1
|
Miao F, Lei Y, Guo Y, Ma Y, Zhang Y, Jia B. Increased caveolin 1 by human antigen R exacerbates Porphyromonas gingivali-induced atherosclerosis by modulating oxidative stress and inflammatory responses. Cytojournal 2024; 21:42. [PMID: 39737126 PMCID: PMC11683369 DOI: 10.25259/cytojournal_76_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/20/2024] [Indexed: 01/01/2025] Open
Abstract
Objective Many different types of infectious oral diseases have been identified clinically, including chronic periodontitis. Porphyromonas gingivalis is the main pathogen causing chronic periodontitis, which is closely related to atherosclerosis (AS) and can promote the expression levels of caveolin 1 (Cav-1) and induced ribonucleic acid (RNA)-binding protein human antigen R (HuR). However, the roles of Cav-1 and its relationship with HuR in P. gingivalis-mediated AS progression remain largely unknown. Here, we aimed to detect the role and molecular mechanisms of Cav-1 in P. gingivalis-mediated AS. Material and Methods To investigate the role of Cav-1 in P. gingivalis-mediated AS, we infected human umbilical vein endothelial cells (HUVECs) with P. gingivalis at a multiplicity of infection of 100:1 for 6, 12, and 24 h to simulate P. gingivalis-induced AS models in vitro and then transfected them with Cav-1 small interfering RNA to silence Cav-1. Combining molecular biology experimental techniques such as cell counting kit-8 assay, enzyme-linked immunosorbent assay, immunofluorescence staining, flow cytometry, Western blotting, and Oil Red O staining, and apolipoprotein E-deficient AS model mice, the impacts of Cav-1 on cell viability, inflammation, oxidative stress, apoptosis, Cav-1 and intercellular cell adhesion molecule-1 (ICAM-1) levels, and atherosclerotic plaque formation were investigated. Then, the relationship between Cav-1 and HuR was investigated through biotin pull-down and RNA immunoprecipitation assays, reverse transcription quantitative polymerase chain reaction, and Western blot. Results P. gingivalis can induce Cav-1 expression in a time- and dose-dependent manner (P < 0.05). This effect can inhibit the proliferation of HUVECs (P < 0.05). Cav-1 interference repressed inflammatory response, reactive oxygen species (ROS) and ICAM-1 levels, and apoptosis in the HUVECs (P < 0.05). Cav-1 messenger RNA was stabilized by HuR, which can bind to the 3' untranslated region of Cav-1. Increase in HuR level reversed the effects of Cav-1 silencing on ROS and ICAM-1 levels and apoptosis in the HUVECs (P < 0.05). In addition, the levels of inflammatory response, oxidative stress, and atherosclerotic plaque formation induced by P. gingivalis in the mouse model were significantly reduced after Cav-1 expression was inhibited (P < 0.05). Conclusion HuR-activated Cav-1 may promote atherosclerotic plaque formation by modulating inflammatory response and oxidative stress, leading to AS.
Collapse
Affiliation(s)
- Fang Miao
- Department of Prevention and Healthcare, Lanzhou Stomatology Hospital, Lanzhou, China
| | - Yangyang Lei
- Department of Cardiology, The Second People’s Hospital of Lanzhou City, Lanzhou, China
| | - Yunfei Guo
- Department of Prevention and Healthcare, Lanzhou Stomatology Hospital, Lanzhou, China
| | - Yongxia Ma
- Department of Cardiology, The Second People’s Hospital of Lanzhou City, Lanzhou, China
| | - Ye Zhang
- Department of Prevention and Healthcare, Lanzhou Stomatology Hospital, Lanzhou, China
| | - Binbin Jia
- Department of Cardiology, The Second People’s Hospital of Lanzhou City, Lanzhou, China
| |
Collapse
|
2
|
Haghshenas L, Banihashemi S, Malekzadegan Y, Catanzaro R, Moghadam Ahmadi A, Marotta F. Microbiome as an endocrine organ and its relationship with eye diseases: Effective factors and new targeted approaches. World J Gastrointest Pathophysiol 2024; 15:96446. [PMID: 39355345 PMCID: PMC11440246 DOI: 10.4291/wjgp.v15.i5.96446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/04/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024] Open
Abstract
Microbiome is an endocrine organ that refers to both the complicated biological system of microbial species that colonize our bodies and their genomes and surroundings. Recent studies confirm the connection between the microbiome and eye diseases, which are involved in the pathogenesis of eye diseases, including age-related macular disorders, diabetic retinopathy, glaucoma, retinitis pigmentosa, dry eye, and uveitis. The aim of this review is to investigate the microbiome in relation to eye health. First, a brief introduction of the characteristics of the gut microorganisms terms of composition and work, the role of dysbiosis, the gut microbiome and the eye microbiome in the progression of eye illnesses are highlighted, then the relationship among the microbiome and the function of the immune system and eye diseases, the role of inflammation and aging and the immune system, It has been reviewed and finally, the control and treatment goals of microbiome and eye diseases, the role of food factors and supplements, biotherapy and antibiotics in relation to microbiome and eye health have been reviewed.
Collapse
Affiliation(s)
- Leila Haghshenas
- Department of Clinical Bioinformatics, Harvard Medical School, Boston, MA 02115, United States
| | - Sara Banihashemi
- Department of Bioscience, School of Science and Technology, Nottingham Trend University, Nottingham NG1 4FQ, United Kingdom
| | - Yalda Malekzadegan
- Department of Microbiology, Saveh University of Medical Sciences, Saveh 3919676651, Iran
| | - Roberto Catanzaro
- Department of Clinical and Experimental Medicine, University of Catania, Catania 95123, Catania, Italy
| | - Amir Moghadam Ahmadi
- Department of Neuroimmunology, Thomas Jefferson University Hospital, Philadelphia, PA 19107, United States
| | - Francesco Marotta
- Department of Human Nutrition and Food Sciences, Texas Women University, Milano 20154, Italy
| |
Collapse
|
3
|
Vujosevic S, Limoli C, Kozak I. Hallmarks of aging in age-related macular degeneration and age-related neurological disorders: novel insights into common mechanisms and clinical relevance. Eye (Lond) 2024:10.1038/s41433-024-03341-5. [PMID: 39289517 DOI: 10.1038/s41433-024-03341-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/13/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024] Open
Abstract
Age-related macular degeneration (AMD) and age-related neurological diseases (ANDs), such as Alzheimer's and Parkinson's Diseases, are increasingly prevalent conditions that significantly contribute to global morbidity, disability, and mortality. The retina, as an accessible part of the central nervous system (CNS), provides a unique window to study brain aging and neurodegeneration. By examining the associations between AMD and ANDs, this review aims to highlight novel insights into fundamental mechanisms of aging and their role in neurodegenerative disease progression. This review integrates knowledge from the emerging field of aging research, which identifies common denominators of biological aging, specifically loss of proteostasis, impaired macroautophagy, mitochondrial dysfunction, and inflammation. Finally, we emphasize the clinical relevance of these pathways and the potential for cross-disease therapies that target common aging hallmarks. Identifying these shared pathways could open avenues to develop therapeutic strategies targeting mechanisms common to multiple degenerative diseases, potentially attenuating disease progression and promoting the healthspan.
Collapse
Affiliation(s)
- Stela Vujosevic
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy.
- Eye Clinic, IRCCS MultiMedica, Milan, Italy.
| | - Celeste Limoli
- Eye Clinic, IRCCS MultiMedica, Milan, Italy
- University of Milan, Milan, Italy
| | - Igor Kozak
- Moorfields Eye Hospital Centre, Abu Dhabi, UAE
- Ophthalmology and Vision Science, University of Arizona, Tucson, USA
| |
Collapse
|
4
|
Sheridan M, Chowdhury N, Wellslager B, Oleinik N, Kassir MF, Lee HG, Engevik M, Peterson Y, Pandruvada S, Szulc ZM, Yilmaz Ö, Ogretmen B. Opportunistic pathogen Porphyromonas gingivalis targets the LC3B-ceramide complex and mediates lethal mitophagy resistance in oral tumors. iScience 2024; 27:109860. [PMID: 38779482 PMCID: PMC11108982 DOI: 10.1016/j.isci.2024.109860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/29/2024] [Accepted: 04/27/2024] [Indexed: 05/25/2024] Open
Abstract
Mechanisms by which Porphyromonas gingivalis (P. gingivalis) infection enhances oral tumor growth or resistance to cell death remain elusive. Here, we determined that P. gingivalis infection mediates therapeutic resistance via inhibiting lethal mitophagy in cancer cells and tumors. Mechanistically, P. gingivalis targets the LC3B-ceramide complex by associating with LC3B via bacterial major fimbriae (FimA) protein, preventing ceramide-dependent mitophagy in response to various therapeutic agents. Moreover, ceramide-mediated mitophagy is induced by Annexin A2 (ANXA2)-ceramide association involving the E142 residue of ANXA2. Inhibition of ANXA2-ceramide-LC3B complex formation by wild-type P. gingivalis prevented ceramide-dependent mitophagy. Moreover, a FimA-deletion mutant P. gingivalis variant had no inhibitory effects on ceramide-dependent mitophagy. Further, 16S rRNA sequencing of oral tumors indicated that P. gingivalis infection altered the microbiome of the tumor macroenvironment in response to ceramide analog treatment in mice. Thus, these data provide a mechanism describing the pro-survival roles of P. gingivalis in oral tumors.
Collapse
Affiliation(s)
- Megan Sheridan
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
- Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Nityananda Chowdhury
- Department of Oral Health Sciences, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Bridgette Wellslager
- Department of Oral Health Sciences, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Natalia Oleinik
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
- Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Mohamed Faisal Kassir
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
- Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Han G. Lee
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
- Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Mindy Engevik
- Department of Regenerative Medicine, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Yuri Peterson
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Subramanya Pandruvada
- Department of Oral Health Sciences, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Zdzislaw M. Szulc
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
- Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Özlem Yilmaz
- Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
- Department of Oral Health Sciences, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Besim Ogretmen
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
- Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| |
Collapse
|
5
|
Ma L, Cao Z. Periodontopathogen-Related Cell Autophagy-A Double-Edged Sword. Inflammation 2024:10.1007/s10753-024-02049-8. [PMID: 38762837 DOI: 10.1007/s10753-024-02049-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 05/20/2024]
Abstract
The periodontium is a highly organized ecosystem, and the imbalance between oral microorganisms and host defense leads to periodontal diseases. The periodontal pathogens, mainly Gram-negative anaerobic bacteria, colonize the periodontal niches or enter the blood circulation, resulting in periodontal tissue destruction and distal organ damage. This phenomenon links periodontitis with various systemic conditions, including cardiovascular diseases, malignant tumors, steatohepatitis, and Alzheimer's disease. Autophagy is an evolutionarily conserved cellular self-degradation process essential for eliminating internalized pathogens. Nowadays, increasing studies have been carried out in cells derived from periodontal tissues, immune system, and distant organs to investigate the relationship between periodontal pathogen infection and autophagy-related activities. On one hand, as a vital part of innate and adaptive immunity, autophagy actively participates in host resistance to periodontal bacterial infection. On the other, certain periodontal pathogens exploit autophagic vesicles or pathways to evade immune surveillance, therefore achieving survival within host cells. This review provides an overview of the autophagy process and focuses on periodontopathogen-related autophagy and their involvements in cells of different tissue origins, so as to comprehensively understand the role of autophagy in the occurrence and development of periodontal diseases and various periodontitis-associated systemic illnesses.
Collapse
Affiliation(s)
- Li Ma
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Hongshan District, Wuhan, 430079, China
| | - Zhengguo Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Hongshan District, Wuhan, 430079, China.
| |
Collapse
|
6
|
Klomp T, Jahr H, Abdelbary MMH, Conrads G. Evaluation of hydrocortisone as a strain-dependent growth-regulator of Porphyromonasgingivalis. Anaerobe 2023; 80:102698. [PMID: 36681234 DOI: 10.1016/j.anaerobe.2023.102698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023]
Abstract
OBJECTIVE Porphyromonas gingivalis is an oral key pathogen and known to be very diverse in geno- and phenotypes. It is a fastidious bacterium with low O2-tolerance and 3-7 days of incubation are necessary. With growing interest in the field of microbial endocrinology we explored the potential growth-stimulating effect of hydrocortisone (HC, synonym cortisol) on P. gingivalis cultures. MATERIAL AND METHODS Six different P. gingivalis strains were pre-incubated in supplemented Brain-Heart-Infusion broth under appropriate conditions for 24 h, diluted and transferred into microplates. A newly developed and semi-automated spectrophotometric measurement in triplicate, applying a SpectraMax i3x microplate reader at an optical density of 600 nm, was conducted to test growth differences between test group (exposed to a supplement of either 1.25, 2.5, 5, 10, or 20 μg/ml of hydrocortisone) and control group over 48 h of anaerobic incubation (O2 ≤ 1%). Furthermore, strains were also incubated on HC-supplemented blood agar to test for a possible growth-stimulating effect on solid media. RESULTS HC significantly stimulated the lag-phase growth of four out of six P. gingivalis strains. Our data suggest a concentration-dependent growth stimulatory effect of HC between 2.5 and 5 μg/ml, while below 1.25 μg/ml and above 10 μg/ml HC either did not stimulate or inhibited growth. CONCLUSIONS HC could reduce the incubation time when isolating P. gingivalis from clinical samples and could boost low biomass cultivations especially during their lag-phase. The growth-modulating effect might be via modulation of virulence factors/quorum sensing gene expression or by reactive oxygen species(ROS)-capturing during early stages of bacterial growth. Further experiments are necessary to explain the mechanism behind our observations.
Collapse
Affiliation(s)
- Tim Klomp
- Division of Oral Microbiology and Immunology, Department of Operative Dentistry, Periodontology and Preventive Dentistry, Rheinisch-Westfälische Technische Hochschule University Hospital, Aachen, Germany; Department of Operative Dentistry, Periodontology and Preventive Dentistry, Rheinisch-Westfälische Technische Hochschule University Hospital, Aachen, Germany
| | - Holger Jahr
- Department of Anatomy and Cell Biology, Uniklinik RWTH Aachen and Institute of Structural Mechanics and Lightweight Design, RWTH Aachen University, Aachen, Germany
| | - Mohamed M H Abdelbary
- Division of Oral Microbiology and Immunology, Department of Operative Dentistry, Periodontology and Preventive Dentistry, Rheinisch-Westfälische Technische Hochschule University Hospital, Aachen, Germany
| | - Georg Conrads
- Division of Oral Microbiology and Immunology, Department of Operative Dentistry, Periodontology and Preventive Dentistry, Rheinisch-Westfälische Technische Hochschule University Hospital, Aachen, Germany.
| |
Collapse
|
7
|
Zhao X, Liu Y, Wang H, Li W, Liu J. Editorial: Xenophagy: Its role in pathogen infections. Front Cell Infect Microbiol 2022; 12:1003451. [PMID: 36093208 PMCID: PMC9461560 DOI: 10.3389/fcimb.2022.1003451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022] Open
Affiliation(s)
- Xiaona Zhao
- College of Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Yongxia Liu
- College of Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Hongwei Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Henan, China
| | - Wentao Li
- Department of Environmental Health Science, University of Georgia College of Public Health, Athens, GA, United States
| | - Jianzhu Liu
- College of Veterinary Medicine, Shandong Agricultural University, Taian, China
- *Correspondence: Jianzhu Liu,
| |
Collapse
|
8
|
Kang S, Dai A, Wang H, Ding PH. Interaction Between Autophagy and Porphyromonas gingivalis-Induced Inflammation. Front Cell Infect Microbiol 2022; 12:892610. [PMID: 35846745 PMCID: PMC9283780 DOI: 10.3389/fcimb.2022.892610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Autophagy is an immune homeostasis process induced by multiple intracellular and extracellular signals. Inflammation is a protective response to harmful stimuli such as pathogen microbial infection and body tissue damage. Porphyromonas gingivalis infection elicits both autophagy and inflammation, and dysregulation of autophagy and inflammation promotes pathology. This review focuses on the interaction between autophagy and inflammation caused by Porphyromonas gingivalis infection, aiming to elaborate on the possible mechanism involved in the interaction.
Collapse
|
9
|
Arjunan P, Swaminathan R. Do Oral Pathogens Inhabit the Eye and Play a Role in Ocular Diseases? J Clin Med 2022; 11:2938. [PMID: 35629064 PMCID: PMC9146391 DOI: 10.3390/jcm11102938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/14/2022] [Accepted: 05/17/2022] [Indexed: 02/07/2023] Open
Abstract
Fascinatingly, the immune-privileged healthy eye has a small unique population of microbiota. The human microbiome project led to continuing interest in the ocular microbiome. Typically, ocular microflorae are commensals of low diversity that colonize the external and internal sites of the eye, without instigating any disorders. Ocular commensals modulate immunity and optimally regulate host defense against pathogenic invasion, both on the ocular surface and neuroretina. Yet, any alteration in this symbiotic relationship culminates in the perturbation of ocular homeostasis and shifts the equilibrium toward local or systemic inflammation and, in turn, impaired visual function. A compositional variation in the ocular microbiota is associated with surface disorders such as keratitis, blepharitis, and conjunctivitis. Nevertheless, innovative studies now implicate non-ocular microbial dysbiosis in glaucoma, age-related macular degeneration (AMD), uveitis, and diabetic retinopathy. Accordingly, prompt identification of the extra-ocular etiology and a methodical understanding of the mechanisms of invasion and host-microbial interaction is of paramount importance for preventative and therapeutic interventions for vision-threatening conditions. This review article aims to explore the current literature evidence to better comprehend the role of oral pathogens in the etiopathogenesis of ocular diseases, specifically AMD.
Collapse
Affiliation(s)
- Pachiappan Arjunan
- Department of Periodontics, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA;
- James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA
| | - Radhika Swaminathan
- Department of Periodontics, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA;
| |
Collapse
|
10
|
The Antimicrobial Susceptibility of Porphyromonas gingivalis: Genetic Repertoire, Global Phenotype, and Review of the Literature. Antibiotics (Basel) 2021; 10:antibiotics10121438. [PMID: 34943650 PMCID: PMC8698109 DOI: 10.3390/antibiotics10121438] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 11/16/2022] Open
Abstract
The in vitro antimicrobial susceptibility of 29 strains of the major periodontal pathogen Porphyromonas gingivalis and three P. gulae (as an ancestor) to nine antibiotics (amoxicillin, amoxicillin/clavulanate, clindamycin, metronidazole, moxifloxacin, doxycycline, azithromycin, imipenem, and cefoxitin) was evaluated by E-testing of minimal inhibitory concentration (MIC) according to international standards. The results were compared with 16 international studies reporting MICs from 1993 until recently. In addition, 77 currently available P. gingivalis genomes were screened for antimicrobial resistance genes. E-testing revealed a 100% sensitivity of P. gingivalis and P. gulae to all antibiotics. This was independent of the isolation year (1970 until 2021) or region, including rural areas in Indonesia and Africa. Regarding studies worldwide (675 strains), several method varieties regarding medium, McFarland inoculation standards (0.5-2) and incubation time (48-168 h) were used for MIC-testing. Overall, no resistances have been reported for amoxicillin + clavulanate, cefoxitin, and imipenem. Few strains showed intermediate susceptibility or resistance to amoxicillin and metronidazole, with the latter needing both confirmation and attention. The only antibiotics which might fail in the treatment of P. gingivalis-associated mixed anaerobic infections are clindamycin, macrolides, and tetracyclines, corresponding to the resistance genes erm(B), erm(F), and tet(Q) detected in our study here, as well as fluoroquinolones. Periodical antibiotic susceptibility testing is necessary to determine the efficacy of antimicrobial agents and to optimize antibiotic stewardship.
Collapse
|
11
|
Chiu CJ, Chang ML, Kantarci A, Van Dyke TE, Shi W. Exposure to Porphyromonas gingivalis and Modifiable Risk Factors Modulate Risk for Early Diabetic Retinopathy. Transl Vis Sci Technol 2021; 10:23. [PMID: 34003908 PMCID: PMC7900844 DOI: 10.1167/tvst.10.2.23] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Purpose We hypothesized that exposure to Porphyromonas gingivalis (Pg) increases the risk for early diabetic retinopathy (DR) and that the risk can be modulated. Methods We identified 116 early DR cases, and 116 non-DR controls were selected randomly by frequency matching for age, sex, race, and education from the US Third National Health and Nutrition Examination Survey. DR was assessed using non-mydriatic fundus photographs and graded by trained graders using the Modified Airlie House Classification scheme and the Early Treatment for Diabetic Retinopathy Study severity scale. Serum Pg immunoglobulin G (IgG) antibody (Ab) was measured in enzyme-linked immunosorbent assay units. Logistic regression was used to relate serum Pg IgG Ab levels to the risk for early DR. Results Per tenfold increase in Pg IgG Ab levels, there was an over 60% increased risk for early DR (odds ratio = 1.64; 95% confidence interval, 1.36–1.97), and a linear trend was noted for the estimated probabilities of early DR at various Pg IgG Ab levels (P for trend = 0.0053). The analysis also suggested that moderate alcohol consumption (less than 12 drinks in the past 12 months; P for interaction = 0.0003) and maintaining a normal serum glycated hemoglobulin level (HbA1c ≤ 5.7%; P for interaction < 0.0001) helped reduce the Pg-related DR risk. Conclusions The increased Pg-related DR risk could be alleviated by managing alcohol consumption and maintaining a normal blood glucose level. Translational Relevance Findings from this study provide new directions for developing novel therapeutics and prevention strategies for DR.
Collapse
Affiliation(s)
- Chung-Jung Chiu
- The Forsyth Institute, Cambridge, MA, USA.,Harvard School of Dental Medicine, Boston, MA, USA
| | - Min-Lee Chang
- The Boston Children's Hospital Computational Health Informatics Program, Harvard University, Boston, MA, USA
| | - Alpdogan Kantarci
- The Forsyth Institute, Cambridge, MA, USA.,Harvard School of Dental Medicine, Boston, MA, USA
| | - Thomas E Van Dyke
- The Forsyth Institute, Cambridge, MA, USA.,Harvard School of Dental Medicine, Boston, MA, USA.,Faculty of Medicine, Harvard University, Boston, MA, USA
| | - Wenyuan Shi
- The Forsyth Institute, Cambridge, MA, USA.,Harvard School of Dental Medicine, Boston, MA, USA
| |
Collapse
|
12
|
Exacerbation of AMD Phenotype in Lasered CNV Murine Model by Dysbiotic Oral Pathogens. Antioxidants (Basel) 2021; 10:antiox10020309. [PMID: 33670526 PMCID: PMC7922506 DOI: 10.3390/antiox10020309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/08/2021] [Accepted: 02/12/2021] [Indexed: 12/13/2022] Open
Abstract
Emerging evidence underscores an association between age-related macular degeneration (AMD) and periodontal disease (PD), yet the biological basis of this linkage and the specific role of oral dysbiosis caused by PD in AMD pathophysiology remains unclear. Furthermore, a simple reproducible model that emulates characteristics of both AMD and PD has been lacking. Hence, we established a novel AMD+PD murine model to decipher the potential role of oral infection (ligature-enhanced) with the keystone periodontal pathogen Porphyromonas gingivalis, in the progression of neovasculogenesis in a laser-induced choroidal-neovascularization (Li-CNV) mouse retina. By a combination of fundus photography, optical coherence tomography, and fluorescein angiography, we documented inflammatory drusen-like lesions, reduced retinal thickness, and increased vascular leakage in AMD+PD mice retinae. H&E further confirmed a significant reduction of retinal thickness and subretinal drusen-like deposits. Immunofluorescence microscopy revealed significant induction of choroidal/retinal vasculogenesis in AMD+PD mice. qPCR identified increased expression of oxidative-stress, angiogenesis, pro-inflammatory mediators, whereas antioxidants and anti-inflammatory genes in AMD+PD mice retinae were notably decreased. Through qPCR, we detected Pg and its fimbrial 16s-RrNA gene expression in the AMD+PD mice retinae. To sum-up, this is the first in vivo study signifying a role of periodontal infection in augmentation of AMD phenotype, with the aid of a pioneering AMD+PD murine model established in our laboratory.
Collapse
|
13
|
Mu W, Jia Y, Chen X, Li H, Wang Z, Cheng B. Intracellular Porphyromonas gingivalis Promotes the Proliferation of Colorectal Cancer Cells via the MAPK/ERK Signaling Pathway. Front Cell Infect Microbiol 2020; 10:584798. [PMID: 33425779 PMCID: PMC7785964 DOI: 10.3389/fcimb.2020.584798] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 11/20/2020] [Indexed: 12/11/2022] Open
Abstract
Porphyromonas gingivalis (P. gingivalis) is a keystone pathogen in periodontitis. However, several clinical studies have revealed an enrichment of P. gingivalis in the stool samples and colorectal mucosa of colorectal cancer patients. Thus, the goal of this study was to determine whether P. gingivalis can promote colorectal cancer progression in vitro. We established an acute infection model (24 h, multiplicity of infection =100) of P. gingivalis invasion of colorectal cancer cells to study the alterations induced by P. gingivalis in the proliferation and cell cycle of colorectal cancer cells. We observed that P. gingivalis can adhere and invade host cells a few hours after infection. Once invaded, P. gingivalis significantly promoted colorectal cancer cell proliferation, and the percentage of S phase cells was increased in the cell cycle assay. However, KDP136, a gingipain-deficient mutant of P. gingivalis 33277, showed a decreased ability to promote colorectal cancer cell proliferation, indicating that gingipain is associated with colorectal cancer cell proliferation. Furthermore, we extracted RNA from colorectal cancer cells for high-throughput sequencing analysis and reconfirmed the results by quantitative polymerase chain reaction and western blot analyses. The results suggested that the MAPK/ERK signaling pathway is significantly activated by P. gingivalis, while these changes were not observed for KDP136. In conclusion, P. gingivalis can invade cells and promote the proliferation of colorectal cancer cells by activating the MAPK/ERK signaling pathway. Gingipain is an essential virulence factor in this interaction.
Collapse
Affiliation(s)
- Wenxin Mu
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Yiqun Jia
- Stomatology Center, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Xiaobing Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Haoyu Li
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Zhi Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Bin Cheng
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
14
|
Arjunan P. Eye on the Enigmatic Link: Dysbiotic Oral Pathogens in Ocular Diseases; The Flip Side. Int Rev Immunol 2020; 40:409-432. [PMID: 33179994 DOI: 10.1080/08830185.2020.1845330] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mouth and associated structures were regarded as separate entities from the rest of the body. However, there is a paradigm shift in this conception and oral health is now considered as a fundamental part of overall well-being. In recent years, the subject of oral-foci of infection has attained a resurgence in terms of systemic morbidities while limited observations denote the implication of chronic oral inflammation in the pathogenesis of eye diseases. Hitherto, there is a paucity for mechanistic insights underlying the reported link between periodontal disease (PD) and ocular comorbidities. In light of prevailing scientific evidence, this review article will focus on the understudied theme, that is, the impact of oral dysbiosis in the induction and/or progression of inflammatory eye diseases like diabetic retinopathy, scleritis, uveitis, glaucoma, age-related macular degeneration (AMD). Furthermore, the plausible mechanisms by which periodontal microbiota may trigger immune dysfunction in the Oro-optic-network and promote the development of PD-associated AMD have been discussed.
Collapse
Affiliation(s)
- Pachiappan Arjunan
- Department of Periodontics, Dental College of Georgia, Augusta, GA, USA.,James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA
| |
Collapse
|