1
|
Muneer G, Chen CS, Chen YJ. Advancements in Global Phosphoproteomics Profiling: Overcoming Challenges in Sensitivity and Quantification. Proteomics 2024:e202400087. [PMID: 39696887 DOI: 10.1002/pmic.202400087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/29/2024] [Accepted: 11/29/2024] [Indexed: 12/20/2024]
Abstract
Protein phosphorylation introduces post-genomic diversity to proteins, which plays a crucial role in various cellular activities. Elucidation of system-wide signaling cascades requires high-performance tools for precise identification and quantification of dynamics of site-specific phosphorylation events. Recent advances in phosphoproteomic technologies have enabled the comprehensive mapping of the dynamic phosphoproteomic landscape, which has opened new avenues for exploring cell type-specific functional networks underlying cellular functions and clinical phenotypes. Here, we provide an overview of the basics and challenges of phosphoproteomics, as well as the technological evolution and current state-of-the-art global and quantitative phosphoproteomics methodologies. With a specific focus on highly sensitive platforms, we summarize recent trends and innovations in miniaturized sample preparation strategies for micro-to-nanoscale and single-cell profiling, data-independent acquisition mass spectrometry (DIA-MS) for enhanced coverage, and quantitative phosphoproteomic pipelines for deep mapping of cell and disease biology. Each aspect of phosphoproteomic analysis presents unique challenges and opportunities for improvement and innovation. We specifically highlight evolving phosphoproteomic technologies that enable deep profiling from low-input samples. Finally, we discuss the persistent challenges in phosphoproteomic technologies, including the feasibility of nanoscale and single-cell phosphoproteomics, as well as future outlooks for biomedical applications.
Collapse
Affiliation(s)
- Gul Muneer
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | | | - Yu-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
2
|
Saridogan T, Akcakanat A, Zhao M, Evans KW, Yuca E, Scott S, Kirby BP, Zheng X, Ha MJ, Chen H, Ng PKS, DiPeri TP, Mills GB, Rodon Ahnert J, Damodaran S, Meric-Bernstam F. Efficacy of futibatinib, an irreversible fibroblast growth factor receptor inhibitor, in FGFR-altered breast cancer. Sci Rep 2023; 13:20223. [PMID: 37980453 PMCID: PMC10657448 DOI: 10.1038/s41598-023-46586-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/02/2023] [Indexed: 11/20/2023] Open
Abstract
Several alterations in fibroblast growth factor receptor (FGFR) genes have been found in breast cancer; however, they have not been well characterized as therapeutic targets. Futibatinib (TAS-120; Taiho) is a novel, selective, pan-FGFR inhibitor that inhibits FGFR1-4 at nanomolar concentrations. We sought to determine futibatinib's efficacy in breast cancer models. Nine breast cancer patient-derived xenografts (PDXs) with various FGFR1-4 alterations and expression levels were treated with futibatinib. Antitumor efficacy was evaluated by change in tumor volume and time to tumor doubling. Alterations indicating sensitization to futibatinib in vivo were further characterized in vitro. FGFR gene expression between patient tumors and matching PDXs was significantly correlated; however, overall PDXs had higher FGFR3-4 expression. Futibatinib inhibited tumor growth in 3 of 9 PDXs, with tumor stabilization in an FGFR2-amplified model and prolonged regression (> 110 days) in an FGFR2 Y375C mutant/amplified model. FGFR2 overexpression and, to a greater extent, FGFR2 Y375C expression in MCF10A cells enhanced cell growth and sensitivity to futibatinib. Per institutional and public databases, FGFR2 mutations and amplifications had a population frequency of 1.1%-2.6% and 1.5%-2.5%, respectively, in breast cancer patients. FGFR2 alterations in breast cancer may represent infrequent but highly promising targets for futibatinib.
Collapse
Affiliation(s)
- Turcin Saridogan
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, Unit 455, Houston, TX, 77030, USA
- Department of Basic Oncology, Graduate School of Health Sciences, Hacettepe University, Ankara, 06100, Turkey
| | - Argun Akcakanat
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, Unit 455, Houston, TX, 77030, USA
| | - Ming Zhao
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, Unit 455, Houston, TX, 77030, USA
| | - Kurt W Evans
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, Unit 455, Houston, TX, 77030, USA
| | - Erkan Yuca
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, Unit 455, Houston, TX, 77030, USA
| | - Stephen Scott
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, Unit 455, Houston, TX, 77030, USA
| | - Bryce P Kirby
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, Unit 455, Houston, TX, 77030, USA
| | - Xiaofeng Zheng
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Min Jin Ha
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Biostatistics, Graduate School of Public Health, Yonsei University, Seoul, Republic of Korea
| | - Huiqin Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Patrick K S Ng
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
- Department of Pediatrics, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Timothy P DiPeri
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, Unit 455, Houston, TX, 77030, USA
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Gordon B Mills
- Division of Oncological Sciences, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, 97239, USA
- Precision Oncology, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Jordi Rodon Ahnert
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, Unit 455, Houston, TX, 77030, USA
- The Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Senthil Damodaran
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, Unit 455, Houston, TX, 77030, USA
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, Unit 455, Houston, TX, 77030, USA.
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- The Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
3
|
Zhai LH, Chen KF, Hao BB, Tan MJ. Proteomic characterization of post-translational modifications in drug discovery. Acta Pharmacol Sin 2022; 43:3112-3129. [PMID: 36372853 PMCID: PMC9712763 DOI: 10.1038/s41401-022-01017-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/07/2022] [Indexed: 11/15/2022] Open
Abstract
Protein post-translational modifications (PTMs), which are usually enzymatically catalyzed, are major regulators of protein activity and involved in almost all celluar processes. Dysregulation of PTMs is associated with various types of diseases. Therefore, PTM regulatory enzymes represent as an attractive and important class of targets in drug research and development. Inhibitors against kinases, methyltransferases, deacetyltransferases, ubiquitin ligases have achieved remarkable success in clinical application. Mass spectrometry-based proteomics technologies serve as a powerful approach for system-wide characterization of PTMs, which facilitates the identification of drug targets, elucidation of the mechanisms of action of drugs, and discovery of biomakers in personalized therapy. In this review, we summarize recent advances of proteomics-based studies on PTM targeting drugs and discuss how proteomics strategies facilicate drug target identification, mechanism elucidation, and new therapy development in precision medicine.
Collapse
Affiliation(s)
- Lin-Hui Zhai
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Zhongshan Institute of Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, Zhongshan, 528400, China
| | - Kai-Feng Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bing-Bing Hao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Min-Jia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Zhongshan Institute of Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, Zhongshan, 528400, China.
| |
Collapse
|
4
|
Hercules SM, Liu X, Bassey-Archibong BBI, Skeete DHA, Smith Connell S, Daramola A, Banjo AA, Ebughe G, Agan T, Ekanem IO, Udosen J, Obiorah C, Ojule AC, Misauno MA, Dauda AM, Egbujo EC, Hercules JC, Ansari A, Brain I, MacColl C, Xu Y, Jin Y, Chang S, Carpten JD, Bédard A, Pond GR, Blenman KRM, Manojlovic Z, Daniel JM. Analysis of the genomic landscapes of Barbadian and Nigerian women with triple negative breast cancer. Cancer Causes Control 2022; 33:831-841. [PMID: 35384527 PMCID: PMC9085672 DOI: 10.1007/s10552-022-01574-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 03/12/2022] [Indexed: 11/10/2022]
Abstract
PURPOSE Triple negative breast cancer (TNBC) is an aggressive breast cancer subtype that disproportionately affects women of African ancestry (WAA) and is often associated with poor survival. Although there is a high prevalence of TNBC across West Africa and in women of the African diaspora, there has been no comprehensive genomics study to investigate the mutational profile of ancestrally related women across the Caribbean and West Africa. METHODS This multisite cross-sectional study used 31 formalin-fixed paraffin-embedded (FFPE) samples from Barbadian and Nigerian TNBC participants. High-resolution whole exome sequencing (WES) was performed on the Barbadian and Nigerian TNBC samples to identify their mutational profiles and comparisons were made to African American, European American and Asian American sequencing data obtained from The Cancer Genome Atlas (TCGA). Whole exome sequencing was conducted on tumors with an average of 382 × coverage and 4335 × coverage for pooled germline non-tumor samples. RESULTS Variants detected at high frequency in our WAA cohorts were found in the following genes NBPF12, PLIN4, TP53 and BRCA1. In the TCGA TNBC cases, these genes had a lower mutation rate, except for TP53 (32% in our cohort; 63% in TCGA-African American; 67% in TCGA-European American; 63% in TCGA-Asian). For all altered genes, there were no differences in frequency of mutations between WAA TNBC groups including the TCGA-African American cohort. For copy number variants, high frequency alterations were observed in PIK3CA, TP53, FGFR2 and HIF1AN genes. CONCLUSION This study provides novel insights into the underlying genomic alterations in WAA TNBC samples and shines light on the importance of inclusion of under-represented populations in cancer genomics and biomarker studies.
Collapse
Affiliation(s)
- Shawn M. Hercules
- grid.25073.330000 0004 1936 8227Department of Biology, McMaster University, Hamilton, ON Canada
- African Caribbean Cancer Consortium, Philadelphia, PA USA
| | - Xiyu Liu
- grid.42505.360000 0001 2156 6853Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA USA
| | | | - Desiree H. A. Skeete
- African Caribbean Cancer Consortium, Philadelphia, PA USA
- grid.412886.10000 0004 0592 769XFaculty of Medical Sciences, University of the West Indies at Cave Hill, Bridgetown, Barbados
- grid.415521.60000 0004 0570 5165Department of Pathology, Queen Elizabeth Hospital, Bridgetown, Barbados
| | - Suzanne Smith Connell
- grid.412886.10000 0004 0592 769XFaculty of Medical Sciences, University of the West Indies at Cave Hill, Bridgetown, Barbados
- grid.415521.60000 0004 0570 5165Department of Radiation Oncology, Queen Elizabeth Hospital, Bridgetown, Barbados
- Present Address: Cancer Specialists Inc, Bridgetown, Barbados
| | - Adetola Daramola
- grid.411283.d0000 0000 8668 7085Department of Anatomic and Molecular Pathology, Lagos University Teaching Hospital, Lagos, Nigeria
| | - Adekunbiola A. Banjo
- grid.411283.d0000 0000 8668 7085Department of Anatomic and Molecular Pathology, Lagos University Teaching Hospital, Lagos, Nigeria
| | - Godwin Ebughe
- grid.413097.80000 0001 0291 6387Department of Pathology, University of Calabar Teaching Hospital, Calabar, Nigeria
| | - Thomas Agan
- grid.413097.80000 0001 0291 6387Department of Obstetrics & Gynaecology, College of Medical Sciences, University of Calabar Teaching Hospital, Calabar, Nigeria
| | - Ima-Obong Ekanem
- grid.413097.80000 0001 0291 6387Department of Pathology, College of Medical Sciences, University of Calabar Teaching Hospital, Calabar, Nigeria
| | - Joe Udosen
- grid.413097.80000 0001 0291 6387Division of General and Breast Surgery, University of Calabar Teaching Hospital, Calabar, Nigeria
| | - Christopher Obiorah
- grid.412738.bDepartment of Anatomical Pathology, University of Port Harcourt Teaching Hospital, Port Harcourt, Nigeria
| | - Aaron C. Ojule
- grid.412738.bDepartment of Chemical Pathology, University of Port Harcourt Teaching Hospital, Port Harcourt, Nigeria
| | - Michael A. Misauno
- grid.411946.f0000 0004 1783 4052Department of Surgery, Jos University Teaching Hospital, Jos, Nigeria
| | - Ayuba M. Dauda
- grid.411946.f0000 0004 1783 4052Department of Pathology, Jos University Teaching Hospital, Jos, Nigeria
| | | | - Jevon C. Hercules
- grid.12916.3d0000 0001 2322 4996Department of Mathematics, University of the West Indies at Mona, Kingston, Jamaica
- grid.12955.3a0000 0001 2264 7233Present Address: Wang Yanan Institute for Studies in Economics, Xiamen University, Xiamen, China
| | - Amna Ansari
- grid.25073.330000 0004 1936 8227Department of Biology, McMaster University, Hamilton, ON Canada
| | - Ian Brain
- grid.25073.330000 0004 1936 8227Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON Canada
| | - Christine MacColl
- grid.25073.330000 0004 1936 8227Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON Canada
| | - Yili Xu
- grid.42505.360000 0001 2156 6853Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA USA
| | - Yuxin Jin
- grid.42505.360000 0001 2156 6853Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA USA
| | - Sharon Chang
- grid.42505.360000 0001 2156 6853Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA USA
| | - John D. Carpten
- grid.42505.360000 0001 2156 6853Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA USA
| | - André Bédard
- grid.25073.330000 0004 1936 8227Department of Biology, McMaster University, Hamilton, ON Canada
| | - Greg R. Pond
- grid.25073.330000 0004 1936 8227Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON Canada
- grid.25073.330000 0004 1936 8227Department of Oncology, McMaster University, Hamilton, ON Canada
| | - Kim R. M. Blenman
- grid.433818.5Department of Internal Medicine, Section of Medical Oncology, Yale Cancer Center, School of Medicine, New Haven, CT USA
- grid.47100.320000000419368710Department of Computer Science, School of Engineering and Applied Science, Yale University, New Haven, CT USA
| | - Zarko Manojlovic
- grid.42505.360000 0001 2156 6853Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA USA
| | - Juliet M. Daniel
- grid.25073.330000 0004 1936 8227Department of Biology, McMaster University, Hamilton, ON Canada
- African Caribbean Cancer Consortium, Philadelphia, PA USA
| |
Collapse
|
5
|
Boichuk S, Dunaev P, Mustafin I, Mani S, Syuzov K, Valeeva E, Bikinieva F, Galembikova A. Infigratinib (BGJ 398), a Pan-FGFR Inhibitor, Targets P-Glycoprotein and Increases Chemotherapeutic-Induced Mortality of Multidrug-Resistant Tumor Cells. Biomedicines 2022; 10:biomedicines10030601. [PMID: 35327403 PMCID: PMC8945560 DOI: 10.3390/biomedicines10030601] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 02/01/2023] Open
Abstract
The microtubule-targeting agents (MTAs) are well-known chemotherapeutic agents commonly used for therapy of a broad spectrum of human malignancies, exhibiting epithelial origin, including breast, lung, and prostate cancer. Despite the impressive response rates shortly after initiation of MTA-based therapy, the vast majority of human malignancies develop resistance to MTAs due to the different mechanisms. Here, we report that infigratinib (BGJ 398), a potent FGFR1-4 inhibitor, restores sensitivity of a broad spectrum of ABCB1-overexpressing cancer cells to certain chemotherapeutic agents, including paclitaxel (PTX) and doxorubicin (Dox). This was evidenced for the triple-negative breast cancer (TNBC), and gastrointestinal stromal tumor (GIST) cell lines, as well. Indeed, when MDR-overexpressing cancer cells were treated with a combination of BGJ 398 and PTX (or Dox), we observed a significant increase of apoptosis which was evidenced by an increased expression of cleaved forms of PARP, caspase-3, and increased numbers of Annexin V-positive cells, as well. Moreover, BGJ 398 used in combination with PTX significantly decreased the viability and proliferation of the resistant cancer cells. As expected, no apoptosis was found in ABCB1-overexpressing cancer cells treated with PTX, Dox, or BGJ 398 alone. Inhibition of FGFR-signaling by BGJ 398 was evidenced by the decreased expression of phosphorylated (i.e., activated) forms of FGFR and FRS-2, a well-known adaptor protein of FGFR signaling, and downstream signaling molecules (e.g., STAT-1, -3, and S6). In contrast, expression of MDR-related ABC-transporters did not change after BGJ 398 treatment, thereby suggesting an impaired function of MDR-related ABC-transporters. By using the fluorescent-labeled chemotherapeutic agent PTX-Alexa488 (Flutax-2) and doxorubicin, exhibiting an intrinsic fluorescence, we found that BGJ 398 substantially impairs their efflux from MDR-overexpressing TNBC cells. Moreover, the efflux of Calcein AM, a well-known substrate for ABCB1, was also significantly impaired in BGJ 398-treated cancer cells, thereby suggesting the ABCB1 as a novel molecular target for BGJ 398. Of note, PD 173074, a potent FGFR1 and VEGFR2 inhibitor failed to retain chemotherapeutic agents inside ABCB1-overexpressing cells. This was consistent with the inability of PD 173074 to sensitize Tx-R cancer cells to PTX and Dox. Collectively, we show here for the first time that BGJ 398 reverses the sensitivity of MDR-overexpressing cancer cells to certain chemotherapeutic agents due to inhibition of their efflux from cancer cells via ABCB1-mediated mechanism.
Collapse
Affiliation(s)
- Sergei Boichuk
- Department of Pathology, Kazan State Medical University, 420012 Kazan, Russia; (P.D.); (S.M.); (K.S.); (F.B.); (A.G.)
- Сentral Research Laboratory, Kazan State Medical University, 420012 Kazan, Russia;
- Department of Radiotherapy and Radiology, Faculty of Surgery, Russian Medical Academy of Continuous Professional Education, 125993 Moscow, Russia
- Correspondence: ; Tel.: +7-917-397-80-93; Fax: +7-843-236-06-52
| | - Pavel Dunaev
- Department of Pathology, Kazan State Medical University, 420012 Kazan, Russia; (P.D.); (S.M.); (K.S.); (F.B.); (A.G.)
| | - Ilshat Mustafin
- Department of Biochemistry, Kazan State Medical University, 420012 Kazan, Russia;
| | - Shinjit Mani
- Department of Pathology, Kazan State Medical University, 420012 Kazan, Russia; (P.D.); (S.M.); (K.S.); (F.B.); (A.G.)
| | - Kirill Syuzov
- Department of Pathology, Kazan State Medical University, 420012 Kazan, Russia; (P.D.); (S.M.); (K.S.); (F.B.); (A.G.)
| | - Elena Valeeva
- Сentral Research Laboratory, Kazan State Medical University, 420012 Kazan, Russia;
| | - Firuza Bikinieva
- Department of Pathology, Kazan State Medical University, 420012 Kazan, Russia; (P.D.); (S.M.); (K.S.); (F.B.); (A.G.)
| | - Aigul Galembikova
- Department of Pathology, Kazan State Medical University, 420012 Kazan, Russia; (P.D.); (S.M.); (K.S.); (F.B.); (A.G.)
| |
Collapse
|
6
|
Francavilla C, O'Brien CS. Fibroblast growth factor receptor signalling dysregulation and targeting in breast cancer. Open Biol 2022; 12:210373. [PMID: 35193394 PMCID: PMC8864352 DOI: 10.1098/rsob.210373] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 01/20/2022] [Indexed: 01/07/2023] Open
Abstract
Fibroblast Growth Factor Receptor (FGFR) signalling plays a critical role in breast embryonal development, tissue homeostasis, tumorigenesis and metastasis. FGFR, its numerous FGF ligands and signalling partners are often dysregulated in breast cancer progression and are one of the causes of resistance to treatment in breast cancer. Furthermore, FGFR signalling on epithelial cells is affected by signals from the breast microenvironment, therefore increasing the possibility of breast developmental abnormalities or cancer progression. Increasing our understanding of the multi-layered roles of the complex family of FGFRs, their ligands FGFs and their regulatory partners may offer novel treatment strategies for breast cancer patients, as a single agent or rational co-target, which will be explored in depth in this review.
Collapse
Affiliation(s)
- Chiara Francavilla
- Division of Molecular and Cellular Function, School of Biological Science, Faculty of Biology, Medicine and Health (FBMH), University of Manchester, Manchester M13 9PT, UK
- The Manchester Breast Centre, University of Manchester, Wilmslow Road, Manchester M20 4GJ, UK
| | - Ciara S. O'Brien
- The Christie Hospital NHS Foundation Trust, Wilmslow Road, Manchester M20 2BX, UK
- The Manchester Breast Centre, University of Manchester, Wilmslow Road, Manchester M20 4GJ, UK
| |
Collapse
|
7
|
Gerritsen JS, White FM. Phosphoproteomics: a valuable tool for uncovering molecular signaling in cancer cells. Expert Rev Proteomics 2021; 18:661-674. [PMID: 34468274 PMCID: PMC8628306 DOI: 10.1080/14789450.2021.1976152] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 08/31/2021] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Many pathologies, including cancer, have been associated with aberrant phosphorylation-mediated signaling networks that drive altered cell proliferation, migration, metabolic regulation, and can lead to systemic inflammation. Phosphoproteomics, the large-scale analysis of protein phosphorylation sites, has emerged as a powerful tool to define signaling network regulation and dysregulation in normal and pathological conditions. AREAS COVERED We provide an overview of methodology for global phosphoproteomics as well as enrichment of specific subsets of the phosphoproteome, including phosphotyrosine and phospho-motif enrichment of kinase substrates. We review quantitative methods, advantages and limitations of different mass spectrometry acquisition formats, and computational approaches to extract biological insight from phosphoproteomics data. Throughout, we discuss various applications and their challenges in implementation. EXPERT OPINION Over the past 20 years the field of phosphoproteomics has advanced to enable deep biological and clinical insight through the quantitative analysis of signaling networks. Future areas of development include Clinical Laboratory Improvement Amendments (CLIA)-approved methods for analysis of clinical samples, continued improvements in sensitivity to enable analysis of small numbers of rare cells and tissue microarrays, and computational methods to integrate data resulting from multiple systems-level quantitative analytical methods.
Collapse
Affiliation(s)
- Jacqueline S Gerritsen
- Koch Institute for Integrative Cancer Research; Center for Precision Cancer Medicine; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, U.S.A
| | - Forest M White
- Koch Institute for Integrative Cancer Research; Center for Precision Cancer Medicine; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, U.S.A
| |
Collapse
|
8
|
Golden E, Rashwan R, Woodward EA, Sgro A, Wang E, Sorolla A, Waryah C, Tie WJ, Cuyàs E, Ratajska M, Kardaś I, Kozlowski P, Johnstone EKM, See HB, Duffy C, Parry J, Lagerborg KA, Czapiewski P, Menendez JA, Gorczyński A, Wasag B, Pfleger KDG, Curtis C, Lee BK, Kim J, Cursons J, Pavlos NJ, Biernat W, Jain M, Woo AJ, Redfern A, Blancafort P. The oncogene AAMDC links PI3K-AKT-mTOR signaling with metabolic reprograming in estrogen receptor-positive breast cancer. Nat Commun 2021; 12:1920. [PMID: 33772001 PMCID: PMC7998036 DOI: 10.1038/s41467-021-22101-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 02/25/2021] [Indexed: 12/13/2022] Open
Abstract
Adipogenesis associated Mth938 domain containing (AAMDC) represents an uncharacterized oncogene amplified in aggressive estrogen receptor-positive breast cancers. We uncover that AAMDC regulates the expression of several metabolic enzymes involved in the one-carbon folate and methionine cycles, and lipid metabolism. We show that AAMDC controls PI3K-AKT-mTOR signaling, regulating the translation of ATF4 and MYC and modulating the transcriptional activity of AAMDC-dependent promoters. High AAMDC expression is associated with sensitization to dactolisib and everolimus, and these PI3K-mTOR inhibitors exhibit synergistic interactions with anti-estrogens in IntClust2 models. Ectopic AAMDC expression is sufficient to activate AKT signaling, resulting in estrogen-independent tumor growth. Thus, AAMDC-overexpressing tumors may be sensitive to PI3K-mTORC1 blockers in combination with anti-estrogens. Lastly, we provide evidence that AAMDC can interact with the RabGTPase-activating protein RabGAP1L, and that AAMDC, RabGAP1L, and Rab7a colocalize in endolysosomes. The discovery of the RabGAP1L-AAMDC assembly platform provides insights for the design of selective blockers to target malignancies having the AAMDC amplification.
Collapse
Affiliation(s)
- Emily Golden
- Cancer Epigenetics Group, The Harry Perkins Institute of Medical Research, The University of Western Australia, Perth, WA, Australia
- Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
| | - Rabab Rashwan
- Cancer Epigenetics Group, The Harry Perkins Institute of Medical Research, The University of Western Australia, Perth, WA, Australia
- Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
- Department of Microbiology and Immunology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Eleanor A Woodward
- Cancer Epigenetics Group, The Harry Perkins Institute of Medical Research, The University of Western Australia, Perth, WA, Australia
- Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
| | - Agustin Sgro
- Cancer Epigenetics Group, The Harry Perkins Institute of Medical Research, The University of Western Australia, Perth, WA, Australia
- Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
- School of Human Sciences, The University of Western Australia, Perth, WA, Australia
| | - Edina Wang
- Cancer Epigenetics Group, The Harry Perkins Institute of Medical Research, The University of Western Australia, Perth, WA, Australia
- Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
| | - Anabel Sorolla
- Cancer Epigenetics Group, The Harry Perkins Institute of Medical Research, The University of Western Australia, Perth, WA, Australia
- Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
| | - Charlene Waryah
- Cancer Epigenetics Group, The Harry Perkins Institute of Medical Research, The University of Western Australia, Perth, WA, Australia
- Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
| | - Wan Jun Tie
- Cancer Epigenetics Group, The Harry Perkins Institute of Medical Research, The University of Western Australia, Perth, WA, Australia
- Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
| | - Elisabet Cuyàs
- Cancer Epigenetics Group, The Harry Perkins Institute of Medical Research, The University of Western Australia, Perth, WA, Australia
- Girona Biomedical Research Institute, Girona, Catalonia, Spain
- ProCURE (Program Against Cancer Therapeutic Resistance), Metabolism & Cancer Group, Catalan Institute of Oncology, Girona, Catalonia, Spain
| | - Magdalena Ratajska
- Department of Biology and Medical Genetics, Medical University of Gdansk, Gdansk, Poland
- The Centre for Cell Therapy and Regenerative Medicine, School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
- Department of Pathology, Otago University, Dunedin, New Zealand
| | - Iwona Kardaś
- Department of Biology and Medical Genetics, Medical University of Gdansk, Gdansk, Poland
- Laboratory of Clinical Genetics, University Clinical Centre, Gdansk, Poland
| | - Piotr Kozlowski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Elizabeth K M Johnstone
- Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research, Nedlands, WA, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Melbourne and Perth, Australia
| | - Heng B See
- Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research, Nedlands, WA, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Melbourne and Perth, Australia
| | - Ciara Duffy
- Cancer Epigenetics Group, The Harry Perkins Institute of Medical Research, The University of Western Australia, Perth, WA, Australia
- Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
- School of Human Sciences, The University of Western Australia, Perth, WA, Australia
| | - Jeremy Parry
- Department of Anatomical Pathology, Path West Laboratory, Fiona Stanley Hospital Network, Murdoch, WA, Australia
| | - Kim A Lagerborg
- Departments of Medicine and Pharmacology, University of California, San Diego, CA, USA
| | - Piotr Czapiewski
- Department of Pathomorphology, Medical University of Gdansk, Gdansk, Poland
- Institute of Pathology, Dessau Medical Centre, Dessau, Germany
| | - Javier A Menendez
- Girona Biomedical Research Institute, Girona, Catalonia, Spain
- ProCURE (Program Against Cancer Therapeutic Resistance), Metabolism & Cancer Group, Catalan Institute of Oncology, Girona, Catalonia, Spain
| | - Adam Gorczyński
- Department of Pathomorphology, Medical University of Gdansk, Gdansk, Poland
| | - Bartosz Wasag
- Department of Biology and Medical Genetics, Medical University of Gdansk, Gdansk, Poland
- Laboratory of Clinical Genetics, University Clinical Centre, Gdansk, Poland
| | - Kevin D G Pfleger
- Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research, Nedlands, WA, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Melbourne and Perth, Australia
- Dimerix Limited, Nedlands, WA, Australia
| | - Christina Curtis
- Stanford University School of Medicine (Departments of Medicine & Genetics) and Stanford Cancer Institute, Stanford, CA, USA
| | - Bum-Kyu Lee
- Department of Biomedical Sciences, Cancer Research Center, University at Albany-State University of New York, Rensselaer, NY, USA
| | - Jonghwan Kim
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, USA
| | - Joseph Cursons
- Biomedicine Discovery Institute & Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Nathan J Pavlos
- The Centre for Cell Therapy and Regenerative Medicine, School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Wojciech Biernat
- Department of Pathomorphology, Medical University of Gdansk, Gdansk, Poland
| | - Mohit Jain
- Departments of Medicine and Pharmacology, University of California, San Diego, CA, USA
| | - Andrew J Woo
- Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia
| | - Andrew Redfern
- School of Medicine, University of Western Australia, Perth, WA, Australia
| | - Pilar Blancafort
- Cancer Epigenetics Group, The Harry Perkins Institute of Medical Research, The University of Western Australia, Perth, WA, Australia.
- Centre for Medical Research, The University of Western Australia, Perth, WA, Australia.
- School of Human Sciences, The University of Western Australia, Perth, WA, Australia.
- The Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
9
|
Liu J, Pandya P, Afshar S. Therapeutic Advances in Oncology. Int J Mol Sci 2021; 22:2008. [PMID: 33670524 PMCID: PMC7922397 DOI: 10.3390/ijms22042008] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/16/2022] Open
Abstract
Around 77 new oncology drugs were approved by the FDA in the past five years; however, most cancers remain untreated. Small molecules and antibodies are dominant therapeutic modalities in oncology. Antibody-drug conjugates, bispecific antibodies, peptides, cell, and gene-therapies are emerging to address the unmet patient need. Advancement in the discovery and development platforms, identification of novel targets, and emergence of new technologies have greatly expanded the treatment options for patients. Here, we provide an overview of various therapeutic modalities and the current treatment options in oncology, and an in-depth discussion of the therapeutics in the preclinical stage for the treatment of breast cancer, lung cancer, and multiple myeloma.
Collapse
Affiliation(s)
| | | | - Sepideh Afshar
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA; (J.L.); (P.P.)
| |
Collapse
|