1
|
Abubakar AA, Ali AK, Ibrahim SM, Handool KO, Khan MS, Mustapha NM, Ibrahim TAT, Kaka U, Yusof LM. Roles of Sodium Hydrogen Exchanger (NHE1) and Anion Exchanger (AE2) across Chondrocytes Plasma Membrane during Longitudinal Bone Growth. MEMBRANES 2022; 12:membranes12070707. [PMID: 35877910 PMCID: PMC9321928 DOI: 10.3390/membranes12070707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 12/10/2022]
Abstract
Mammalian long bone growth occurs through endochondral ossification, majorly regulated by the controlled enlargement of chondrocytes at the growth plate (GP). This study aimed to investigate the roles of Na+/H+ (sodium hydrogen exchanger (NHE1)) and HCO3− (anion exchanger [AE2]) during longitudinal bone growth in mammals. Bones from P10 SpragueDawley rat pups were cultured exvivo in the presence or absence of NHE1 and AE2 inhibitors to determine their effect on long bone growth. Gross morphometry, histomorphometry, and immunohistochemistry were used to assess the bone growth. The results revealed that the culture of the bones in the presence of NHE1 and AE2 inhibitors reduces bone growth significantly (p < 0.05) by approximately 11%. The inhibitor significantly (p < 0.05) reduces bone growth velocity and the length of the hypertrophic chondrocyte zone without any effect on the total GP length. The total GP chondrocyte density was significantly (p < 0.05) reduced, but hypertrophic chondrocyte densities remained constant. NHE1 fluorescence signaling across the GP length was higher than AE2, and their localization was significantly (p < 0.05) inhibited at the hypertrophic chondrocytes zone. The GP lengthening was majorly driven by an increase in the overall GP chondrocyte and hypertrophic chondrocyte densities apart from the regulatory volume phenomenon. This may suggest that NHE1 and AE2 could have a regulatory role in long bone growth.
Collapse
Affiliation(s)
- Adamu Abdul Abubakar
- Department of Companion Animal Medicine and Surgery, Universiti Putra Malaysia, Serdang 43400, Malaysia; (A.A.A.); (A.K.A.); (S.M.I.); (K.O.H.); (M.S.K.); (U.K.)
- Department of Veterinary Surgery and Radiology, Usmanu Danfodiyo University, Sokoto PMB 2346, Nigeria
| | - Ahmed Khalaf Ali
- Department of Companion Animal Medicine and Surgery, Universiti Putra Malaysia, Serdang 43400, Malaysia; (A.A.A.); (A.K.A.); (S.M.I.); (K.O.H.); (M.S.K.); (U.K.)
- Department of Surgery and Theriogenology, College of Veterinary Medicine, University of Mosul, Mosul 00964, Iraq
| | - Sahar Mohammed Ibrahim
- Department of Companion Animal Medicine and Surgery, Universiti Putra Malaysia, Serdang 43400, Malaysia; (A.A.A.); (A.K.A.); (S.M.I.); (K.O.H.); (M.S.K.); (U.K.)
- Department of Surgery and Theriogenology, College of Veterinary Medicine, University of Mosul, Mosul 00964, Iraq
| | - Kareem Obayes Handool
- Department of Companion Animal Medicine and Surgery, Universiti Putra Malaysia, Serdang 43400, Malaysia; (A.A.A.); (A.K.A.); (S.M.I.); (K.O.H.); (M.S.K.); (U.K.)
| | - Mohammad Shuaib Khan
- Department of Companion Animal Medicine and Surgery, Universiti Putra Malaysia, Serdang 43400, Malaysia; (A.A.A.); (A.K.A.); (S.M.I.); (K.O.H.); (M.S.K.); (U.K.)
- Faculty of Veterinary and Animal Science, Gomal University, Dera Ismail Khan 29050, Pakistan
| | - Noordin Mohamed Mustapha
- Department of Veterinary Pathology and Microbiology, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | | | - Ubedullah Kaka
- Department of Companion Animal Medicine and Surgery, Universiti Putra Malaysia, Serdang 43400, Malaysia; (A.A.A.); (A.K.A.); (S.M.I.); (K.O.H.); (M.S.K.); (U.K.)
| | - Loqman Mohamad Yusof
- Department of Companion Animal Medicine and Surgery, Universiti Putra Malaysia, Serdang 43400, Malaysia; (A.A.A.); (A.K.A.); (S.M.I.); (K.O.H.); (M.S.K.); (U.K.)
- Correspondence: ; Tel.: +60-192-590-571; Fax: +60-386-093-959
| |
Collapse
|
2
|
Fuente R, García-Bengoa M, Fernández-Iglesias Á, Gil-Peña H, Santos F, López JM. Cellular and Molecular Alterations Underlying Abnormal Bone Growth in X-Linked Hypophosphatemia. Int J Mol Sci 2022; 23:ijms23020934. [PMID: 35055123 PMCID: PMC8778463 DOI: 10.3390/ijms23020934] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 12/21/2022] Open
Abstract
X-linked hypophosphatemia (XLH), the most common form of hereditary hypophosphatemic rickets, is caused by inactivating mutations of the phosphate-regulating endopeptidase gene (PHEX). XLH is mainly characterized by short stature, bone deformities and rickets, while in hypophosphatemia, normal or low vitamin D levels and low renal phosphate reabsorption are the principal biochemical aspects. The cause of growth impairment in patients with XLH is not completely understood yet, thus making the study of the growth plate (GP) alterations necessary. New treatment strategies targeting FGF23 have shown promising results in normalizing the growth velocity and improving the skeletal effects of XLH patients. However, further studies are necessary to evaluate how this treatment affects the GP as well as its long-term effects and the impact on adult height.
Collapse
Affiliation(s)
- Rocío Fuente
- Division of Pediatrics, Department of Medicine, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain; (R.F.); (M.G.-B.); (Á.F.-I.); (H.G.-P.); (F.S.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Institute of Physiology, Center for Integrative Human Physiology (ZIHP), University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - María García-Bengoa
- Division of Pediatrics, Department of Medicine, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain; (R.F.); (M.G.-B.); (Á.F.-I.); (H.G.-P.); (F.S.)
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, 30559 Hanover, Germany
| | - Ángela Fernández-Iglesias
- Division of Pediatrics, Department of Medicine, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain; (R.F.); (M.G.-B.); (Á.F.-I.); (H.G.-P.); (F.S.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Helena Gil-Peña
- Division of Pediatrics, Department of Medicine, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain; (R.F.); (M.G.-B.); (Á.F.-I.); (H.G.-P.); (F.S.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Department of Pediatrics, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain
| | - Fernando Santos
- Division of Pediatrics, Department of Medicine, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain; (R.F.); (M.G.-B.); (Á.F.-I.); (H.G.-P.); (F.S.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Department of Pediatrics, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain
| | - José Manuel López
- Department of Morphology and Cellular Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
- Correspondence:
| |
Collapse
|
3
|
Segatori VI, Garona J, Caligiuri LG, Bizzotto J, Lavignolle R, Toro A, Sanchis P, Spitzer E, Krolewiecki A, Gueron G, Alonso DF. Effect of Ivermectin and Atorvastatin on Nuclear Localization of Importin Alpha and Drug Target Expression Profiling in Host Cells from Nasopharyngeal Swabs of SARS-CoV-2- Positive Patients. Viruses 2021; 13:2084. [PMID: 34696514 PMCID: PMC8537229 DOI: 10.3390/v13102084] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/01/2021] [Accepted: 10/11/2021] [Indexed: 01/07/2023] Open
Abstract
Nuclear transport and vesicle trafficking are key cellular functions involved in the pathogenesis of RNA viruses. Among other pleiotropic effects on virus-infected host cells, ivermectin (IVM) inhibits nuclear transport mechanisms mediated by importins and atorvastatin (ATV) affects actin cytoskeleton-dependent trafficking controlled by Rho GTPases signaling. In this work, we first analyzed the response to infection in nasopharyngeal swabs from SARS-CoV-2-positive and -negative patients by assessing the gene expression of the respective host cell drug targets importins and Rho GTPases. COVID-19 patients showed alterations in KPNA3, KPNA5, KPNA7, KPNB1, RHOA, and CDC42 expression compared with non-COVID-19 patients. An in vitro model of infection with Poly(I:C), a synthetic analog of viral double-stranded RNA, triggered NF-κB activation, an effect that was halted by IVM and ATV treatment. Importin and Rho GTPases gene expression was also impaired by these drugs. Furthermore, through confocal microscopy, we analyzed the effects of IVM and ATV on nuclear to cytoplasmic importin α distribution, alone or in combination. Results showed a significant inhibition of importin α nuclear accumulation under IVM and ATV treatments. These findings confirm transcriptional alterations in importins and Rho GTPases upon SARS-CoV-2 infection and point to IVM and ATV as valid drugs to impair nuclear localization of importin α when used at clinically-relevant concentrations.
Collapse
Affiliation(s)
- Valeria Inés Segatori
- Centro de Oncología Molecular y Traslacional y Plataforma de Servicios Biotecnológicos, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal B1876BXD, Argentina; (V.I.S.); (J.G.); (L.G.C.)
| | - Juan Garona
- Centro de Oncología Molecular y Traslacional y Plataforma de Servicios Biotecnológicos, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal B1876BXD, Argentina; (V.I.S.); (J.G.); (L.G.C.)
- Centro de Medicina Traslacional, Hospital El Cruce, Florencio Varela B1888AAE, Argentina
| | - Lorena Grisel Caligiuri
- Centro de Oncología Molecular y Traslacional y Plataforma de Servicios Biotecnológicos, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal B1876BXD, Argentina; (V.I.S.); (J.G.); (L.G.C.)
| | - Juan Bizzotto
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Biológica, Intendente Guiraldes 2160, Buenos Aires C1428EGA, Argentina; (J.B.); (R.L.); (A.T.); (P.S.)
- CONICET—Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Buenos Aires C1428EGA, Argentina
| | - Rosario Lavignolle
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Biológica, Intendente Guiraldes 2160, Buenos Aires C1428EGA, Argentina; (J.B.); (R.L.); (A.T.); (P.S.)
- CONICET—Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Buenos Aires C1428EGA, Argentina
| | - Ayelén Toro
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Biológica, Intendente Guiraldes 2160, Buenos Aires C1428EGA, Argentina; (J.B.); (R.L.); (A.T.); (P.S.)
- CONICET—Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Buenos Aires C1428EGA, Argentina
| | - Pablo Sanchis
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Biológica, Intendente Guiraldes 2160, Buenos Aires C1428EGA, Argentina; (J.B.); (R.L.); (A.T.); (P.S.)
- CONICET—Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Buenos Aires C1428EGA, Argentina
| | - Eduardo Spitzer
- Laboratorio Elea-Phoenix, Los Polvorines B1613AUE, Argentina;
| | - Alejandro Krolewiecki
- Instituto de Investigaciones de Enfermedades Tropicales (IIET-CONICET), Sede Regional Orán, Universidad Nacional de Salta, Orán A4530ANQ, Argentina;
| | - Geraldine Gueron
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Biológica, Intendente Guiraldes 2160, Buenos Aires C1428EGA, Argentina; (J.B.); (R.L.); (A.T.); (P.S.)
- CONICET—Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Buenos Aires C1428EGA, Argentina
| | - Daniel Fernando Alonso
- Centro de Oncología Molecular y Traslacional y Plataforma de Servicios Biotecnológicos, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal B1876BXD, Argentina; (V.I.S.); (J.G.); (L.G.C.)
| |
Collapse
|
4
|
Wang X, Li Z, Wang C, Bai H, Wang Z, Liu Y, Bao Y, Ren M, Liu H, Wang J. Enlightenment of Growth Plate Regeneration Based on Cartilage Repair Theory: A Review. Front Bioeng Biotechnol 2021; 9:654087. [PMID: 34150725 PMCID: PMC8209549 DOI: 10.3389/fbioe.2021.654087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/10/2021] [Indexed: 01/21/2023] Open
Abstract
The growth plate (GP) is a cartilaginous region situated between the epiphysis and metaphysis at the end of the immature long bone, which is susceptible to mechanical damage because of its vulnerable structure. Due to the limited regeneration ability of the GP, current clinical treatment strategies (e.g., bone bridge resection and fat engraftment) always result in bone bridge formation, which will cause length discrepancy and angular deformity, thus making satisfactory outcomes difficult to achieve. The introduction of cartilage repair theory and cartilage tissue engineering technology may encourage novel therapeutic approaches for GP repair using tissue engineered GPs, including biocompatible scaffolds incorporated with appropriate seed cells and growth factors. In this review, we summarize the physiological structure of GPs, the pathological process, and repair phases of GP injuries, placing greater emphasis on advanced tissue engineering strategies for GP repair. Furthermore, we also propose that three-dimensional printing technology will play a significant role in this field in the future given its advantage of bionic replication of complex structures. We predict that tissue engineering strategies will offer a significant alternative to the management of GP injuries.
Collapse
Affiliation(s)
- Xianggang Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, China.,Orthopaedic Research Institute of Jilin Province, Changchun, China
| | - Zuhao Li
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, China.,Orthopaedic Research Institute of Jilin Province, Changchun, China
| | - Chenyu Wang
- Department of Plastic and Reconstructive Surgery, The First Hospital of Jilin University, Changchun, China
| | - Haotian Bai
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, China.,Orthopaedic Research Institute of Jilin Province, Changchun, China
| | - Zhonghan Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, China.,Orthopaedic Research Institute of Jilin Province, Changchun, China
| | - Yuzhe Liu
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, China.,Orthopaedic Research Institute of Jilin Province, Changchun, China
| | - Yirui Bao
- Department of Orthopedics, Chinese PLA 965 Hospital, Jilin, China
| | - Ming Ren
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, China.,Orthopaedic Research Institute of Jilin Province, Changchun, China
| | - He Liu
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, China.,Orthopaedic Research Institute of Jilin Province, Changchun, China
| | - Jincheng Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, China.,Orthopaedic Research Institute of Jilin Province, Changchun, China
| |
Collapse
|
5
|
Fernández-Iglesias Á, Fuente R, Gil-Peña H, Alonso-Durán L, Santos F, López JM. The Formation of the Epiphyseal Bone Plate Occurs via Combined Endochondral and Intramembranous-Like Ossification. Int J Mol Sci 2021; 22:ijms22020900. [PMID: 33477458 PMCID: PMC7830543 DOI: 10.3390/ijms22020900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/08/2021] [Accepted: 01/15/2021] [Indexed: 11/24/2022] Open
Abstract
The formation of the epiphyseal bone plate, the flat bony structure that provides strength and firmness to the growth plate cartilage, was studied in the present study by using light, confocal, and scanning electron microscopy. Results obtained evidenced that this bone tissue is generated by the replacement of the lower portion of the epiphyseal cartilage. However, this process differs considerably from the usual bone tissue formation through endochondral ossification. Osteoblasts deposit bone matrix on remnants of mineralized cartilage matrix that serve as a scaffold, but also on non-mineralized cartilage surfaces and as well as within the perivascular space. These processes occur simultaneously at sites located close to each other, so that, a core of the sheet of bone is established very quickly. Subsequently, thickening and reshaping occurs by appositional growth to generate a dense parallel-fibered bone structurally intermediate between woven and lamellar bone. All these processes occur in close relationship with a cartilage but most of the bone tissue is generated in a manner that may be considered as intramembranous-like. Overall, the findings here reported provide for the first time an accurate description of the tissues and events involved in the formation of the epiphyseal bone plate and gives insight into the complex cellular events underlying bone formation at different sites on the skeleton.
Collapse
Affiliation(s)
- Ángela Fernández-Iglesias
- Division of Pediatrics, Department of Medicine, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Asturias, Spain; (Á.F.-I.); (R.F.); (H.G.-P.); (L.A.-D.); (F.S.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
| | - Rocío Fuente
- Division of Pediatrics, Department of Medicine, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Asturias, Spain; (Á.F.-I.); (R.F.); (H.G.-P.); (L.A.-D.); (F.S.)
| | - Helena Gil-Peña
- Division of Pediatrics, Department of Medicine, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Asturias, Spain; (Á.F.-I.); (R.F.); (H.G.-P.); (L.A.-D.); (F.S.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
- Department of Pediatrics, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Asturias, Spain
| | - Laura Alonso-Durán
- Division of Pediatrics, Department of Medicine, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Asturias, Spain; (Á.F.-I.); (R.F.); (H.G.-P.); (L.A.-D.); (F.S.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
| | - Fernando Santos
- Division of Pediatrics, Department of Medicine, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Asturias, Spain; (Á.F.-I.); (R.F.); (H.G.-P.); (L.A.-D.); (F.S.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
- Department of Pediatrics, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Asturias, Spain
| | - José Manuel López
- Division of Pediatrics, Department of Medicine, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Asturias, Spain; (Á.F.-I.); (R.F.); (H.G.-P.); (L.A.-D.); (F.S.)
- Department of Morphology and Cellular Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Asturias, Spain
- Correspondence:
| |
Collapse
|
6
|
Ravera F, Efeoglu E, Byrne HJ. Monitoring stem cell differentiation using Raman microspectroscopy: chondrogenic differentiation, towards cartilage formation. Analyst 2021; 146:322-337. [PMID: 33155580 DOI: 10.1039/d0an01983f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Mesenchymal Stem Cells (MSCs) have the ability to differentiate into chondrocytes, the only cellular components of cartilage and are therefore ideal candidates for cartilage and tissue repair technologies. Chondrocytes are surrounded by cartilage-like extracellular matrix (ECM), a complex network rich in glycosaminoglycans, proteoglycans, and collagen, which, together with a multitude of intracellular signalling molecules, trigger the chondrogenesis and allow the chondroprogenitor to acquire the spherical morphology of the chondrocytes. However, although the mechanisms of the differentiation of MSCs have been extensively explored, it has been difficult to provide a holistic picture of the process, in situ. Raman Micro Spectroscopy (RMS) has been demonstrated to be a powerful analytical tool, which provides detailed label free biochemical fingerprint information in a non-invasive way, for analysis of cells, tissues and body fluids. In this work, RMS is explored to monitor the process of Mesenchymal Stem Cell (MSC) differentiation into chondrocytes in vitro, providing a holistic molecular picture of cellular events governing the differentiation. Spectral signatures of the subcellular compartments, nucleolus, nucleus and cytoplasm were initially probed and characteristic molecular changes between differentiated and undifferentiated were identified. Moreover, high density cell micromasses were cultured over a period of three weeks, and a systematic monitoring of cellular molecular components and the progress of the ECM formation, associated with the chondrogenic differentiation, was performed. This study shows the potential applicability of RMS as a powerful tool to monitor and better understand the differentiation pathways and process.
Collapse
Affiliation(s)
- Francesca Ravera
- School of Physics and Clinical and Optometric Sciences, TU Dublin, City Campus, Dublin 8, Ireland.
| | | | | |
Collapse
|
7
|
Fernández-Iglesias Á, Fuente R, Gil-Peña H, Alonso-Durán L, García-Bengoa M, Santos F, López JM. Innovative Three-Dimensional Microscopic Analysis of Uremic Growth Plate Discloses Alterations in the Process of Chondrocyte Hypertrophy: Effects of Growth Hormone Treatment. Int J Mol Sci 2020; 21:ijms21124519. [PMID: 32630463 PMCID: PMC7350242 DOI: 10.3390/ijms21124519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/21/2020] [Accepted: 06/23/2020] [Indexed: 12/30/2022] Open
Abstract
Chronic kidney disease (CKD) alters the morphology and function of the growth plate (GP) of long bones by disturbing chondrocyte maturation. GP chondrocytes were analyzed in growth-retarded young rats with CKD induced by adenine intake (AD), control rats fed ad libitum (C) or pair-fed with the AD group (PF), and CKD rats treated with growth hormone (ADGH). In order to study the alterations in the process of GP maturation, we applied a procedure recently described by our group to obtain high-quality three-dimensional images of whole chondrocytes that can be used to analyze quantitative parameters like cytoplasm density, cell volume, and shape. The final chondrocyte volume was found to be decreased in AD rats, but GH treatment was able to normalize it. The pattern of variation in the cell cytoplasm density suggests that uremia could be causing a delay to the beginning of the chondrocyte hypertrophy process. Growth hormone treatment appears to be able to compensate for this disturbance by triggering an early chondrocyte enlargement that may be mediated by Nkcc1 action, an important membrane cotransporter in the GP chondrocyte enlargement.
Collapse
Affiliation(s)
- Ángela Fernández-Iglesias
- Division of Pediatrics, Department of Medicine, Faculty of Medicine, University of Oviedo, CP 33006 Oviedo, Asturias, Spain; (A.F.-I.); (R.F.); (H.G.-P.); (L.A.-D.); (M.G.-B.); (J.M.L.)
- Instituto de Investigación sanitaria del Principado de Asturias (ISPA), 33012 Oviedo, Spain
| | - Rocío Fuente
- Division of Pediatrics, Department of Medicine, Faculty of Medicine, University of Oviedo, CP 33006 Oviedo, Asturias, Spain; (A.F.-I.); (R.F.); (H.G.-P.); (L.A.-D.); (M.G.-B.); (J.M.L.)
| | - Helena Gil-Peña
- Division of Pediatrics, Department of Medicine, Faculty of Medicine, University of Oviedo, CP 33006 Oviedo, Asturias, Spain; (A.F.-I.); (R.F.); (H.G.-P.); (L.A.-D.); (M.G.-B.); (J.M.L.)
- Instituto de Investigación sanitaria del Principado de Asturias (ISPA), 33012 Oviedo, Spain
- Department of Pediatrics, Hospital Universitario Central de Asturias (HUCA), 33013 Oviedo, Asturias, Spain
| | - Laura Alonso-Durán
- Division of Pediatrics, Department of Medicine, Faculty of Medicine, University of Oviedo, CP 33006 Oviedo, Asturias, Spain; (A.F.-I.); (R.F.); (H.G.-P.); (L.A.-D.); (M.G.-B.); (J.M.L.)
- Instituto de Investigación sanitaria del Principado de Asturias (ISPA), 33012 Oviedo, Spain
| | - María García-Bengoa
- Division of Pediatrics, Department of Medicine, Faculty of Medicine, University of Oviedo, CP 33006 Oviedo, Asturias, Spain; (A.F.-I.); (R.F.); (H.G.-P.); (L.A.-D.); (M.G.-B.); (J.M.L.)
| | - Fernando Santos
- Division of Pediatrics, Department of Medicine, Faculty of Medicine, University of Oviedo, CP 33006 Oviedo, Asturias, Spain; (A.F.-I.); (R.F.); (H.G.-P.); (L.A.-D.); (M.G.-B.); (J.M.L.)
- Instituto de Investigación sanitaria del Principado de Asturias (ISPA), 33012 Oviedo, Spain
- Department of Pediatrics, Hospital Universitario Central de Asturias (HUCA), 33013 Oviedo, Asturias, Spain
- Correspondence: ; Tel.: +34-985102728
| | - José Manuel López
- Division of Pediatrics, Department of Medicine, Faculty of Medicine, University of Oviedo, CP 33006 Oviedo, Asturias, Spain; (A.F.-I.); (R.F.); (H.G.-P.); (L.A.-D.); (M.G.-B.); (J.M.L.)
- Department of Morphology and Cellular Biology, Faculty of Medicine, University of Oviedo, CP 33006 Oviedo, Asturias, Spain
| |
Collapse
|