the current antifungal arsenal. Recent research has focused on improving azoles, our most successful class of antifungals, by looking for synergistic interactions with secondary compounds. Synergists can co-operate with azoles by targeting steps in related pathways, or they may act on mechanisms related to resistance such as active efflux or on totally disparate pathways or processes. A variety of sources of potential synergists have been explored, including pre-existing antimicrobials, pharmaceuticals approved for other uses, bioactive natural compounds and phytochemicals, and novel synthetic compounds. Synergy can successfully widen the antifungal spectrum, decrease inhibitory dosages, reduce toxicity, and prevent the development of resistance. This review highlights the diversity of mechanisms that have been exploited for the purposes of azole synergy and demonstrates that synergy remains a promising approach for meeting the urgent need for novel antifungal strategies.
Collapse
Affiliation(s)
| | - Dee A. Carter
- School of Life and Environmental Sciences and Sydney ID, University of Sydney, Camperdown, NSW 2006, Australia;
| |
Collapse
|
17
|
Daniela SV, Gabriela OM, Andrea PM. A state-of-the-art review and prospective therapeutic applications of prenyl flavonoids as chemosensitizers against antifungal multidrug resistance in Candida albicans. Curr Med Chem 2022; 29:4251-4281. [PMID: 35139777 DOI: 10.2174/0929867329666220209103538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/01/2021] [Accepted: 12/17/2021] [Indexed: 11/22/2022]
Abstract
Multidrug resistance (MDR) in the opportunistic pathogen Candida albicans is defined as non-susceptibility to at least one agent in two or more drug classes. This phenomenon has been increasingly reported since the rise in the incidence of fungal infections in immunocompromised patients at the end of the last century. After the discovery of efflux pump overexpression as a principal mechanism causing MDR in Candida strains, drug discovery targeting fungal efflux transporters has had a growing impact. Chemosensitization aims to enhance azole intracellular concentrations through combination therapy with transporter inhibitors. Consequently, the use of drug efflux inhibitors combined with the antifungal agent will sensitize the pathogen. As a result, the use of lower drug concentrations will reduce possible adverse effects on the host. Through an extensive revision of the literature, this review aims to provide an exhaustive and critical analysis of the studies carried out in the past two decades, regarding the chemosensitization strategy to cope with multidrug resistance in C. albicans. This work provides a deep analysis of the research about the inhibition of drug-efflux membrane transporters by prenylated flavonoids and the interactions of these phytocompounds with azole antifungals as an approach to chemosensitize multidrug-resistant C. albicans strains. We highlight the importance of prenylflavonoids and their particular chemical and pharmacological characteristics that make them excellent candidates with therapeutic potential as chemosensitizers. Finally, we propose the need for further research of prenyl flavonoids as inhibitors of drug-efflux mediated fungal resistance.
Collapse
Affiliation(s)
- Santi V Daniela
- Farmacognosia, Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Haya de la torre y Medina Allende, Edificio Ciencias II, X5000HUA Córdoba, Argentina
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Ciudad Universitaria. X5000HUA Córdoba, Argentina
| | - Ortega María Gabriela
- Farmacognosia, Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Haya de la torre y Medina Allende, Edificio Ciencias II, X5000HUA Córdoba, Argentina
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Ciudad Universitaria. X5000HUA Córdoba, Argentina
| | - Peralta Mariana Andrea
- Farmacognosia, Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Haya de la torre y Medina Allende, Edificio Ciencias II, X5000HUA Córdoba, Argentina
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Ciudad Universitaria. X5000HUA Córdoba, Argentina
| |
Collapse
|
18
|
OUP accepted manuscript. Med Mycol 2022; 60:6526320. [PMID: 35142862 PMCID: PMC8929677 DOI: 10.1093/mmy/myac008] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/13/2021] [Accepted: 02/01/2022] [Indexed: 11/23/2022] Open
Abstract
Candida auris is an emerging, multi drug resistant fungal pathogen that has caused infectious outbreaks in over 45 countries since its first isolation over a decade ago, leading to in-hospital crude mortality rates as high as 72%. The fungus is also acclimated to disinfection procedures and persists for weeks in nosocomial ecosystems. Alarmingly, the outbreaks of C. auris infections in Coronavirus Disease-2019 (COVID-19) patients have also been reported. The pathogenicity, drug resistance and global spread of C. auris have led to an urgent exploration of novel, candidate antifungal agents for C. auris therapeutics. This narrative review codifies the emerging data on the following new/emerging antifungal compounds and strategies: antimicrobial peptides, combinational therapy, immunotherapy, metals and nano particles, natural compounds, and repurposed drugs. Encouragingly, a vast majority of these exhibit excellent anti- C. auris properties, with promising drugs now in the pipeline in various stages of development. Nevertheless, further research on the modes of action, toxicity, and the dosage of the new formulations are warranted. Studies are needed with representation from all five C. auris clades, so as to produce data of grater relevance, and broader significance and validity.
Collapse
|
19
|
Current scenario of the search for new antifungal agents to treat Candida auris infections: An integrative review. J Mycol Med 2021; 32:101232. [PMID: 34883404 DOI: 10.1016/j.mycmed.2021.101232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/18/2021] [Accepted: 11/29/2021] [Indexed: 12/22/2022]
Abstract
Candida auris emerges as an important causative agent of fungal infections, with worrisome mortality rates, mainly in immunocompromised individuals. This scenario is worsened by the limited availability of antifungal drugs and the increasing development of resistance to them. Due to the relevance of C. auris infections to public health, several studies aimed to discover new antifungal compounds capable of overcoming this fungus. Nonetheless, these information are decentralized, precluding the understandment of the current status of the search for new anti-C. auris compounds. Thus, this integrative review aimed to summarize information regarding anti-C. auris compounds reported in literature. After using predefined selection criteria, 71 articles were included in this review, and data from a total of 101 substances were extracted. Most of the studies tested synthetic substances, including several azoles. Moreover, drug repurposing emerges as a suitable strategy to discover new anti-C. auris agents. Few studies, however, assessed the mechanism of action and the in vivo antifungal activity of the compounds. Therefore, more studies must be performed to evaluate the usefulness of these substances as anti-C. auris therapies.
Collapse
|
20
|
Ahamefule CS, Ezeuduji BC, Ogbonna JC, Moneke AN, Ike AC, Jin C, Wang B, Fang W. Caenorhabditis elegans as an Infection Model for Pathogenic Mold and Dimorphic Fungi: Applications and Challenges. Front Cell Infect Microbiol 2021; 11:751947. [PMID: 34722339 PMCID: PMC8554291 DOI: 10.3389/fcimb.2021.751947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/28/2021] [Indexed: 11/13/2022] Open
Abstract
The threat burden from pathogenic fungi is universal and increasing with alarming high mortality and morbidity rates from invasive fungal infections. Understanding the virulence factors of these fungi, screening effective antifungal agents and exploring appropriate treatment approaches in in vivo modeling organisms are vital research projects for controlling mycoses. Caenorhabditis elegans has been proven to be a valuable tool in studies of most clinically relevant dimorphic fungi, helping to identify a number of virulence factors and immune-regulators and screen effective antifungal agents without cytotoxic effects. However, little has been achieved and reported with regard to pathogenic filamentous fungi (molds) in the nematode model. In this review, we have summarized the enormous breakthrough of applying a C. elegans infection model for dimorphic fungi studies and the very few reports for filamentous fungi. We have also identified and discussed the challenges in C. elegans-mold modeling applications as well as the possible approaches to conquer these challenges from our practical knowledge in C. elegans-Aspergillus fumigatus model.
Collapse
Affiliation(s)
- Chukwuemeka Samson Ahamefule
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, China.,College of Life Science and Technology, Guangxi University, Nanning, China.,Department of Microbiology, University of Nigeria, Nsukka, Nigeria
| | | | - James C Ogbonna
- Department of Microbiology, University of Nigeria, Nsukka, Nigeria
| | - Anene N Moneke
- Department of Microbiology, University of Nigeria, Nsukka, Nigeria
| | - Anthony C Ike
- Department of Microbiology, University of Nigeria, Nsukka, Nigeria
| | - Cheng Jin
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, China.,College of Life Science and Technology, Guangxi University, Nanning, China
| | - Bin Wang
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, China.,State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning, China
| | - Wenxia Fang
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, China.,State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning, China
| |
Collapse
|
21
|
Eldesouky HE, Lanman NA, Hazbun TR, Seleem MN. Aprepitant, an antiemetic agent, interferes with metal ion homeostasis of Candida auris and displays potent synergistic interactions with azole drugs. Virulence 2021; 11:1466-1481. [PMID: 33100149 PMCID: PMC7588212 DOI: 10.1080/21505594.2020.1838741] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
With the rapid increase in the frequency of azole-resistant species, combination therapy appears to be a promising tool to augment the antifungal activity of azole drugs against resistant Candida species. Here, we report the effect of aprepitant, an antiemetic agent, on the antifungal activities of azole drugs against the multidrug-resistant Candida auris. Aprepitant reduced the minimum inhibitory concentration (MIC) of itraconazole in vitro, by up to eight-folds. Additionally, the aprepitant/itraconazole combination interfered significantly with the biofilm-forming ability of C. auris by 95 ± 0.13%, and significantly disrupted mature biofilms by 52 ± 0.83%, relative to the untreated control. In a Caenorhabditis elegans infection model, the aprepitant/itraconazole combination significantly prolonged the survival of infected nematodes by ~90% (five days post-infection) and reduced the fungal burden by ~92% relative to the untreated control. Further, this novel drug combination displayed broad-spectrum synergistic interactions against other medically important Candida species such as C. albicans, C. krusei, C. tropicalis, and C. parapsilosis (ƩFICI ranged from 0.08 to 0.31). Comparative transcriptomic profiling and mechanistic studies indicated aprepitant/itraconazole interferes significantly with metal ion homeostasis and compromises the ROS detoxification ability of C. auris. This study presents aprepitant as a novel, potent, and broad-spectrum azole chemosensitizing agent that warrants further investigation.
Collapse
Affiliation(s)
- Hassan E Eldesouky
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University , West Lafayette, IN, USA.,Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University , Blacksburg, VA, USA
| | - Nadia A Lanman
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University , West Lafayette, IN, USA.,Purdue University Center for Cancer Research, Purdue University , West Lafayette, IN, USA
| | - Tony R Hazbun
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University , West Lafayette, IN, USA
| | - Mohamed N Seleem
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University , West Lafayette, IN, USA.,Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University , Blacksburg, VA, USA
| |
Collapse
|
22
|
Abutaleb NS, Elhassanny AEM, Flaherty DP, Seleem MN. In vitro and in vivo activities of the carbonic anhydrase inhibitor, dorzolamide, against vancomycin-resistant enterococci. PeerJ 2021; 9:e11059. [PMID: 33850651 PMCID: PMC8018244 DOI: 10.7717/peerj.11059] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/12/2021] [Indexed: 12/17/2022] Open
Abstract
Vancomycin-resistant enterococci (VRE) are a serious public health threat and a leading cause of healthcare-associated infections. Bacterial resistance to antibiotics recommended for the treatment of enterococcal infections complicates the management of these infections. Hence, there is a critical need for the discovery of new anti-VRE agents. We previously reported carbonic anhydrase inhibitors (CAIs) as new potent VRE inhibitors. In the present study, the activity of the CAI, dorzolamide was evaluated against VRE both in vitro and in vivo. Dorzolamide exhibited potent activity against a panel of clinical VRE isolates, with minimum inhibitory concentration (MIC) values ranging from 1 µg/mL to 8 µg/mL. A killing kinetics experiment determined that dorzolamide exhibited a bacteriostatic effect against VRE, which was similar to the drug of choice (linezolid). Dorzolamide interacted synergistically with gentamicin against four strains of VRE, and exhibited an additive interaction with gentamicin against six VRE strains, reducing gentamicin’s MIC by several folds. Moreover, dorzolamide outperformed linezolid in an in vivo VRE colonization reduction mouse model. Dorzolamide significantly reduced the VRE burden in fecal samples of mice by 2.9-log10 (99.9%) and 3.86-log10 (99.99%) after 3 and 5 days of treatment, respectively. Furthermore, dorzolamide reduced the VRE count in the cecal (1.74-log10 (98.2%) reduction) and ileal contents (1.5-log10 (96.3%)) of mice, which was superior to linezolid. Collectively, these results indicate that dorzolamide represents a promising treatment option that warrants consideration as a supplement to current therapeutics used for VRE infections.
Collapse
Affiliation(s)
- Nader S Abutaleb
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, United States of America.,Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States of America
| | - Ahmed E M Elhassanny
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, United States of America
| | - Daniel P Flaherty
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, United States of America.,Purdue Institute for Drug Discovery, Purdue University, West Lafayette, IN, United States of America
| | - Mohamed N Seleem
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, United States of America.,Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States of America
| |
Collapse
|
23
|
Aghaei Gharehbolagh S, Izadi A, Talebi M, Sadeghi F, Zarrinnia A, Zarei F, Darmiani K, Borman AM, Mahmoudi S. New weapons to fight a new enemy: A systematic review of drug combinations against the drug-resistant fungus Candida auris. Mycoses 2021; 64:1308-1316. [PMID: 33774879 DOI: 10.1111/myc.13277] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 11/27/2022]
Abstract
Candida auris is an emerging and drug-resistant pathogen. Drug combination is a promising approach against such pathogens. This study was conducted to provide an overview of all the studied drug combinations against C. auris. Relevant articles reporting results of any drug/non-drug combinations against C. auris were found by a systematic search in PubMed, Scopus and Web of Science (ISI), and in Google Scholar up to 1 October 2020. From 187 articles retrieved in the primary search, 23 met the inclusion criteria. In total, 124 different combinations including antifungal with antifungal (45), antifungal with other antimicrobials (11), antifungal with non-antimicrobials (32), antifungal with natural compounds (25) and between natural compounds (11) have been reported. Complete or partial synergistic effects have been reported for 3 out of 45 (6.67%) combinations of two antifungal agents, 8 out of 11 (72.73%) combinations involving antifungal agents and antimicrobials, 15 out of 32 (46.88%) of combinations between antifungal agents with non-antimicrobials, 16 out of 25 (64%) of combinations involving antifungal agents and natural compounds, and 3 out of 11 (22.27%) of combinations involving multiple natural compounds. Antagonistic interactions have been reported for 1 out of 32 (3.13%) and 8 out of 25 (32%) of combinations between antifungal drugs with non-antimicrobials and with natural compounds, respectively. Different drugs/compounds could potentiate the activity of antifungal drugs using this approach. However, despite the availability of this promising initial data, many more studies will be required to elucidate whether favourable interactions observed in vitro might translate into tangible clinical benefits.
Collapse
Affiliation(s)
- Sanaz Aghaei Gharehbolagh
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Izadi
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Meysam Talebi
- Department of Medicinal Chemistry, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Sadeghi
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Zarrinnia
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Fateme Zarei
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Kimia Darmiani
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Andrew M Borman
- Public Health England UK National Mycology Reference Laboratory, Southmead Hospital Bristol, Bristol, UK.,Medical Research Council Centre for Medical Mycology (MRC CMM), University of Exeter, Exeter, UK
| | - Shahram Mahmoudi
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Billamboz M, Fatima Z, Hameed S, Jawhara S. Promising Drug Candidates and New Strategies for Fighting against the Emerging Superbug Candida auris. Microorganisms 2021; 9:microorganisms9030634. [PMID: 33803604 PMCID: PMC8003017 DOI: 10.3390/microorganisms9030634] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
Invasive fungal infections represent an expanding threat to public health. During the past decade, a paradigm shift of candidiasis from Candida albicans to non-albicans Candida species has fundamentally increased with the advent of Candida auris. C. auris was identified in 2009 and is now recognized as an emerging species of concern and underscores the urgent need for novel drug development strategies. In this review, we discuss the genomic epidemiology and the main virulence factors of C. auris. We also focus on the different new strategies and results obtained during the past decade in the field of antifungal design against this emerging C. auris pathogen yeast, based on a medicinal chemist point of view. Critical analyses of chemical features and physicochemical descriptors will be carried out along with the description of reported strategies.
Collapse
Affiliation(s)
- Muriel Billamboz
- Inserm, CHU Lille, Institut Pasteur Lille, Université Lille, U1167—RID-AGE—Facteurs de Risque et Déterminants Moléculaires des Maladies liées au Vieillissement, F-59000 Lille, France
- Junia, Health and Environment, Laboratory of Sustainable Chemistry and Health, F-59000 Lille, France
- Correspondence: (M.B.); (S.J.)
| | - Zeeshan Fatima
- Amity Institute of Biotechnology, Amity University Haryana, Manesar, Gurugram 122413, India; (Z.F.); (S.H.)
| | - Saif Hameed
- Amity Institute of Biotechnology, Amity University Haryana, Manesar, Gurugram 122413, India; (Z.F.); (S.H.)
| | - Samir Jawhara
- UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Centre National de la Recherche Scientifique, INSERM U1285, University of Lille, F-59000 Lille, France
- Correspondence: (M.B.); (S.J.)
| |
Collapse
|
25
|
Eldesouky HE, Salama EA, Lanman NA, Hazbun TR, Seleem MN. Potent Synergistic Interactions between Lopinavir and Azole Antifungal Drugs against Emerging Multidrug-Resistant Candida auris. Antimicrob Agents Chemother 2020; 65:e00684-20. [PMID: 33046487 PMCID: PMC7927799 DOI: 10.1128/aac.00684-20] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 10/06/2020] [Indexed: 12/22/2022] Open
Abstract
The limited therapeutic options and the recent emergence of multidrug-resistant Candida species present a significant challenge to human medicine and underscore the need for novel therapeutic approaches. Drug repurposing appears as a promising tool to augment the activity of current azole antifungals, especially against multidrug-resistant Candida auris In this study, we evaluated the fluconazole chemosensitization activities of 1,547 FDA-approved drugs and clinical molecules against azole-resistant C. auris This led to the discovery that lopinavir, an HIV protease inhibitor, is a potent agent capable of sensitizing C. auris to the effect of azole antifungals. At a therapeutically achievable concentration, lopinavir exhibited potent synergistic interactions with azole drugs, particularly with itraconazole against C. auris (fractional inhibitory concentration index [ΣFICI] ranged from 0.04 to 0.09). Additionally, the lopinavir/itraconazole combination enhanced the survival rate of C. auris-infected Caenorhabditis elegans by 90% and reduced the fungal burden in infected nematodes by 88.5% (P < 0.05) relative to that of the untreated control. Furthermore, lopinavir enhanced the antifungal activity of itraconazole against other medically important Candida species, including C. albicans, C. tropicalis, C. krusei, and C. parapsilosis Comparative transcriptomic profiling and mechanistic studies revealed that lopinavir was able to significantly interfere with the glucose permeation and ATP synthesis. This compromised the efflux ability of C. auris and consequently enhanced the susceptibility to azole drugs, as demonstrated by Nile red efflux assays. Altogether, these findings present lopinavir as a novel, potent, and broad-spectrum azole-chemosensitizing agent that warrants further investigation against recalcitrant Candida infections.
Collapse
Affiliation(s)
- Hassan E Eldesouky
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Ehab A Salama
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Nadia A Lanman
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana, USA
| | - Tony R Hazbun
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana, USA
| | - Mohamed N Seleem
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| |
Collapse
|
26
|
Han G, Liu N, Li C, Tu J, Li Z, Sheng C. Discovery of Novel Fungal Lanosterol 14α-Demethylase (CYP51)/Histone Deacetylase Dual Inhibitors to Treat Azole-Resistant Candidiasis. J Med Chem 2020; 63:5341-5359. [PMID: 32347094 DOI: 10.1021/acs.jmedchem.0c00102] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Invasive fungal infections (particularly candidiasis) are emerging as severe infectious diseases worldwide. Because of serious antifungal drug resistance, therapeutic efficacy of the current treatment for candidiasis is limited and associated with high mortality. However, it is highly challenging to develop novel strategies and effective therapeutic agents to combat drug resistance. Herein, the first generation of lanosterol 14α-demethylase (CYP51)-histone deacetylase (HDAC) dual inhibitors was designed, which exhibited potent antifungal activity against azole-resistant clinical isolates. In particular, compounds 12h and 15j were highly active both in vitro and in vivo to treat azole-resistant candidiasis. Antifungal mechanism studies revealed that they acted by blocking ergosterol biosynthesis and HDAC catalytic activity in fungus, suppressing the function of efflux pump, yeast-to-hypha morphological transition, and biofilm formation. Therefore, CYP51-HDAC dual inhibitors represent a promising strategy to develop novel antifungal agents against azole-resistant candidiasis.
Collapse
Affiliation(s)
- Guiyan Han
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Na Liu
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Chenglan Li
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China.,School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
| | - Jie Tu
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Zhuang Li
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Chunquan Sheng
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| |
Collapse
|