1
|
Liu N, Yang L, Yao X, Luo Y. From light to insight: Functional near-infrared spectroscopy for unravelling cognitive impairment during task performance. Biosci Trends 2025:2024.01362. [PMID: 39864831 DOI: 10.5582/bst.2024.01362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Cognitive impairment refers to the impairment of higher brain functions such as perception, thinking or memory that affects the individual's ability to perform daily or social activities. Studies have found that changes in neuronal activity during tasks in patients with cognitive impairment are closely related to changes in cerebral cortical hemodynamics. Functional near-infrared spectroscopy is an indirect method to measure neural activity based on changes in blood oxygen concentration in the cerebral cortex. Due to its strong anti-motion interference, high compatibility, and almost no restriction on participants and environment, it has shown great potential in the research field of cognitive impairment. Recognizing these benefits, this comprehensive review systematically elucidates the rationale, historical development, advantages and disadvantages of functional near-infrared spectroscopy, and also discusses the applications of combining functional near-infrared spectroscopy with other detection techniques. Additionally, this review summarized how functional near-infrared spectroscopy can be applied to cognitive impairment caused by different diseases, ultimately aiding the study of neural mechanisms of cognitive activities, which is crucial for the diagnosis, differentiation and treatment of cognitive impairment.
Collapse
Affiliation(s)
- Na Liu
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lingling Yang
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiuqing Yao
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Municipality Clinical Research Center for Geriatric Medicine, Chongqing, China
- Department of Rehabilitation Therapy, Chongqing Medical University, Chongqing, China
| | - Yaxi Luo
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
2
|
Bonnal J, Ozsancak C, Monnet F, Valery A, Prieur F, Auzou P. Neural Substrates for Hand and Shoulder Movement in Healthy Adults: A Functional near Infrared Spectroscopy Study. Brain Topogr 2023:10.1007/s10548-023-00972-x. [PMID: 37202647 DOI: 10.1007/s10548-023-00972-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/11/2023] [Indexed: 05/20/2023]
Abstract
Characterization of cortical activation patterns during movements in healthy adults may help our understanding of how the injured brain works. Upper limb motor tasks are commonly used to assess impaired motor function and to predict recovery in individuals with neurological disorders such as stroke. This study aimed to explore cortical activation patterns associated with movements of the hand and shoulder using functional near-infrared spectroscopy (fNIRS) and to demonstrate the potential of this technology to distinguish cerebral activation between distal and proximal movements. Twenty healthy, right-handed participants were recruited. Two 10-s motor tasks (right-hand opening-closing and right shoulder abduction-adduction) were performed in a sitting position at a rate of 0.5 Hz in a block paradigm. We measured the variations in oxyhemoglobin (HbO2) and deoxyhemoglobin (HbR) concentrations. fNIRS was performed with a 24-channel system (Brite 24®; Artinis) that covered most motor control brain regions bilaterally. Activation was mostly contralateral for both hand and shoulder movements. Activation was more lateral for hand movements and more medial for shoulder movements, as predicted by the classical homunculus representation. Both HbO2 and HbR concentrations varied with the activity. Our results showed that fNIRS can distinguish patterns of cortical activity in upper limb movements under ecological conditions. These results suggest that fNIRS can be used to measure spontaneous motor recovery and rehabilitation-induced recovery after brain injury. The trial was restropectively registered on January 20, 2023: NCT05691777 (clinicaltrial.gov).
Collapse
Affiliation(s)
- Julien Bonnal
- Service de Neurologie, Centre Hospitalier Universitaire d'Orléans, 14 Avenue de l'Hôpital, 45100, Orleans, France.
- CIAMS, Université Paris-Saclay, 91405, Orsay Cedex, France.
- CIAMS, Université d'Orléans, 45067, Orléans, France.
- SAPRéM, Université d'Orléans, Orléans, France.
| | - Canan Ozsancak
- Service de Neurologie, Centre Hospitalier Universitaire d'Orléans, 14 Avenue de l'Hôpital, 45100, Orleans, France
| | - Fanny Monnet
- Institut Denis Poisson, Bâtiment de mathématiques, Université d'Orléans, CNRS, Université de Tours, Institut Universitaire de France, Rue de Chartres, 45067, Orléans cedex 2, B.P. 6759, France
| | - Antoine Valery
- Département d'Informations Médicales, Centre Hospitalier Universitaire d'Orléans, 14 Avenue de l'Hôpital, 45100, Orleans, France
| | - Fabrice Prieur
- CIAMS, Université Paris-Saclay, 91405, Orsay Cedex, France
- CIAMS, Université d'Orléans, 45067, Orléans, France
- SAPRéM, Université d'Orléans, Orléans, France
| | - Pascal Auzou
- Service de Neurologie, Centre Hospitalier Universitaire d'Orléans, 14 Avenue de l'Hôpital, 45100, Orleans, France
| |
Collapse
|
3
|
Wróbel PP, Guder S, Feldheim JF, Graterol Pérez JA, Frey BM, Choe CU, Bönstrup M, Cheng B, Rathi Y, Pasternak O, Thomalla G, Gerloff C, Shenton ME, Schulz R. Altered microstructure of the contralesional ventral premotor cortex and motor output after stroke. Brain Commun 2023; 5:fcad160. [PMID: 37265601 PMCID: PMC10231803 DOI: 10.1093/braincomms/fcad160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 03/17/2023] [Accepted: 05/15/2023] [Indexed: 06/03/2023] Open
Abstract
Cortical thickness analyses have provided valuable insights into changes in cortical brain structure after stroke and their association with recovery. Across studies though, relationships between cortical structure and function show inconsistent results. Recent developments in diffusion-weighted imaging of the cortex have paved the way to uncover hidden aspects of stroke-related alterations in cortical microstructure, going beyond cortical thickness as a surrogate for cortical macrostructure. We re-analysed clinical and imaging data of 42 well-recovered chronic stroke patients from 2 independent cohorts (mean age 64 years, 4 left-handed, 71% male, 16 right-sided strokes) and 33 healthy controls of similar age and gender. Cortical fractional anisotropy and cortical thickness values were obtained for six key sensorimotor areas of the contralesional hemisphere. The regions included the primary motor cortex, dorsal and ventral premotor cortex, supplementary and pre-supplementary motor areas, and primary somatosensory cortex. Linear models were estimated for group comparisons between patients and controls and for correlations between cortical fractional anisotropy and cortical thickness and clinical scores. Compared with controls, stroke patients exhibited a reduction in fractional anisotropy in the contralesional ventral premotor cortex (P = 0.005). Fractional anisotropy of the other regions and cortical thickness did not show a comparable group difference. Higher fractional anisotropy of the ventral premotor cortex, but not cortical thickness, was positively associated with residual grip force in the stroke patients. These data provide novel evidence that the contralesional ventral premotor cortex might constitute a key sensorimotor area particularly susceptible to stroke-related alterations in cortical microstructure as measured by diffusion MRI and they suggest a link between these changes and residual motor output after stroke.
Collapse
Affiliation(s)
- Paweł P Wróbel
- Department of Neurology, University Medical Center
Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Stephanie Guder
- Department of Neurology, University Medical Center
Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Jan F Feldheim
- Department of Neurology, University Medical Center
Hamburg-Eppendorf, Hamburg 20251, Germany
| | - José A Graterol Pérez
- Department of Neurology, University Medical Center
Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Benedikt M Frey
- Department of Neurology, University Medical Center
Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Chi-un Choe
- Department of Neurology, University Medical Center
Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Marlene Bönstrup
- Department of Neurology, University Medical Center
Hamburg-Eppendorf, Hamburg 20251, Germany
- Department of Neurology, University Medical Center,
Leipzig 04103, Germany
| | - Bastian Cheng
- Department of Neurology, University Medical Center
Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Yogesh Rathi
- Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard
Medical School, Boston 02115, MA, USA
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical
School, Boston 02115, MA, USA
| | - Ofer Pasternak
- Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard
Medical School, Boston 02115, MA, USA
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical
School, Boston 02115, MA, USA
| | - Götz Thomalla
- Department of Neurology, University Medical Center
Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Christian Gerloff
- Department of Neurology, University Medical Center
Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Martha E Shenton
- Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard
Medical School, Boston 02115, MA, USA
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical
School, Boston 02115, MA, USA
| | - Robert Schulz
- Department of Neurology, University Medical Center
Hamburg-Eppendorf, Hamburg 20251, Germany
| |
Collapse
|
4
|
Kosugi A, Saga Y, Kudo M, Koizumi M, Umeda T, Seki K. Time course of recovery of different motor functions following a reproducible cortical infarction in non-human primates. Front Neurol 2023; 14:1094774. [PMID: 36846141 PMCID: PMC9947718 DOI: 10.3389/fneur.2023.1094774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/12/2023] [Indexed: 02/11/2023] Open
Abstract
A major challenge in human stroke research is interpatient variability in the extent of sensorimotor deficits and determining the time course of recovery following stroke. Although the relationship between the extent of the lesion and the degree of sensorimotor deficits is well established, the factors determining the speed of recovery remain uncertain. To test these experimentally, we created a cortical lesion over the motor cortex using a reproducible approach in four common marmosets, and characterized the time course of recovery by systematically applying several behavioral tests before and up to 8 weeks after creation of the lesion. Evaluation of in-cage behavior and reach-to-grasp movement revealed consistent motor impairments across the animals. In particular, performance in reaching and grasping movements continued to deteriorate until 4 weeks after creation of the lesion. We also found consistent time courses of recovery across animals for in-cage and grasping movements. For example, in all animals, the score for in-cage behaviors showed full recovery at 3 weeks after creation of the lesion, and the performance of grasping movement partially recovered from 4 to 8 weeks. In addition, we observed longer time courses of recovery for reaching movement, which may rely more on cortically initiated control in this species. These results suggest that different recovery speeds for each movement could be influenced by what extent the cortical control is required to properly execute each movement.
Collapse
Affiliation(s)
- Akito Kosugi
- Department of Neurophysiology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yosuke Saga
- Department of Neurophysiology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Moeko Kudo
- Department of Neurophysiology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Masashi Koizumi
- Department of Neurophysiology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Tatsuya Umeda
- Department of Neurophysiology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan,Department of Integrated Neuroanatomy and Neuroimaging, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kazuhiko Seki
- Department of Neurophysiology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan,*Correspondence: Kazuhiko Seki ✉
| |
Collapse
|
5
|
Matsuda K, Nagasaka K, Kato J, Takashima I, Higo N. Structural plasticity of motor cortices assessed by voxel-based morphometry and immunohistochemical analysis following internal capsular infarcts in macaque monkeys. Cereb Cortex Commun 2022; 3:tgac046. [PMID: 36457456 PMCID: PMC9706438 DOI: 10.1093/texcom/tgac046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 12/23/2023] Open
Abstract
Compensatory plastic changes in the remaining intact brain regions are supposedly involved in functional recovery following stroke. Previously, a compensatory increase in cortical activation occurred in the ventral premotor cortex (PMv), which contributed to the recovery of dexterous hand movement in a macaque model of unilateral internal capsular infarcts. Herein, we investigated the structural plastic changes underlying functional changes together with voxel-based morphometry (VBM) analysis of magnetic resonance imaging data and immunohistochemical analysis using SMI-32 antibody in a macaque model. Unilateral internal capsular infarcts were pharmacologically induced in 5 macaques, and another 5 macaques were used as intact controls for immunohistochemical analysis. Three months post infarcts, we observed significant increases in the gray matter volume (GMV) and the dendritic arborization of layer V pyramidal neurons in the contralesional rostral PMv (F5) as well as the primary motor cortex (M1). The histological analysis revealed shrinkage of neuronal soma and dendrites in the ipsilesional M1 and several premotor cortices, despite not always detecting GMV reduction by VBM analysis. In conclusion, compensatory structural changes occur in the contralesional F5 and M1 during motor recovery following internal capsular infarcts, and the dendritic growth of pyramidal neurons is partially correlated with GMV increase.
Collapse
Affiliation(s)
- Kohei Matsuda
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 3058568, Japan
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki 3058577, Japan
| | - Kazuaki Nagasaka
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 3058568, Japan
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata 9503198, Japan
- Department of Physical Therapy, Faculty of Rehabilitation, Niigata University of Health and Welfare, Niigata 9503198, Japan
| | - Junpei Kato
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 3058568, Japan
- Faculty of Medicine, University of Tsukuba, Ibaraki 3058577, Japan
| | - Ichiro Takashima
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 3058568, Japan
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki 3058577, Japan
| | - Noriyuki Higo
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 3058568, Japan
| |
Collapse
|
6
|
Higo N. Motor Cortex Plasticity During Functional Recovery Following Brain Damage. JOURNAL OF ROBOTICS AND MECHATRONICS 2022. [DOI: 10.20965/jrm.2022.p0700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although brain damage causes functional impairment, it is often followed by partial or total recovery of function. Recovery is believed to occur primarily because of brain plasticity. Both human and animal studies have significantly contributed to uncovering the neuronal basis of plasticity. Recent advances in brain imaging technology have enabled the investigation of plastic changes in living human brains. In addition, animal experiments have revealed detailed changes at the neural and genetic levels. In this review, plasticity in motor-related areas of the cerebral cortex, which is one of the most well-studied areas of the neocortex in terms of plasticity, is reviewed. In addition, the potential of technological interventions to enhance plasticity and promote functional recovery following brain damage is discussed. Novel neurorehabilitation technologies are expected to be established based on the emerging research on plasticity from the last several decades.
Collapse
|
7
|
Higo N. Non-human Primate Models to Explore the Adaptive Mechanisms After Stroke. Front Syst Neurosci 2021; 15:760311. [PMID: 34819842 PMCID: PMC8606408 DOI: 10.3389/fnsys.2021.760311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/20/2021] [Indexed: 01/15/2023] Open
Abstract
The brain has the ability to reconstruct neural structures and functions to compensate for the brain lesions caused by stroke, although it is highly limited in primates including humans. Animal studies in which experimental lesions were induced in the brain have contributed to the current understanding of the neural mechanisms underlying functional recovery. Here, I have highlighted recent advances in non-human primate models using primate species such as macaques and marmosets, most of which have been developed to study the mechanisms underlying the recovery of motor functions after stroke. Cortical lesion models have been used to investigate motor recovery after lesions to the cortical areas involved in movements of specific body parts. Models of a focal stroke at the posterior internal capsule have also been developed to bridge the gap between the knowledge obtained by cortical lesion models and the development of intervention strategies because the severity and outcome of motor deficits depend on the degree of lesions to the region. This review will also introduce other stroke models designed to study the plastic changes associated with development and recovery from cognitive and sensory impairments. Although further validation and careful interpretation are required, considering the differences between non-human primate brains and human brains, studies using brain-lesioned non-human primates offer promise for improving translational outcomes.
Collapse
Affiliation(s)
- Noriyuki Higo
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| |
Collapse
|
8
|
Ishii D, Ishibashi K, Takeda K, Yuine H, Yamamoto S, Kaku Y, Yozu A, Kohno Y. Interaction of the Left-Right Somatosensory Pathways in Patients With Thalamic Hemorrhage: A Case Report. Front Hum Neurosci 2021; 15:761186. [PMID: 34790107 PMCID: PMC8591027 DOI: 10.3389/fnhum.2021.761186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/12/2021] [Indexed: 11/23/2022] Open
Abstract
Neural plasticity compensates for the loss of motor function after stroke. However, whether neural plasticity occurs in the somatosensory pathways after stroke is unknown. We investigated the left–right somatosensory interaction in two hemorrhagic patients using a paired somatosensory evoked potentials (p-SEPs) recorded at CP3 and CP4, which was defined as an amplitude difference between the SEPs of paired median nerve stimulations to both sides and that of single stimulation to the affected side. Patient 1 (61-year-old, left thalamic hemorrhage) has a moderate motor impairment, severe sensory deficit, and complained of pain in the affected right upper limb. Patient 2 (72-year-old, right thalamic hemorrhage) had slight motor and sensory impairments with no complaints of pain. Single SEPs (s-SEPs) were obtained by stimulation of the right and left median nerves, respectively. For paired stimulations, 1 ms after the first stimulation to the non-affected side, followed by a second stimulation to the affected side. In patient 1, a s-SEP with stimulation to the non-affected side and a p-SEP were observed in CP4. However, a s-SEP was not observed in either hemisphere with stimulation to the affected side. On the other hand, in patient 2, a s-SEP in CP3 with stimulation to the non-affected side and in CP4 with stimulation to the affected side were observed; however, a p-SEP was not observed. In addition, to investigate the mechanism by which ipsilateral median nerve stimulation enhances contralateral p-SEP in patient 1, we compared the SEP averaged over the first 250 epochs with the SEP averaged over the second 250 epochs (total number of epochs recorded: 500). The results showed that in the patient 1, when the bilateral median nerve was stimulated continuously, the habituation did not occur and the response was larger than that of the s-SEP with unilateral median nerve stimulation. In the current case report, the damage to the thalamus may cause neuroplasticity in terms of the left–right interaction (e.g., left and right S1). The somatosensory input from the affected side may interfere with the habituation of the contralateral somatosensory system and conversely increase the response.
Collapse
Affiliation(s)
- Daisuke Ishii
- Center for Medical Sciences, Ibaraki Prefectural University of Health Sciences, Inashiki-gun, Japan.,Department of Cognitive Behavioral Physiology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Kiyoshige Ishibashi
- Department of Physical Therapy, Ibaraki Prefectural University of Health Sciences Hospital, Inashiki-gun, Japan
| | - Kotaro Takeda
- Faculty of Rehabilitation, School of Healthcare, Fujita Health University, Toyoake, Japan
| | - Hiroshi Yuine
- Department of Occupational Therap, School of Health Sciences, Ibaraki Prefectural University of Health Sciences, Inashiki-gun, Japan
| | - Satoshi Yamamoto
- Department of Physical Therapy, School of Health Sciences, Ibaraki Prefectural University of Health Sciences, Inashiki-gun, Japan
| | - Yuki Kaku
- Center for Medical Sciences, Ibaraki Prefectural University of Health Sciences, Inashiki-gun, Japan
| | - Arito Yozu
- Center for Medical Sciences, Ibaraki Prefectural University of Health Sciences, Inashiki-gun, Japan
| | - Yutaka Kohno
- Center for Medical Sciences, Ibaraki Prefectural University of Health Sciences, Inashiki-gun, Japan
| |
Collapse
|
9
|
Hayashi R, Yamashita O, Yamada T, Kawaguchi H, Higo N. Diffuse Optical Tomography Using fNIRS Signals Measured from the Skull Surface of the Macaque Monkey. Cereb Cortex Commun 2021; 3:tgab064. [PMID: 35072075 PMCID: PMC8767783 DOI: 10.1093/texcom/tgab064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 11/29/2022] Open
Abstract
Diffuse optical tomography (DOT), as a functional near-infrared spectroscopy (fNIRS) technique, can estimate three-dimensional (3D) images of the functional hemodynamic response in brain volume from measured optical signals. In this study, we applied DOT algorithms to the fNIRS data recorded from the surface of macaque monkeys’ skulls when the animals performed food retrieval tasks using either the left- or right-hand under head-free conditions. The hemodynamic response images, reconstructed by DOT with a high sampling rate and fine voxel size, demonstrated significant activations at the upper limb regions of the primary motor area in the central sulcus and premotor, and parietal areas contralateral to the hands used in the tasks. The results were also reliable in terms of consistency across different recording dates. Time-series analyses of each brain area revealed preceding activity of premotor area to primary motor area consistent with previous physiological studies. Therefore, the fNIRS–DOT protocol demonstrated in this study provides reliable 3D functional brain images over a period of days under head-free conditions for region-of-interest–based time-series analysis.
Collapse
Affiliation(s)
- Ryusuke Hayashi
- Neurorehabilitation Research Group, Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba-shi, Ibaraki 305-8568, Japan
| | - Okito Yamashita
- Computational Brain Dynamics Team, Center for Advanced Intelligence Project, RIKEN, Nihonbashi 1-chome Mitsui Building, 15th floor, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
- Neural Information Analysis Laboratories, Department of Computational Brain Imaging, ATR, 2-2-2 Hikaridai Seika-cho, Sorakugun, Kyoto 619-0288, Japan
| | - Toru Yamada
- Neurorehabilitation Research Group, Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba-shi, Ibaraki 305-8568, Japan
| | - Hiroshi Kawaguchi
- Neurorehabilitation Research Group, Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba-shi, Ibaraki 305-8568, Japan
| | - Noriyuki Higo
- Neurorehabilitation Research Group, Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba-shi, Ibaraki 305-8568, Japan
| |
Collapse
|
10
|
Bartolomeo P. From competition to cooperation: Visual neglect across the hemispheres. Rev Neurol (Paris) 2021; 177:1104-1111. [PMID: 34561121 DOI: 10.1016/j.neurol.2021.07.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/23/2021] [Indexed: 12/13/2022]
Abstract
Visuospatial neglect is a frequent and disabling consequence of injuries to the right hemisphere. Patients with neglect show signs of impaired attention for left-sided events, which depends on dysfunction of fronto-parietal networks. After unilateral injury, such as stroke, these networks and their contralateral homologs can reorganize following multiple potential trajectories, which can be either adaptive or maladaptive. This article presents possible factors influencing the profile of evolution of neglect towards recovery or chronicity, and highlights potential mechanisms that may constrain these processes in time and space. The integrity of white matter pathways within and between the hemisphere appears to pose crucial connectivity constraints for compensatory brain plasticity from remote brain regions. Specifically, the availability of a sufficient degree of inter-hemispheric connectivity might be critical to shift the role of the undamaged left hemisphere in spatial neglect, from exerting maladaptive effects, to promoting compensatory activity.
Collapse
Affiliation(s)
- P Bartolomeo
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, hôpital de la Pitié-Salpêtrière, 75013 Paris, France.
| |
Collapse
|
11
|
Ishii D, Ishibashi K, Yuine H, Takeda K, Yamamoto S, Kaku Y, Yozu A, Kohno Y. Contralateral and Ipsilateral Interactions in the Somatosensory Pathway in Healthy Humans. Front Syst Neurosci 2021; 15:698758. [PMID: 34483851 PMCID: PMC8415971 DOI: 10.3389/fnsys.2021.698758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/26/2021] [Indexed: 11/17/2022] Open
Abstract
Hyper-adaptability, the ability to adapt to changes in the internal environment caused by neurological disorders, is necessary to recover from various disabilities, such as motor paralysis and sensory impairment. In the recovery from motor paralysis, the pre-existing neural pathway of the ipsilateral descending pathway, which is normally suppressed and preserved in the course of development, is activated to contribute to the motor control of the paretic limb. Conversely, in sensory pathways, it remains unclear whether there are compensatory pathways which are beneficial for the recovery of sensory impairment due to damaged unilateral somatosensory pathways, such as thalamic hemorrhage. Here, we investigated the interaction between the left and right somatosensory pathways in healthy humans using paired median nerve somatosensory evoked potentials (SEPs). Paired median nerve SEPs were recorded at CP3 and CP4 with a reference of Fz in the International 10–20 System. The paired median nerve stimulation with different interstimulus intervals (ISIs; 1, 2, 3, 5, 10, 20, 40, 60, and 100 ms) was performed to test the influence of the first stimulus (to the right median nerve) on the P14, P14/N20, and N20/P25 components induced by the second stimulus (left side). Results showed that the first stimulation had no effect on SEP amplitudes (P14, P14/N20, and N20/P25) evoked by the second stimulation in all ISI conditions, suggesting that there might not be a neural connectivity formed by a small number of synapses in the left–right interaction of the somatosensory pathway. Additionally, the somatosensory pathway may be less diverse in healthy participants.
Collapse
Affiliation(s)
- Daisuke Ishii
- Center for Medical Sciences, Ibaraki Prefectural University of Health Sciences, Ami, Japan.,Department of Cognitive Behavioral Physiology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Kiyoshige Ishibashi
- Department of Physical Therapy, Ibaraki Prefectural University of Health Sciences Hospital, Ami, Japan
| | - Hiroshi Yuine
- Department of Occupational Therapy, School of Health Sciences, Ibaraki Prefectural University of Health Sciences, Ami, Japan
| | - Kotaro Takeda
- Faculty of Rehabilitation, School of Healthcare, Fujita Health University, Toyoake, Japan
| | - Satoshi Yamamoto
- Department of Physical Therapy, School of Health Sciences, Ibaraki Prefectural University of Health Sciences, Ami, Japan
| | - Yuki Kaku
- Center for Medical Sciences, Ibaraki Prefectural University of Health Sciences, Ami, Japan
| | - Arito Yozu
- Center for Medical Sciences, Ibaraki Prefectural University of Health Sciences, Ami, Japan
| | - Yutaka Kohno
- Center for Medical Sciences, Ibaraki Prefectural University of Health Sciences, Ami, Japan
| |
Collapse
|
12
|
Ishii D, Osaki H, Yozu A, Ishibashi K, Kawamura K, Yamamoto S, Miyata M, Kohno Y. Ipsilesional spatial bias after a focal cerebral infarction in the medial agranular cortex: A mouse model of unilateral spatial neglect. Behav Brain Res 2020; 401:113097. [PMID: 33385423 DOI: 10.1016/j.bbr.2020.113097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 12/22/2020] [Accepted: 12/22/2020] [Indexed: 10/22/2022]
Abstract
Unilateral spatial neglect is a disorder of higher brain function that occurs after a brain injury, such as stroke, traumatic brain injury, brain tumor, and surgical procedures etc., and leads to failure to attend or respond to stimuli presented to the side contralateral to the lesioned cerebral hemisphere. Because patients with this condition often have other symptoms due to the presence of several brain lesions, it is difficult to evaluate the recovery mechanisms and effect of training on unilateral spatial neglect. In this study, a mouse model of unilateral spatial neglect was created to investigate whether the size of the lesion is related to the severity of ipsilesional spatial bias and the recovery process. Focal infarction was induced in the right medial agranular cortex (AGm) of mice via photothrombosis. After induction of cerebral infarction, ipsilesional spatial bias was evaluated for 9 consecutive days. The major findings were as follows: (1) unilateral local infarction of the AGm resulted in ipsilateral bias during internally guided decision-making; (2) the lesion size was correlated with the degree of impairment rather than slight differences in the lesion site; and (3) mice with anterior AGm lesions experienced lower recovery rates. These findings suggest that recovery from ipsilesional spatial bias requires neural plasticity within the anterior AGm. This conditional mouse model of ipsilesional spatial bias may be used to develop effective treatments for unilateral spatial neglect in humans.
Collapse
Affiliation(s)
- Daisuke Ishii
- Center for Medical Sciences, Ibaraki Prefectural University of Health Sciences, Ibaraki, Japan; Department of Cognitive Behavioral Physiology, Chiba University Graduate School of Medicine, Chiba, Japan.
| | - Hironobu Osaki
- Department of Physiology (Neurophysiology), School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Arito Yozu
- Center for Medical Sciences, Ibaraki Prefectural University of Health Sciences, Ibaraki, Japan; Department of Precision Engineering, The University of Tokyo, Tokyo, Japan
| | - Kiyoshige Ishibashi
- Department of Physical Therapy, Ibaraki Prefectural University of Health Sciences Hospital, Ibaraki, Japan
| | - Kenta Kawamura
- Department of Physical Therapy, Ibaraki Prefectural University of Health Sciences, Ibaraki, Japan
| | - Satoshi Yamamoto
- Department of Physical Therapy, Ibaraki Prefectural University of Health Sciences, Ibaraki, Japan
| | - Mariko Miyata
- Department of Physiology (Neurophysiology), School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Yutaka Kohno
- Center for Medical Sciences, Ibaraki Prefectural University of Health Sciences, Ibaraki, Japan
| |
Collapse
|