1
|
Koli P, Agarwal M, Kessell D, Mahawar S, Du X, Ren Y, McKirdy SJ. Metabolite Profiling of Annual Ryegrass Cultivars to Assess Disease Resistance and Susceptibility. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24944-24952. [PMID: 39486421 PMCID: PMC11565740 DOI: 10.1021/acs.jafc.4c03986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 11/04/2024]
Abstract
Direct immersion solid-phase microextraction coupled with gas chromatography-mass spectroscopy was used to create chemical fingerprints of annual ryegrass cultivars (Lolium rigidum). Extracts made of the inflorescences of four cultivars and one accession of annual ryegrass were assessed to identify differential metabolites between those resistant to and susceptible to bacterial galls associated with annual ryegrass toxicity (ARGT). Numerous compounds were identified. Principal component analysis showed distinct clustering of metabolites from disease-resistant and disease-susceptible cultivars. Partial least-squares-discriminant analysis identified sterols, esters, aldehydes, and terpenes that correlated with resistance to galls formation. Esters, sterols, phenols, heterocyclics, fatty acids, organofluorides, and siloxanes were predominant in resistant genotypes, whereas alcohols, aldehydes, terpenes, and hydrocarbons were predominant in susceptible genotypes. The identification of differentially expressed metabolites provides potential chemical markers to guide breeding strategies for ARGT resistance in ryegrass.
Collapse
Affiliation(s)
- Pushpendra Koli
- Harry
Butler Institute, Murdoch University, Perth 6150, Australia
- Indian
Council of Agricultural Research—Indian Grassland and Fodder
Research Institute, Jhansi 284003, India
- College
of Environmental and Life Sciences, Murdoch
University, Perth 6150, Australia
| | - Manjree Agarwal
- Scientific
Service Division, ChemCentre, Perth 6102, Australia
| | - David Kessell
- Department
of Primary Industries and Regional Development, Perth 6151, Australia
| | - Shalini Mahawar
- College
of Environmental and Life Sciences, Murdoch
University, Perth 6150, Australia
| | - Xin Du
- Harry
Butler Institute, Murdoch University, Perth 6150, Australia
| | - Yonglin Ren
- Harry
Butler Institute, Murdoch University, Perth 6150, Australia
- College
of Environmental and Life Sciences, Murdoch
University, Perth 6150, Australia
| | - Simon J. McKirdy
- Harry
Butler Institute, Murdoch University, Perth 6150, Australia
| |
Collapse
|
2
|
Woźniczka K, Trojan V, Urbanowicz K, Schreiber P, Zadrożna J, Bączek T, Smoleński RT, Roszkowska A. In vivo profiling of phytocannabinoids in Cannabis spp. varieties via SPME-LC-MS analysis. Anal Chim Acta 2024; 1306:342621. [PMID: 38692790 DOI: 10.1016/j.aca.2024.342621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/19/2024] [Accepted: 04/17/2024] [Indexed: 05/03/2024]
Abstract
BACKGROUND In vivo solid-phase microextraction (SPME) is a minimally invasive, non-exhaustive sample-preparation technique that facilitates the direct isolation of low molecular weight compounds from biological matrices in living systems. This technique is especially useful for the analysis of phytocannabinoids (PCs) in plant material, both for forensic purposes and for monitoring the PC content in growing Cannabis spp. plants. In contrast to traditional extraction techniques, in vivo SPME enables continuous tracking of the changes in the level of PCs during plant growth without the need for plant material collection. In this study, in vivo SPME utilizing biocompatible C18 probes and liquid-chromatography coupled to quadrupole time-of flight mass spectrometry (LC-Q-TOF-MS) is proposed as a novel strategy for the extraction and analysis of the acidic forms of five PCs in growing medicinal cannabis plants. RESULTS The SPME method was optimized by testing various parameters, including the extraction phase (coating), extraction and desorption times, and the extraction temperature. The proposed method was validated with satisfactory analytical performance regarding linearity (10-3000 ng/mL), limits of quantification, and precision (relative standard deviations below 5.5 %). The proposed method was then successfully applied for the isolation of five acidic forms of PCs, which are main components of growing medicinal cannabis plants. As a proof-of-concept, SPME probes were statically inserted into the inflorescences of two varieties of Cannabis spp. plants (i.e., CBD-dominant and Δ9-THC-dominant) cultivated under controlled conditions for 30 min extraction of tetrahydrocannabinolic acid (Δ9-THCA), cannabidiolic acid (CBDA), cannabigerolic acid (CBGA), cannabiviarinic acid (CBVA), and tetrahydrocannabivarinic acid (THCVA). SIGNIFICANCE AND NOVELTY The results confirmed that the developed SPME-LC-Q-TOF-MS method is a precise and efficient tool that enables direct and rapid isolation and analysis of PCs under in vivo conditions. The proposed methodology is highly appealing option for monitoring the metabolic pathways and compositions of multiple PCs in medicinal cannabis at different stages of plant growth.
Collapse
Affiliation(s)
- Katarzyna Woźniczka
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Hallera 107, 80-416, Gdańsk, Poland
| | - Václav Trojan
- Cannabis Facility, International Clinical Research Centre, St. Anne's University Hospital, Pekarská 53, 60200, Brno, Czech Republic; Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, Palackého 1946/1, 61200, Brno, Czech Republic
| | - Krzysztof Urbanowicz
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdańsk, Dębinki 1, 80-211, Gdańsk, Poland
| | - Patrik Schreiber
- Cannabis Facility, International Clinical Research Centre, St. Anne's University Hospital, Pekarská 53, 60200, Brno, Czech Republic
| | - Julia Zadrożna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Hallera 107, 80-416, Gdańsk, Poland
| | - Tomasz Bączek
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Hallera 107, 80-416, Gdańsk, Poland
| | - Ryszard Tomasz Smoleński
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdańsk, Dębinki 1, 80-211, Gdańsk, Poland
| | - Anna Roszkowska
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Hallera 107, 80-416, Gdańsk, Poland.
| |
Collapse
|
3
|
Li N, Zhang Z, Li G. Recent advance on microextraction sampling technologies for bioanalysis. J Chromatogr A 2024; 1720:464775. [PMID: 38452559 DOI: 10.1016/j.chroma.2024.464775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/14/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024]
Abstract
The contents of target substances in biological samples are usually at low concentration levels, and the matrix of biological samples is usually complex. Sample preparation is considered a very critical step in bioanalysis. At present, the utilization of microextraction sampling technology has gained considerable prevalence in the realm of biological analysis. The key developments in this field focus on the efficient microextraction media and the miniaturization and automation of adaptable sample preparation methods currently. In this review, the recent progress on the microextraction sampling technologies for bioanalysis has been introduced from point of view of the preparation of microextraction media and the microextraction sampling strategies. The advance on the microextraction media was reviewed in detail, mainly including the aptamer-functionalized materials, molecularly imprinted polymers, carbon-based materials, metal-organic frameworks, covalent organic frameworks, etc. The advance on the microextraction sampling technologies was summarized mainly based on in-vivo sampling, in-vitro sampling and microdialysis technologies. Moreover, the current challenges and perspective on the future trends of microextraction sampling technologies for bioanalysis were briefly discussed.
Collapse
Affiliation(s)
- Na Li
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhuomin Zhang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China.
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
4
|
Spadafora ND, Eggermont D, Křešťáková V, Chenet T, Van Rossum F, Purcaro G. Comprehensive analysis of floral scent and fatty acids in nectar of Silene nutans through modern analytical gas chromatography techniques. J Chromatogr A 2023; 1696:463977. [PMID: 37054636 DOI: 10.1016/j.chroma.2023.463977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 04/15/2023]
Abstract
The aim of this work was to show the potential of multidimensional gas chromatography combined with mass spectrometry and suitable chemometrics means based on untargeted and profiling data analysis to strengthen the information provided by floral scent and nectar fatty acids of four genetically differentiated lineages (E1, W1, W2, and W3) of the nocturnal moth-pollinated herb Silene nutans. Volatile organic compounds emitted by flowers were trapped for a total of 42 samples by in-vivo sampling dynamic head space for analysing floral scent by untargeted approach, while 37 samples of nectar were collected for analysing fatty acids through profiling analysis. The resulting data from floral scent analysis were aligned and compared using a tile-based methodology followed by data mining to access high-level information. Based on floral scent and nectar fatty acid results, it was possible to distinguish E1 from the W lineages, and W3 from W1 and W2. This work puts the bases for a larger study aiming to clarify the existence of prezygotic barriers involved in speciation among lineages of S. nutans, and thus the possible implication of different flower scents and nectar compositions in this phenomenon.
Collapse
Affiliation(s)
- Natasha Damiana Spadafora
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Damien Eggermont
- Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, Gembloux, 5030, Belgium
| | - Veronika Křešťáková
- Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, Gembloux, 5030, Belgium; Department of Biochemistry, Faculty of Science, Masaryk University, 32500, Brno, Czech Republic
| | - Tatiana Chenet
- Department of Environment and Prevention Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Fabienne Van Rossum
- Meise Botanic Garden, Nieuwelaan 38, 1860, Meise, Belgium; Service général de l'Enseignement supérieur et de la Recherche scientifique, Fédération Wallonie-Bruxelles, rue A. Lavallée 1, 1080, Brussels, Belgium
| | - Giorgia Purcaro
- Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, Gembloux, 5030, Belgium.
| |
Collapse
|
5
|
Mirabelli MF. Direct Coupling of SPME to Mass Spectrometry. EVOLUTION OF SOLID PHASE MICROEXTRACTION TECHNOLOGY 2023:290-314. [DOI: 10.1039/bk9781839167300-00290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Solid-phase microextraction devices are normally analyzed by gas or liquid chromatography. Their use has become increasingly widespread since their introduction in 1990, and nowadays most analytical laboratories use or have used SPME as an efficient and green method to perform analyte extraction and sample clean-up in one step. The SPME technique is intrinsically flexible, and allows for a high degree of optimization with regard to the extracting phase, as well as the way sample is analyzed. Since its introduction, researchers have been trying different ways to transfer analytes extracted from the solid phase to a mass spectrometer, with the aim to increase throughput and reduce solvent, gas usage and costs associated with conventional chromatographic techniques. Furthermore, but not less important, for pure fun of developing new, more efficient and sensitive analytical strategies! This chapter aims at providing a comprehensive overview of the most relevant non-chromatographic mass spectrometric approaches developed for SPME. Technical aspects of each SPME-MS approach will be discussed, highlighting their advantages, disadvantages and future potential developments. Particular emphasis will be given on the most recent direct coupling approaches using novel ionization approaches, and a concise overview of the existing applications will also be provided.
Collapse
|
6
|
Nolvachai Y, Amaral MSS, Marriott PJ. Foods and Contaminants Analysis Using Multidimensional Gas Chromatography: An Update of Recent Studies, Technology, and Applications. Anal Chem 2023; 95:238-263. [PMID: 36625115 DOI: 10.1021/acs.analchem.2c04680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Yada Nolvachai
- Australian Centre for Research on Separation Science, School of Chemistry, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Michelle S S Amaral
- Australian Centre for Research on Separation Science, School of Chemistry, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Philip J Marriott
- Australian Centre for Research on Separation Science, School of Chemistry, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| |
Collapse
|
7
|
Biochemical characterization of apple slices dried using low temperature and stored in modified atmosphere packaging. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Li J, Yan G, Duan X, Zhang K, Zhang X, Zhou Y, Wu C, Zhang X, Tan S, Hua X, Wang J. Research Progress and Trends in Metabolomics of Fruit Trees. FRONTIERS IN PLANT SCIENCE 2022; 13:881856. [PMID: 35574069 PMCID: PMC9106391 DOI: 10.3389/fpls.2022.881856] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/01/2022] [Indexed: 06/15/2023]
Abstract
Metabolomics is an indispensable part of modern systems biotechnology, applied in the diseases' diagnosis, pharmacological mechanism, and quality monitoring of crops, vegetables, fruits, etc. Metabolomics of fruit trees has developed rapidly in recent years, and many important research results have been achieved in combination with transcriptomics, genomics, proteomics, quantitative trait locus (QTL), and genome-wide association study (GWAS). These research results mainly focus on the mechanism of fruit quality formation, metabolite markers of special quality or physiological period, the mechanism of fruit tree's response to biotic/abiotic stress and environment, and the genetics mechanism of fruit trait. According to different experimental purposes, different metabolomic strategies could be selected, such as targeted metabolomics, non-targeted metabolomics, pseudo-targeted metabolomics, and widely targeted metabolomics. This article presents metabolomics strategies, key techniques in metabolomics, main applications in fruit trees, and prospects for the future. With the improvement of instruments, analysis platforms, and metabolite databases and decrease in the cost of the experiment, metabolomics will prompt the fruit tree research to achieve more breakthrough results.
Collapse
Affiliation(s)
- Jing Li
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin, China
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing, China
| | - Guohua Yan
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing, China
| | - Xuwei Duan
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing, China
| | - Kaichun Zhang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing, China
| | - Xiaoming Zhang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing, China
| | - Yu Zhou
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing, China
| | - Chuanbao Wu
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing, China
| | - Xin Zhang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing, China
| | - Shengnan Tan
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin, China
- Analysis and Test Center, Northeast Forestry University, Harbin, China
| | - Xin Hua
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Jing Wang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing, China
| |
Collapse
|
9
|
Shu N, Chen X, Sun X, Cao X, Liu Y, Xu YJ. Metabolomics identify landscape of food sensory properties. Crit Rev Food Sci Nutr 2022; 63:8478-8488. [PMID: 35435783 DOI: 10.1080/10408398.2022.2062698] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Sensory evaluation is a key component of food production strategy. The classical food sensory evaluation method is time-consuming, laborious, costly, and highly subjective. Since flavor (taste and smell), texture, and mouthfeel are all related to the chemical properties of food, there has been a growing interest in how they affect the senses of food. In the past decades, emerging metabolomics has received much attention in the field of sensory evaluation, because it not only offers a broad picture of chemical composition for sensory properties but also revealed their changes and functions in food proceeding. This article reviewed food chemicals regarding the flavor, smell, and texture of foods, and discussed the advantages and limitations of applying metabolomics approaches to sensory evaluation, including GC-MS, LC-MS, and NMR. Taken together, this review gives a comprehensive, critical overview of the current state, future challenges, and trends in metabolomics on food sensory properties.
Collapse
Affiliation(s)
- Nanxi Shu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Function Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, China
| | - Xiaoying Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Function Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, China
| | - Xian Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Function Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, China
| | - Xinyu Cao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Function Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, China
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Function Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, China
| | - Yong-Jiang Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Function Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, China
| |
Collapse
|
10
|
Quantitatively unravelling the effect of altitude of cultivation on the volatiles fingerprint of wheat by a chemometric approach. Food Chem 2022; 370:131296. [PMID: 34788956 DOI: 10.1016/j.foodchem.2021.131296] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/26/2021] [Accepted: 09/29/2021] [Indexed: 11/23/2022]
Abstract
The cultivation of crops at high elevations in response to climate changes leads to modifications in the volatile organic compounds (VOCs) profile. The VOCs profile of common and durum wheat grown in different fields sited at three different elevations over two years was analysed. Partial least square analysis (PLS2) evidenced the effect of altitude on VOCs variance that was hidden among others (cultivation year, species, farm) not correlated with it. PLS1 analysis was further carried out using VOCs as explanatory variables and altitude as dependent variable to find the linear combination of VOCs able to continuously predict the altitude of samples. Selected VOCs, related to biotic, abiotic and oxidative stress conditions, could describe the changes in VOCs profile of wheat induced by altitude increase. Furthermore, common and durum wheat showed different responses to stress at high altitude. These results could be considerably useful for wheat product classification and authentication.
Collapse
|
11
|
Yu M, Roszkowska A, Pawliszyn J. In Vivo Solid-Phase Microextraction and Applications in Environmental Sciences. ACS ENVIRONMENTAL AU 2022; 2:30-41. [PMID: 37101756 PMCID: PMC10114724 DOI: 10.1021/acsenvironau.1c00024] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Solid-phase microextraction (SPME) is a well-established sample-preparation technique for environmental studies. The application of SPME has extended from the headspace extraction of volatile compounds to the capture of active components in living organisms via the direct immersion of SPME probes into the tissue (in vivo SPME). The development of biocompatible coatings and the availability of different calibration approaches enable the in vivo sampling of exogenous and endogenous compounds from the living plants and animals without the need for tissue collection. In addition, new geometries such as thin-film coatings, needle-trap devices, recession needles, coated tips, and blades have increased the sensitivity and robustness of in vivo sampling. In this paper, we detail the fundamentals of in vivo SPME, including the various extraction modes, coating geometries, calibration methods, and data analysis methods that are commonly employed. We also discuss recent applications of in vivo SPME in environmental studies and in the analysis of pollutants in plant and animal tissues, as well as in human saliva, breath, and skin analysis. As we show, in vivo SPME has tremendous potential for the targeted and untargeted screening of small molecules in living organisms for environmental monitoring applications.
Collapse
Affiliation(s)
- Miao Yu
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Anna Roszkowska
- Department of Pharmaceutical Chemistry, Medical University of Gdansk, Gdansk 80-416, Poland
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
12
|
Canpolat G, Dolak İ, Keçili R, Hussain CG, Amiri A, Hussain CM. Conductive Polymer-Based Nanocomposites as Powerful Sorbents: Design, Preparation and Extraction Applications. Crit Rev Anal Chem 2022; 53:1419-1432. [PMID: 35040725 DOI: 10.1080/10408347.2021.2025334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Conductive polymers as composite materials have been attracted tremendous attention due to their versatile and excellent features such as tunable conductivity, facile synthesis and fabrication, high chemical and thermal stability etc. These characteristics make them versatile and let them being used in numerous fields including microelectronics, optics and biosensors. Throughout the mentioned fields, conductive polymers particularly perform as effective sorbents. Although tremendous efforts have been put into this topic, to the best of our knowledge, a comprehensive up-to-date review on the applications of conductive polymers as efficient sorbents has not been reported. The main objective of this paper is to make a significant contribution to the recent literature toward the synthesis and extraction applications of conductive polymers as efficient sorbents.
Collapse
Affiliation(s)
| | - İbrahim Dolak
- Vocational School of Technical Sciences, Dicle University, Diyarbakır, Turkey
| | - Rüstem Keçili
- Department of Medical Services and Techniques, Yunus Emre Vocational School of Health Services, Anadolu University, Eskişehir, Turkey
| | | | - Amirhassan Amiri
- Department of Chemistry, Ferdowsi University of Mashhad, Mashhad, Iran
| | | |
Collapse
|
13
|
López-Lorente ÁI, Pena-Pereira F, Pedersen-Bjergaard S, Zuin VG, Ozkan SA, Psillakis E. The Ten Principles of Green Sample Preparation. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116530] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
14
|
Belinato JR, Costa CP, Almeida A, Rocha SM, Augusto F. Mapping Aspergillus niger Metabolite Biomarkers for In Situ and Early Evaluation of Table Grapes Contamination. Foods 2021; 10:2870. [PMID: 34829150 PMCID: PMC8624196 DOI: 10.3390/foods10112870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 12/02/2022] Open
Abstract
The Aspergillus niger exometabolome was recently investigated using advanced gas chromatography in tandem with multivariate analysis, which allowed a metabolite biomarker pattern to be proposed. Microbial metabolomics patterns have gained enormous relevance, mainly due to the amount of information made available, which may be useful in countless processes. One of the great challenges in microbial metabolomics is related to applications in more complex systems of metabolomics information obtained from studies carried out in culture media, as complications may occur due to the dynamic nature of biological systems. Thus, the main objective of this research was to evaluate the applicability of the A. niger metabololite biomarkers pattern for in situ and early evaluation of table grapes contamination, used as study model. A. niger is a ubiquitous fungus responsible for food contamination, being reported as one of the main agents of the black mold disease, a serious post-harvest pathology of table grapes. This work included analysis from 1 day of growth time of pure A. niger cultures, A. niger cultures obtained from previously contaminated grapes, and finally, an in situ solid-phase microextraction (SPME) approach directly on previously contaminated table grapes. Supervised multivariate analysis was performed which revealed that after 1 day of inoculation it was possible to detect A. niger biomarkers, which can be extremely useful in making this type of method possible for the rapid detection of food contamination. The results obtained confirm the potential applicability of the pattern of A. niger biomarkers for early detection of the fungi (after 1 day of contamination), and may be further explored for access food susceptibility to fungi contamination, based on direct analysis of the food item.
Collapse
Affiliation(s)
- Joao Raul Belinato
- Institute of Chemistry, University of Campinas and National Institute of Science and Technology in Bioanalysis (INCTBio), Campinas 13083-970, Brazil;
| | - Carina Pedrosa Costa
- Department of Chemistry & LAQV-REQUIMTE, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Adelaide Almeida
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Silvia M. Rocha
- Department of Chemistry & LAQV-REQUIMTE, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Fabio Augusto
- Institute of Chemistry, University of Campinas and National Institute of Science and Technology in Bioanalysis (INCTBio), Campinas 13083-970, Brazil;
| |
Collapse
|
15
|
Rodrigues Carvalho K, Julião Zocolo G, Sousa de Brito E, Rocha Silveira E, Marques Canuto K. Chemotyping the medicinal herb Egletes viscosa through SPME-GC‑MS. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
16
|
Godage NH, Olomukoro AA, Emmons RV, Gionfriddo E. In vivo analytical techniques facilitated by contemporary materials. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
17
|
Tinte MM, Chele KH, van der Hooft JJJ, Tugizimana F. Metabolomics-Guided Elucidation of Plant Abiotic Stress Responses in the 4IR Era: An Overview. Metabolites 2021; 11:445. [PMID: 34357339 PMCID: PMC8305945 DOI: 10.3390/metabo11070445] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/30/2021] [Accepted: 07/03/2021] [Indexed: 12/27/2022] Open
Abstract
Plants are constantly challenged by changing environmental conditions that include abiotic stresses. These are limiting their development and productivity and are subsequently threatening our food security, especially when considering the pressure of the increasing global population. Thus, there is an urgent need for the next generation of crops with high productivity and resilience to climate change. The dawn of a new era characterized by the emergence of fourth industrial revolution (4IR) technologies has redefined the ideological boundaries of research and applications in plant sciences. Recent technological advances and machine learning (ML)-based computational tools and omics data analysis approaches are allowing scientists to derive comprehensive metabolic descriptions and models for the target plant species under specific conditions. Such accurate metabolic descriptions are imperatively essential for devising a roadmap for the next generation of crops that are resilient to environmental deterioration. By synthesizing the recent literature and collating data on metabolomics studies on plant responses to abiotic stresses, in the context of the 4IR era, we point out the opportunities and challenges offered by omics science, analytical intelligence, computational tools and big data analytics. Specifically, we highlight technological advancements in (plant) metabolomics workflows and the use of machine learning and computational tools to decipher the dynamics in the chemical space that define plant responses to abiotic stress conditions.
Collapse
Affiliation(s)
- Morena M. Tinte
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa; (M.M.T.); (K.H.C.)
| | - Kekeletso H. Chele
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa; (M.M.T.); (K.H.C.)
| | | | - Fidele Tugizimana
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa; (M.M.T.); (K.H.C.)
- International Research and Development Division, Omnia Group, Ltd., Johannesburg 2021, South Africa
| |
Collapse
|
18
|
Analytical Methods for Extraction and Identification of Primary and Secondary Metabolites of Apple (Malus domestica) Fruits: A Review. SEPARATIONS 2021. [DOI: 10.3390/separations8070091] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Apples represent a greater proportion of the worldwide fruit supply, due to their availability on the market and to the high number of existing cultivar varieties and apple-based products (fresh fruit, fruit juice, cider and crushed apples). Several studies on apple fruit metabolites are available, with most of them focusing on their healthy properties’ evaluation. In general, the metabolic profile of apple fruits strongly correlates with most of their peculiar characteristics, such as taste, flavor and color. At the same time, many bioactive molecules could be identified as markers of a specific apple variety. Therefore, a complete description of the analytical protocols commonly used for apple metabolites’ characterization and quantification could be useful for researchers involved in the identification of new phytochemical compounds from different apple varieties. This review describes the analytical methods published in the last ten years, in order to analyze the most important primary and secondary metabolites of Malus domestica fruits. In detail, this review gives an account of the spectrophotometric, chromatographic and mass spectrometric methods. A discussion on the quantitative and qualitative analytical shortcomings for the identification of sugars, fatty acids, polyphenols, organic acids, carotenoids and terpenes found in apple fruits is reported.
Collapse
|
19
|
Zanella D, Focant J, Franchina FA. 30 th Anniversary of comprehensive two-dimensional gas chromatography: Latest advances. ANALYTICAL SCIENCE ADVANCES 2021; 2:213-224. [PMID: 38716448 PMCID: PMC10989587 DOI: 10.1002/ansa.202000142] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 08/31/2024]
Abstract
In this review, we report on the latest (2020-Early 2021) instrumental advances and applications of comprehensive two-dimensional gas chromatography (GC×GC), including its hyphenation with novel upstream or downstream processes (sample preparation approaches or detection technologies). We also discuss software and analysis workflow developments necessary to elaborate the dense chemical information obtained. Thirty years after its inception, the use of GC×GC, as the main analytical tool or as a complementary platform, is undoubtedly shifting toward more applied challenges in a vast breadth of applications. Therefore, we consider the major fields (energy, fuel, foodstuff, plant, biological, and environmental) in which GC×GC has been successfully used, discussing some of the recent innovative research works.
Collapse
Affiliation(s)
- Delphine Zanella
- Molecular System, Organic & Biological Analytical Chemistry GroupUniversity of LiègeLiègeBelgium
| | - Jean‐François Focant
- Molecular System, Organic & Biological Analytical Chemistry GroupUniversity of LiègeLiègeBelgium
| | - Flavio A. Franchina
- Molecular System, Organic & Biological Analytical Chemistry GroupUniversity of LiègeLiègeBelgium
| |
Collapse
|
20
|
Rampler E, Abiead YE, Schoeny H, Rusz M, Hildebrand F, Fitz V, Koellensperger G. Recurrent Topics in Mass Spectrometry-Based Metabolomics and Lipidomics-Standardization, Coverage, and Throughput. Anal Chem 2021; 93:519-545. [PMID: 33249827 PMCID: PMC7807424 DOI: 10.1021/acs.analchem.0c04698] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Evelyn Rampler
- Department of Analytical
Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 38, 1090 Vienna, Austria
- Vienna Metabolomics Center (VIME), University of Vienna, Althanstraße 14, 1090 Vienna, Austria
- University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Yasin El Abiead
- Department of Analytical
Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 38, 1090 Vienna, Austria
| | - Harald Schoeny
- Department of Analytical
Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 38, 1090 Vienna, Austria
| | - Mate Rusz
- Department of Analytical
Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 38, 1090 Vienna, Austria
- Institute of Inorganic
Chemistry, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria
| | - Felina Hildebrand
- Department of Analytical
Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 38, 1090 Vienna, Austria
| | - Veronika Fitz
- Department of Analytical
Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 38, 1090 Vienna, Austria
| | - Gunda Koellensperger
- Department of Analytical
Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 38, 1090 Vienna, Austria
- Vienna Metabolomics Center (VIME), University of Vienna, Althanstraße 14, 1090 Vienna, Austria
- University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| |
Collapse
|
21
|
Pollo BJ, Teixeira CA, Belinato JR, Furlan MF, Cunha ICDM, Vaz CR, Volpato GV, Augusto F. Chemometrics, Comprehensive Two-Dimensional gas chromatography and “omics” sciences: Basic tools and recent applications. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116111] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
Cagliero C, Mastellone G, Marengo A, Bicchi C, Sgorbini B, Rubiolo P. Analytical strategies for in-vivo evaluation of plant volatile emissions - A review. Anal Chim Acta 2020; 1147:240-258. [PMID: 33485582 DOI: 10.1016/j.aca.2020.11.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/20/2020] [Accepted: 11/22/2020] [Indexed: 12/14/2022]
Abstract
Biogenic volatile organic compounds (BVOCs) are metabolites emitted by living plants that have a fundamental ecological role since they influence atmospheric chemistry, plant communication and pollinator/herbivore behaviour, and human activities. Over the years, several strategies have been developed to isolate and identify them, and to take advantage of their activity. The main techniques used for in-vivo analyses include dynamic headspace (D-HS), static headspace (S-HS) and, more recently, direct contact (DC) methods in association with gas chromatography (GC) and mass spectrometry (MS). The aim of this review is to provide insight into the in-vivo characterisation of plant volatile emissions with a focus on sampling, analysis and possible applications. This review first provides a critical discussion of the challenges associated with conventional approaches and their limitations and advantages. Then, it describes a series of applications of in-vivo volatilomic studies to enhance how the information they provide impact on our knowledge of plant behaviour, including the effects of abiotic (damage, flooding, climate) and biotic (insect feeding) stress factors in relation to the plants.
Collapse
Affiliation(s)
- Cecilia Cagliero
- Dipartimento di Scienza e Tecnologia Del Farmaco, Università Degli Studi di Torino, I, 10125, Turin, Italy.
| | - Giulia Mastellone
- Dipartimento di Scienza e Tecnologia Del Farmaco, Università Degli Studi di Torino, I, 10125, Turin, Italy
| | - Arianna Marengo
- Dipartimento di Scienza e Tecnologia Del Farmaco, Università Degli Studi di Torino, I, 10125, Turin, Italy
| | - Carlo Bicchi
- Dipartimento di Scienza e Tecnologia Del Farmaco, Università Degli Studi di Torino, I, 10125, Turin, Italy
| | - Barbara Sgorbini
- Dipartimento di Scienza e Tecnologia Del Farmaco, Università Degli Studi di Torino, I, 10125, Turin, Italy
| | - Patrizia Rubiolo
- Dipartimento di Scienza e Tecnologia Del Farmaco, Università Degli Studi di Torino, I, 10125, Turin, Italy
| |
Collapse
|
23
|
Franchina FA, Zanella D, Dubois LM, Focant J. The role of sample preparation in multidimensional gas chromatographic separations for non‐targeted analysis with the focus on recent biomedical, food, and plant applications. J Sep Sci 2020; 44:188-210. [DOI: 10.1002/jssc.202000855] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Flavio A. Franchina
- Molecular System Organic & Biological Analytical Chemistry Group University of Liège Liège Belgium
| | - Delphine Zanella
- Molecular System Organic & Biological Analytical Chemistry Group University of Liège Liège Belgium
| | - Lena M. Dubois
- Molecular System Organic & Biological Analytical Chemistry Group University of Liège Liège Belgium
| | - Jean‐François Focant
- Molecular System Organic & Biological Analytical Chemistry Group University of Liège Liège Belgium
| |
Collapse
|
24
|
Modulated construction of imine-based covalent organic frameworks for efficient adsorption of polycyclic aromatic hydrocarbons from honey samples. Anal Chim Acta 2020; 1134:50-57. [DOI: 10.1016/j.aca.2020.07.072] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/20/2022]
|