1
|
Stoup N, Liberelle M, Lebègue N, Van Seuningen I. Emerging paradigms and recent progress in targeting ErbB in cancers. Trends Pharmacol Sci 2024; 45:552-576. [PMID: 38797570 DOI: 10.1016/j.tips.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 05/29/2024]
Abstract
The epidermal growth factor receptor (EGFR) family is a class of transmembrane proteins, highly regarded as anticancer targets due to their pivotal role in various malignancies. Standard cancer treatments targeting the ErbB receptors include tyrosine kinase inhibitors (TKIs) and monoclonal antibodies (mAbs). Despite their substantial survival benefits, the achievement of curative outcomes is hindered by acquired resistance. Recent advancements in anti-ErbB approaches, such as inhibitory peptides, nanobodies, targeted-protein degradation strategies, and bispecific antibodies (BsAbs), aim to overcome such resistance. More recently, emerging insights into the cell surface interactome of the ErbB family open new avenues for modulating ErbB signaling by targeting specific domains of ErbB partners. Here, we review recent progress in ErbB targeting and elucidate emerging paradigms that underscore the significance of EGF domain-containing proteins (EDCPs) as new ErbB-targeting pathways.
Collapse
Affiliation(s)
- Nicolas Stoup
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Maxime Liberelle
- University of Lille, Inserm, CHU Lille, UMR-S 1172 - LiNC -Lille Neuroscience & Cognition, F-59000 Lille, France
| | - Nicolas Lebègue
- University of Lille, Inserm, CHU Lille, UMR-S 1172 - LiNC -Lille Neuroscience & Cognition, F-59000 Lille, France
| | - Isabelle Van Seuningen
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France.
| |
Collapse
|
2
|
Monti A, Vitagliano L, Caporale A, Ruvo M, Doti N. Targeting Protein-Protein Interfaces with Peptides: The Contribution of Chemical Combinatorial Peptide Library Approaches. Int J Mol Sci 2023; 24:7842. [PMID: 37175549 PMCID: PMC10178479 DOI: 10.3390/ijms24097842] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/22/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
Protein-protein interfaces play fundamental roles in the molecular mechanisms underlying pathophysiological pathways and are important targets for the design of compounds of therapeutic interest. However, the identification of binding sites on protein surfaces and the development of modulators of protein-protein interactions still represent a major challenge due to their highly dynamic and extensive interfacial areas. Over the years, multiple strategies including structural, computational, and combinatorial approaches have been developed to characterize PPI and to date, several successful examples of small molecules, antibodies, peptides, and aptamers able to modulate these interfaces have been determined. Notably, peptides are a particularly useful tool for inhibiting PPIs due to their exquisite potency, specificity, and selectivity. Here, after an overview of PPIs and of the commonly used approaches to identify and characterize them, we describe and evaluate the impact of chemical peptide libraries in medicinal chemistry with a special focus on the results achieved through recent applications of this methodology. Finally, we also discuss the role that this methodology can have in the framework of the opportunities, and challenges that the application of new predictive approaches based on artificial intelligence is generating in structural biology.
Collapse
Affiliation(s)
- Alessandra Monti
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), 80131 Napoli, Italy; (A.M.); (L.V.); (M.R.)
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), 80131 Napoli, Italy; (A.M.); (L.V.); (M.R.)
| | - Andrea Caporale
- Institute of Crystallography (IC), National Research Council (CNR), Strada Statale 14 km 163.5, Basovizza, 34149 Triese, Italy;
| | - Menotti Ruvo
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), 80131 Napoli, Italy; (A.M.); (L.V.); (M.R.)
| | - Nunzianna Doti
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), 80131 Napoli, Italy; (A.M.); (L.V.); (M.R.)
| |
Collapse
|
3
|
Robin V, Bodein A, Scott-Boyer MP, Leclercq M, Périn O, Droit A. Overview of methods for characterization and visualization of a protein-protein interaction network in a multi-omics integration context. Front Mol Biosci 2022; 9:962799. [PMID: 36158572 PMCID: PMC9494275 DOI: 10.3389/fmolb.2022.962799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/16/2022] [Indexed: 11/26/2022] Open
Abstract
At the heart of the cellular machinery through the regulation of cellular functions, protein-protein interactions (PPIs) have a significant role. PPIs can be analyzed with network approaches. Construction of a PPI network requires prediction of the interactions. All PPIs form a network. Different biases such as lack of data, recurrence of information, and false interactions make the network unstable. Integrated strategies allow solving these different challenges. These approaches have shown encouraging results for the understanding of molecular mechanisms, drug action mechanisms, and identification of target genes. In order to give more importance to an interaction, it is evaluated by different confidence scores. These scores allow the filtration of the network and thus facilitate the representation of the network, essential steps to the identification and understanding of molecular mechanisms. In this review, we will discuss the main computational methods for predicting PPI, including ones confirming an interaction as well as the integration of PPIs into a network, and we will discuss visualization of these complex data.
Collapse
Affiliation(s)
- Vivian Robin
- Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC, Canada
| | - Antoine Bodein
- Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC, Canada
| | - Marie-Pier Scott-Boyer
- Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC, Canada
| | - Mickaël Leclercq
- Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC, Canada
| | - Olivier Périn
- Digital Sciences Department, L'Oréal Advanced Research, Aulnay-sous-bois, France
| | - Arnaud Droit
- Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC, Canada
| |
Collapse
|
4
|
Deciphering the Host-Pathogen Interactome of the Wheat-Common Bunt System: A Step towards Enhanced Resilience in Next Generation Wheat. Int J Mol Sci 2022; 23:ijms23052589. [PMID: 35269732 PMCID: PMC8910311 DOI: 10.3390/ijms23052589] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/09/2022] [Indexed: 02/05/2023] Open
Abstract
Common bunt, caused by two fungal species, Tilletia caries and Tilletia laevis, is one of the most potentially destructive diseases of wheat. Despite the availability of synthetic chemicals against the disease, organic agriculture relies greatly on resistant cultivars. Using two computational approaches—interolog and domain-based methods—a total of approximately 58 M and 56 M probable PPIs were predicted in T. aestivum–T. caries and T. aestivum–T. laevis interactomes, respectively. We also identified 648 and 575 effectors in the interactions from T. caries and T. laevis, respectively. The major host hubs belonged to the serine/threonine protein kinase, hsp70, and mitogen-activated protein kinase families, which are actively involved in plant immune signaling during stress conditions. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of the host proteins revealed significant GO terms (O-methyltransferase activity, regulation of response to stimulus, and plastid envelope) and pathways (NF-kappa B signaling and the MAPK signaling pathway) related to plant defense against pathogens. Subcellular localization suggested that most of the pathogen proteins target the host in the plastid. Furthermore, a comparison between unique T. caries and T. laevis proteins was carried out. We also identified novel host candidates that are resistant to disease. Additionally, the host proteins that serve as transcription factors were also predicted.
Collapse
|
5
|
OUP accepted manuscript. Brief Funct Genomics 2022; 21:243-269. [DOI: 10.1093/bfgp/elac007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 11/14/2022] Open
|
6
|
Delplace F, Huard-Chauveau C, Berthomé R, Roby D. Network organization of the plant immune system: from pathogen perception to robust defense induction. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:447-470. [PMID: 34399442 DOI: 10.1111/tpj.15462] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/29/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
The plant immune system has been explored essentially through the study of qualitative resistance, a simple form of immunity, and from a reductionist point of view. The recent identification of genes conferring quantitative disease resistance revealed a large array of functions, suggesting more complex mechanisms. In addition, thanks to the advent of high-throughput analyses and system approaches, our view of the immune system has become more integrative, revealing that plant immunity should rather be seen as a distributed and highly connected molecular network including diverse functions to optimize expression of plant defenses to pathogens. Here, we review the recent progress made to understand the network complexity of regulatory pathways leading to plant immunity, from pathogen perception, through signaling pathways and finally to immune responses. We also analyze the topological organization of these networks and their emergent properties, crucial to predict novel immune functions and test them experimentally. Finally, we report how these networks might be regulated by environmental clues. Although system approaches remain extremely scarce in this area of research, a growing body of evidence indicates that the plant response to combined biotic and abiotic stresses cannot be inferred from responses to individual stresses. A view of possible research avenues in this nascent biology domain is finally proposed.
Collapse
Affiliation(s)
- Florent Delplace
- Laboratoire des Interactions Plantes-Microbes-Environnement, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, 31326, France
| | - Carine Huard-Chauveau
- Laboratoire des Interactions Plantes-Microbes-Environnement, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, 31326, France
| | - Richard Berthomé
- Laboratoire des Interactions Plantes-Microbes-Environnement, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, 31326, France
| | - Dominique Roby
- Laboratoire des Interactions Plantes-Microbes-Environnement, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, 31326, France
| |
Collapse
|
7
|
Wang X, Ni D, Liu Y, Lu S. Rational Design of Peptide-Based Inhibitors Disrupting Protein-Protein Interactions. Front Chem 2021; 9:682675. [PMID: 34017824 PMCID: PMC8128998 DOI: 10.3389/fchem.2021.682675] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/09/2021] [Indexed: 12/12/2022] Open
Abstract
Protein-protein interactions (PPIs) are well-established as a class of promising drug targets for their implications in a wide range of biological processes. However, drug development toward PPIs is inevitably hampered by their flat and wide interfaces, which generally lack suitable pockets for ligand binding, rendering most PPI systems "undruggable." Here, we summarized drug design strategies for developing peptide-based PPI inhibitors. Importantly, several quintessential examples toward well-established PPI targets such as Bcl-2 family members, p53-MDM2, as well as APC-Asef are presented to illustrate the detailed schemes for peptide-based PPI inhibitor development and optimizations. This review supplies a comprehensive overview of recent progresses in drug discovery targeting PPIs through peptides or peptidomimetics, and will shed light on future therapeutic agent development toward the historically "intractable" PPI systems.
Collapse
Affiliation(s)
- Xuefei Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Duan Ni
- The Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Yaqin Liu
- Medicinal Bioinformatics Center, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Shaoyong Lu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
- Medicinal Bioinformatics Center, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| |
Collapse
|