1
|
Muraleedharan AK, Co K, Vallet M, Zaki A, Karolak F, Bogicevic C, Perronet K, Dkhil B, Paillard C, Fiorini-Debuisschert C, Treussart F. Ferroelectric Texture of Individual Barium Titanate Nanocrystals. ACS NANO 2024; 18:18355-18367. [PMID: 38952163 DOI: 10.1021/acsnano.4c02291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Ferroelectric materials display exotic polarization textures at the nanoscale that could be used to improve the energetic efficiency of electronic components. The vast majority of studies were conducted in two dimensions on thin films that can be further nanostructured, but very few studies address the situation of individual isolated nanocrystals (NCs) synthesized in solution, while such structures could have other fields of applications. In this work, we experimentally and theoretically studied the polarization texture of ferroelectric barium titanate (BaTiO3, BTO) NCs attached to a conductive substrate and surrounded by air. We synthesized NCs of well-defined quasicubic shape and 160 nm average size that conserve the tetragonal structure of BTO at room temperature. We then investigated the inverse piezoelectric properties of such pristine individual NCs by vector piezoresponse force microscopy (PFM), taking particular care to suppress electrostatic artifacts. In all of the NCs studied, we could not detect any vertical PFM signal, and the maps of the lateral response all displayed larger displacement amplitude on the edges with deformations converging toward the center. Using field phase simulations dedicated to ferroelectric nanostructures, we were able to predict the equilibrium polarization texture. These simulations revealed that the NC core is composed of 180° up and down domains defining the polar axis that rotate by 90° in the two facets orthogonal to this axis, eventually lying within these planes forming a layer of about 10 nm thickness mainly composed of 180° domains along an edge. From this polarization distribution, we predicted the lateral PFM response, which was revealed to be in very good qualitative agreement with the experimental observations. This work positions PFM as a relevant tool to evaluate the potential of complex ferroelectric nanostructures to be used as sensors.
Collapse
Affiliation(s)
- Athulya K Muraleedharan
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, CentraleSupélec, LuMIn, 91190 Gif-sur-Yvette, France
| | - Kevin Co
- Université Paris-Saclay, CentraleSupélec, CNRS, Laboratoire SPMS, 91190 Gif-sur-Yvette, France
| | - Maxime Vallet
- Université Paris-Saclay, CentraleSupélec, CNRS, Laboratoire SPMS, 91190 Gif-sur-Yvette, France
| | - Abdelali Zaki
- Université Paris-Saclay, CentraleSupélec, CNRS, Laboratoire SPMS, 91190 Gif-sur-Yvette, France
| | - Fabienne Karolak
- Université Paris-Saclay, CentraleSupélec, CNRS, Laboratoire SPMS, 91190 Gif-sur-Yvette, France
| | - Christine Bogicevic
- Université Paris-Saclay, CentraleSupélec, CNRS, Laboratoire SPMS, 91190 Gif-sur-Yvette, France
| | - Karen Perronet
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, CentraleSupélec, LuMIn, 91190 Gif-sur-Yvette, France
| | - Brahim Dkhil
- Université Paris-Saclay, CentraleSupélec, CNRS, Laboratoire SPMS, 91190 Gif-sur-Yvette, France
| | - Charles Paillard
- Université Paris-Saclay, CentraleSupélec, CNRS, Laboratoire SPMS, 91190 Gif-sur-Yvette, France
- Smart Ferroic Materials Center, Institute for Nanoscience & Engineering and Department of Physics, University of Arkansas, Fayetteville, 72701 Arkansas, United States
| | | | - François Treussart
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, CentraleSupélec, LuMIn, 91190 Gif-sur-Yvette, France
| |
Collapse
|
2
|
Xing Z, Suo H, Chun F, Wei X, Wang F. Sensitive Luminescence Thermometry through Excitation Intensity Ratio in Eu-Doped BaTiO 3. ACS APPLIED MATERIALS & INTERFACES 2024; 16:13972-13979. [PMID: 38449102 DOI: 10.1021/acsami.3c18301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Optical ratiometric thermometry techniques have gained much attention in recent years due to their reliable and noncontact temperature sensing capability for industrial and biorelated applications. Herein, we exploited the temperature dependence of the absorption band of BaTiO3 (BTO) for novel excitation intensity ratio (EIR) thermometry. Photoluminescence and excitation properties of Eu3+-doped BTO powders were studied as a function of Eu3+ doping concentration. The excitation peak intensities at 397 and 468 nm, corresponding to the 7F0 → 5L6 and 5D2 transitions of Eu3+, were used as EIR parameters. The temperature dependence of the EIR can be explained by the competitive absorption between Eu3+ and the BTO host. The EIR properties were studied in relation to the doping concentration, registering a maximum relative sensitivity (Sr) of 4.89% K-1 in BTO:Eu3+ (0.5%) at 303 K. An amphoteric Eu3+ occupation mode at both Ba2+ and Ti4+ sites was found to interpret the doping concentration dependence of the Sr. The reduced Ba2+ site occupation ratio proved to be responsible for the low Sr values at high Eu3+ doping concentrations. Accordingly, an Eu3+/Ti3+ codoping method was further proposed to improve the Sr by increasing the Ba2+ site occupation ratio. Our result showed that BTO:Eu3+ (0.5%) demonstrated an enhancement of Sr from 4.89 to 6.42% K-1 at 303 K after 2% Ti3+ codoping.
Collapse
Affiliation(s)
- Zhifeng Xing
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China
| | - Hao Suo
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China
- National-Local Joint Engineering Laboratory of New Energy Photoelectric Devices, Hebei Key Laboratory of Optic-Electronic Information and Materials, College of Physics Science & Technology, Hebei University, Baoding 071002, China
| | - Fengjun Chun
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China
| | - Xiaohe Wei
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China
| | - Feng Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China
| |
Collapse
|
3
|
Bredillet K, Riporto F, Guo T, Dhouib A, Multian V, Monnier V, Figueras Llussà P, Beauquis S, Bonacina L, Mugnier Y, Le Dantec R. Dual second harmonic generation and up-conversion photoluminescence emission in highly-optimized LiNbO 3 nanocrystals doped and co-doped with Er 3+ and Yb 3. NANOSCALE 2024. [PMID: 38497193 DOI: 10.1039/d4nr00431k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Preparation from the aqueous alkoxide route of doped and co-doped lithium niobate nanocrystals with Er3+ and Yb3+ ions, and detailed investigations of their optical properties are presented in this comprehensive work. Simultaneous emission under femtosecond laser excitation of second harmonic generation (SHG) and up-conversion photoluminescence (UC-PL) is studied from colloidal suspensions according to the lanthanide ion contents. Special attention has been paid to produce phase pure nanocrystals of constant size (∼20 nm) thus allowing a straightforward comparison and optimization of the Er content for increasing the green UC-PL signals under 800 nm excitation. An optimal molar concentration at about 4 molar% in erbium ions is demonstrated, that is well above the concentration usually achieved in bulk crystals. Similarly, for co-doped LiNbO3 nanocrystals, different lanthanide concentrations and Yb/Er content ratios are tested allowing optimization of the green and red up-conversion excited at 980 nm, and analysis of the underlying mechanisms from excitation spectra. All together, these findings provide valuable insights into the wet-chemical synthesis and potential of doped and co-doped LiNbO3 nanocrystals for advanced applications, combining both SHG and UC-PL emissions from the particle core.
Collapse
Affiliation(s)
- K Bredillet
- Université Savoie Mont Blanc, SYMME, F-74000, Annecy, France.
| | - F Riporto
- Université Savoie Mont Blanc, SYMME, F-74000, Annecy, France.
| | - T Guo
- Université Savoie Mont Blanc, SYMME, F-74000, Annecy, France.
| | - A Dhouib
- Université Savoie Mont Blanc, SYMME, F-74000, Annecy, France.
| | - V Multian
- Université Savoie Mont Blanc, SYMME, F-74000, Annecy, France.
| | - V Monnier
- Univ. Lyon, Ecole Centrale de Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS, INL, UMR5270, 69130 Ecully, France
| | - P Figueras Llussà
- Department of Applied Physics, Université de Genève, 1211 Genève 4, Switzerland
| | - S Beauquis
- Université Savoie Mont Blanc, SYMME, F-74000, Annecy, France.
| | - L Bonacina
- Department of Applied Physics, Université de Genève, 1211 Genève 4, Switzerland
| | - Y Mugnier
- Université Savoie Mont Blanc, SYMME, F-74000, Annecy, France.
| | - R Le Dantec
- Université Savoie Mont Blanc, SYMME, F-74000, Annecy, France.
| |
Collapse
|
4
|
Singh P, Mishra H, Rai SB. Multicolor tunable emission through energy transfer in Dy 3+/Ho 3+ co-doped CaTiO 3 phosphors with high thermal stability for solid state lighting applications. Sci Rep 2023; 13:21221. [PMID: 38040827 PMCID: PMC10692187 DOI: 10.1038/s41598-023-46065-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 10/27/2023] [Indexed: 12/03/2023] Open
Abstract
The exploration of multicolor emitting phosphors with single phase is extremely important for n-UV chip excited LED/WLED's and multicolor display devices. In this paper, Dy3+, Ho3+ singly doped and Dy3+/Ho3+ co-doped CaTiO3 phosphor materials have been synthesized by solid state reaction method at 1473 K. The synthesized materials were characterized by XRD, FE-SEM, EDX, FTIR, PL and lifetime measurements. The PL emission spectra of Dy3+ doped CaTiO3 phosphors give intense blue and yellow emissions under UV excitation, while the PL emission spectra of Ho3+ doped CaTiO3 phosphor show intense green emission under UV/blue excitations. Further, to get the multicolor emission including white light, Dy3+ and Ho3+ were co-doped simultaneously in CaTiO3 host. It is found that alongwith colored and white light emissions, it also shows energy transfer from Dy3+ to Ho3+ with 367 nm and from Ho3+ to Dy3+ under 362 nm excitations. The energy transfer efficiency is found to be 67.76% and 69.39% for CaTiO3:4Dy3+/3Ho3+ and CaTiO3:3Ho3+/5Dy3+ phosphors, respectively. The CIE color coordinates, CCT and color purity of the phosphors have been calculated, which show color tunability from whitish to deep green via greenish yellow color. The lifetime of 4F9/2 level of Dy3+ ion and 5S2 level of Ho3+ ion is decreased in presence of Ho3+ and Dy3+ ions, respectively. This is due to energy transfer from Dy3+ to Ho3+ ions and vice versa. A temperature dependent photoluminescence studied of CaTiO3:4Dy3+/2Ho3+ phosphor show a high thermal stability (82% at 423 K of initial temperature 303 K) in the temperature range 303-483 K with activation energy 0.17 eV. The PLQY are 30%, 33% and 35% for CaTiO3:4Dy3+, CaTiO3:4Dy3+/2Ho3+ and CaTiO3:3Ho3+ phosphors, respectively. Hence, Dy3+, Ho3+ singly doped and Dy3+/Ho3+ co-doped CaTiO3 phosphor materials can be used in the field of single matrix perovskite color tunable phosphors which may be used in multicolor display devices, n-UV chip excited LED/WLED's and photodynamic therapy for the cancer treatment.
Collapse
Affiliation(s)
- Priti Singh
- Laser and Spectroscopy Laboratory, Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Hirdyesh Mishra
- Physics Section, Mahila Maha Vidhyalaya, Department of Physics, Banaras Hindu University, Varanasi, 221005, India
| | - Shyam Bahadur Rai
- Laser and Spectroscopy Laboratory, Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
5
|
Balhara A, Gupta SK, Debnath AK, Sudarshan K. Utilizing Energy Transfer in Mn 2+/Ho 3+/Yb 3+ Tri-doped ZnAl 2O 4 Nanophosphors for Tunable Luminescence and Highly Sensitive Visual Cryogenic Thermometry. ACS OMEGA 2023; 8:30459-30473. [PMID: 37636912 PMCID: PMC10448494 DOI: 10.1021/acsomega.3c03629] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/28/2023] [Indexed: 08/29/2023]
Abstract
Lanthanide (Ln3+)-doped upconversion (UC) phosphors converting near-infrared (NIR) light to visible light hold very high promise toward biomedical applications. The scientific findings on luminescent thermometers revealed their superiority for noninvasive thermal sensing. However, only few reports showcase their potential for applications in extreme conditions (temperatures below -70 °C) restricted by low thermal sensitivity. Here, we demonstrate the tailoring of luminescence properties via introducing Ho3+-Mn2+ energy transfer (ET) routes with judicious codoping of Mn2+ ions in ZnAl2O4/Ho3+,Yb3+ phosphor. Preferentially, a singular red UC emission is required to improve the bioimaging sensitivity and minimize tissue damage. We could attain UC emission with 94% red component by a two-photon UC process. Higher temperature annealing brings the color coordinates to the green domain, highlighting the potential for color-tunable luminescence switch. Moreover, this work investigates the thermometric properties of ZnAl2O4/Yb3+, Ho3+ in the range of 80-300 K and influence of inducing extra ET pathways by Mn2+ codoping. Interestingly, the luminescence intensities for nonthermally coupled (5F4,5S2) and the 5F5 radiative transitions of Ho3+ ions display opposite behavior at 80 and 300 K, which revealed competition between temperature-sensitive decay pathways. The codoping of Mn2+ ions is fruitful in causing a fourfold increase of absolute sensitivity. Notably, the color tunability from green through yellow to red is helpful in rough temperature estimation by naked eyes. The maximum relative (Sr) and absolute sensitivities (Sa) were estimated to be 1.89% K-1 (140 K) and 0.0734 K-1 (300 K), respectively. Even at 80 K, a Sa of 0.00447 K-1 and Sr of 0.6025% K-1 were achievable in our case, which are higher than most of the other Ln3+-based systems. The above-mentioned results demonstrate the potential of ZnAl2O4/Yb3+,Ho3+ for cryogenic optical thermometry and a strategy to design new Ln3+-based UC thermometers by taking advantage of ET routes.
Collapse
Affiliation(s)
- Annu Balhara
- Homi
Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
- Radiochemistry
Division, Bhabha Atomic Research Centre,Trombay, Mumbai 400085, India
| | - Santosh Kumar Gupta
- Homi
Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
- Radiochemistry
Division, Bhabha Atomic Research Centre,Trombay, Mumbai 400085, India
| | - Anil Krishna Debnath
- Homi
Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
- Technical
Physics Division, Bhabha Atomic Research
Centre, Trombay, Mumbai 400085, India
| | - Kathi Sudarshan
- Homi
Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
- Radiochemistry
Division, Bhabha Atomic Research Centre,Trombay, Mumbai 400085, India
| |
Collapse
|
6
|
Wang W, Tan T, Wang S, Tan T, Zhang S, Li C, Zhang H. Multiple site occupancy induced yellow-orange emission in an Eu 2+-doped KSr 6Sc(SiO 4) 4 phosphor towards optical temperature sensors. Dalton Trans 2023; 52:6331-6342. [PMID: 37082961 DOI: 10.1039/d3dt00163f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Phosphors have attracted significant interest as potential optical temperature sensors in recent years. In our work, a new blue-light stimulated KSr6Sc(SiO4)4:Eu2+ phosphor with decorative kröhnkite-like octahedral tetrahedral chains was successfully synthesized. Multiple site occupancy occurred in KSr6Sc(SiO4)4:Eu2+ and induced a yellow-orange emission band with a peak at 571 nm and an FWHM of 91 nm. Gaussian fitting and time-resolved photoluminescence mapping were combined to analyze the occupation of Eu2+ in five Sr2+ sites. In the meantime, the site occupation preference, energy transfer process, and thermal quenching mechanism of Eu2+ emission centers have been comprehensively examined. Under 450 nm excitation, the optimal sample possesses an acceptable quantum efficiency (EQE = 17.3%) and a high sensitivity between luminescence properties and temperature variation ranging from 200 to 475 K. The optimal sample's relative sensor sensitivity achieves a maximum value of 3.53% K-1 at 475 K. The phosphor KSr6Sc(SiO4)4:0.07Eu2+ presents the potentiality as an optical thermometer.
Collapse
Affiliation(s)
- Wenjing Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, P. R. China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Tao Tan
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Shangwei Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, P. R. China
| | - Taixing Tan
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, P. R. China
| | - Su Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Chengyu Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| |
Collapse
|
7
|
Grigorjevaite J, Katelnikovas A. Optical Properties Investigation of Upconverting K 2Gd(PO 4)(WO 4):20%Yb 3+,Tm 3+ Phosphors. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1305. [PMID: 36770312 PMCID: PMC9920437 DOI: 10.3390/ma16031305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/22/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Nowadays, scientists are interested in inorganic luminescence materials that can be excited with UV or NIR radiation and emit in the visible range. Such inorganic materials can be successfully used as luminescent or anti-counterfeiting pigments. In this work, we report the synthesis and optical properties investigation of solely Tm3+ doped and Yb3+/Tm3+ co-doped K2Gd(PO4)(WO4) phosphors. The single-phase samples were prepared using a solid-state reaction method. The Tm3+ concentration was changed from 0.5% to 5%. Downshifting and upconversion emission studies were performed under 360 nm and 980 nm excitation, respectively. Yb3+ ions were used as sensitizers in the K2Gd(PO4)(WO4) phosphors to transfer the captured energy to Tm3+ ions. It turned out that under UV excitation, phosphors emitted in the blue spectral area regardless of the presence or absence of Yb3+. However, a very strong deep-red (~800 nm) emission was observed when Yb3+ and Tm3+-containing samples were excited with a 980 nm wavelength laser. It is interesting that the highest upconversion emission in the UV/Visible range was achieved for 20% Yb3+, 0.5% Tm3+ doped sample, whereas the sample co-doped with 20% Yb3+, 2% Tm3+ showed the most intensive UC emission band in the NIR range. The materials were characterized using powder X-ray diffraction and scanning electron microscopy. Optical properties were studied using steady-state and kinetic downshifting and upconversion photoluminescence spectroscopy.
Collapse
|
8
|
Grigorjevaite J, Katelnikovas A. Up-Converting K 2Gd(PO 4)(WO 4):20%Yb 3+,Ho 3+ Phosphors for Temperature Sensing. MATERIALS (BASEL, SWITZERLAND) 2023; 16:917. [PMID: 36769930 PMCID: PMC9917978 DOI: 10.3390/ma16030917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Inorganic luminescent materials that can be excited with NIR radiation and emit in the visible spectrum have recently gained much scientific interest. Such materials can be utilized as anti-counterfeiting pigments, luminescent thermometers, bio-imaging agents, etc. In this work, we report the synthesis and optical properties of K2Gd(PO4)(WO4):Ho3+ and K2Gd(PO4)(WO4):20%Yb3+,Ho3+ powders. The single-phase samples were prepared by the solid-state reaction method, and the Ho3+ concentration was changed from 0.5% to 10% with respect to Gd3+. It is interesting to note that under 450 nm excitation, no concentration quenching was observed in K2Gd(PO4)(WO4):Ho3+ (at least up to 10% Ho3+) samples. However, adding 20% Yb3+ has caused a gradual decrease in Ho3+ emission intensity with an increase in its concentration. It turned out that this phenomenon is caused by the increasing probability of Ho3+ → Yb3+ energy transfer when Ho3+ content increases. K2Gd(PO4)(WO4):20%Yb3+,0.5%Ho3+ sample showed exceptionally high up-conversion (UC) emission stability in the 77-500 K range. The UC emission intensity reached a maximum at ca. 350 K, and the intensity at 500 K was around four times stronger than the intensity at 77 K. Moreover, the red/green emission ratio gradually increased with increasing temperature, which could be used for temperature sensing purposes.
Collapse
Affiliation(s)
| | - Arturas Katelnikovas
- Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| |
Collapse
|
9
|
Upadhyay MM, Kumar K. Gd3+ ion induced UV upconversion emission and temperature sensing in Tm3+/Yb3+:Y2O3 phosphor. J RARE EARTH 2022. [DOI: 10.1016/j.jre.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Shwetabh K, Maurya SK, Banerjee A, Poddar R, Kumar K. Synthesis of NaYF 4:Ho 3+/Yb 3+ colloidal upconversion phosphor and its application for OCT-based imaging, temperature sensing, fingerprinting and security ink. NEW J CHEM 2022. [DOI: 10.1039/d2nj03878a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In this work, an NaYF4:Ho3+/Yb3+ upconversion phosphor in colloidal form was synthesized and then its suitability for image contrast enhancement in optical coherence tomography (OCT) and photothermal (PT) OCT imaging was analysed.
Collapse
Affiliation(s)
- Kumar Shwetabh
- Optical Materials and Bio-imaging Research Laboratory, Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad-826004, India
| | - Sachin K. Maurya
- Optical Materials and Bio-imaging Research Laboratory, Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad-826004, India
| | - Abhishek Banerjee
- Biophotonics Lab, Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand-835215, India
| | - Raju Poddar
- Biophotonics Lab, Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand-835215, India
| | - K. Kumar
- Optical Materials and Bio-imaging Research Laboratory, Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad-826004, India
| |
Collapse
|
11
|
Liu F, Tian Y, Deng D, Wu M, Chen B, Zhou L, Xu S. An optical thermometer with high sensitivity and superior signal discriminability based on dual-emitting Ce3+/Eu2+ co-doped La5Si2BO13 thermochromic phosphor. J RARE EARTH 2021. [DOI: 10.1016/j.jre.2020.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Mahata MK, De R, Lee KT. Near-Infrared-Triggered Upconverting Nanoparticles for Biomedicine Applications. Biomedicines 2021; 9:756. [PMID: 34210059 PMCID: PMC8301434 DOI: 10.3390/biomedicines9070756] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/24/2021] [Accepted: 06/24/2021] [Indexed: 01/10/2023] Open
Abstract
Due to the unique properties of lanthanide-doped upconverting nanoparticles (UCNP) under near-infrared (NIR) light, the last decade has shown a sharp progress in their biomedicine applications. Advances in the techniques for polymer, dye, and bio-molecule conjugation on the surface of the nanoparticles has further expanded their dynamic opportunities for optogenetics, oncotherapy and bioimaging. In this account, considering the primary benefits such as the absence of photobleaching, photoblinking, and autofluorescence of UCNPs not only facilitate the construction of accurate, sensitive and multifunctional nanoprobes, but also improve therapeutic and diagnostic results. We introduce, with the basic knowledge of upconversion, unique properties of UCNPs and the mechanisms involved in photon upconversion and discuss how UCNPs can be implemented in biological practices. In this focused review, we categorize the applications of UCNP-based various strategies into the following domains: neuromodulation, immunotherapy, drug delivery, photodynamic and photothermal therapy, bioimaging and biosensing. Herein, we also discuss the current emerging bioapplications with cutting edge nano-/biointerfacing of UCNPs. Finally, this review provides concluding remarks on future opportunities and challenges on clinical translation of UCNPs-based nanotechnology research.
Collapse
Affiliation(s)
- Manoj Kumar Mahata
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea;
| | - Ranjit De
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea;
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Kang Taek Lee
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea;
| |
Collapse
|
13
|
Moffatt JE, Payten TB, Tsiminis G, de Prinse TJ, Da Silva Teixeira L, Klantsataya E, Ottaway DJ, Smith BW, Spooner NA. Upconversion Fluorescence in Naturally Occurring Calcium Fluoride. APPLIED SPECTROSCOPY 2021; 75:674-689. [PMID: 33241707 DOI: 10.1177/0003702820979052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fluorine can negatively interfere with leach and smelting processes during mineral processing. Real-time knowledge of the concentration and mineral hosts of fluorine in a mineral processing ore stream is important to protect process line equipment and product. Currently only offline methods of detection are available. Online sensors that determine specific fluorine-bearing mineral concentration in real-time would enable improved efficiency in processing decisions during mine production. Common excitation wavelengths used for fluorescence studies in minerals frequently provide signals that are not clearly host-specific, and hence of limited utility for mineral identification. We show that upconversion fluorescence, a process in which two or more photons are absorbed and one higher-energy photon is emitted, provides a more host-specific fluorescence output, minimizing spurious signals in complex environments and therefore greatly improving detection thresholds. Natural samples of fluorite (CaF2), a major fluorine host at many mine sites, have been analyzed by near-infrared excitation and have revealed upconversion fluorescence from rare earth inclusions. Upconversion fluorescence was detected in samples with rare earth concentrations as low as one part per million and is therefore considered a potential new sensing modality for real-time fluorite monitoring.
Collapse
Affiliation(s)
- Jillian Elizabeth Moffatt
- Institute for Photonics and Advanced Sensing, School of Physical Sciences, The University of Adelaide, Adelaide, Australia
- CRC for Optimising Resource Extraction, Queensland, Australia
| | - Thomas Bede Payten
- Institute for Photonics and Advanced Sensing, School of Physical Sciences, The University of Adelaide, Adelaide, Australia
- CRC for Optimising Resource Extraction, Queensland, Australia
| | - Georgios Tsiminis
- Institute for Photonics and Advanced Sensing, School of Physical Sciences, The University of Adelaide, Adelaide, Australia
- CRC for Optimising Resource Extraction, Queensland, Australia
- ARC Centre of Excellence for Nanoscale BioPhotonics, School of Medicine, The University of Adelaide, Adelaide, Australia
| | - Thomas Jacob de Prinse
- Institute for Photonics and Advanced Sensing, School of Physical Sciences, The University of Adelaide, Adelaide, Australia
| | - Lewis Da Silva Teixeira
- Institute for Photonics and Advanced Sensing, School of Physical Sciences, The University of Adelaide, Adelaide, Australia
- CRC for Optimising Resource Extraction, Queensland, Australia
| | - Elizaveta Klantsataya
- Institute for Photonics and Advanced Sensing, School of Physical Sciences, The University of Adelaide, Adelaide, Australia
| | - David John Ottaway
- Institute for Photonics and Advanced Sensing, School of Physical Sciences, The University of Adelaide, Adelaide, Australia
- CRC for Optimising Resource Extraction, Queensland, Australia
- ARC Centre of Excellence for Gravitational Wave Discovery, OzGrav, The University of Adelaide, Adelaide, Australia
| | | | - Nigel Antony Spooner
- Institute for Photonics and Advanced Sensing, School of Physical Sciences, The University of Adelaide, Adelaide, Australia
- CRC for Optimising Resource Extraction, Queensland, Australia
- Defence Science and Technology Group, Edinburgh, Adelaide, Australia
| |
Collapse
|
14
|
Jin Y, Yan B. A bi-functionalized metal-organic framework based on N-methylation and Eu 3+ post-synthetic modification for highly sensitive detection of 4-Aminophenol (4-AP), a biomarker for aniline in urine. Talanta 2021; 227:122209. [PMID: 33714456 DOI: 10.1016/j.talanta.2021.122209] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 01/13/2023]
Abstract
4-Aminophenol (4-AP), which is a biomarker of aniline and represents the internal dose of aniline exposure in the human body, has attracted much attention for its detection in recent years. In this work, a bi-functionalized luminescent metal-organic framework (MOF), Eu@MOF-253-CH3, is designed and prepared through encapsulating the methyl groups and the Eu3+ cations into MOF-253 based on post-synthetic modification strategy. This study shows that the bi-functionalized Eu@MOF-253-CH3 can specifically recognize 4-AP upon luminescence quenching, while refraining from the interference of other coexisting species in urine. The Eu@MOF-253-CH3 hybrid as a 4-AP sensor also displays excellent performances including high water tolerance, good pH-independent stability, fast response, great selectivity and elevated sensitivity (0.5 μg mL-1) attributed to N-viologenized ligand. These results suggest the bi-functionalized Eu@MOF-253-CH3 can act as a promising sensor to practically monitor 4-AP's concentrations in human urine system, and then to realize the screening and pre-diagnosis of human health. Moreover, the possible sensing mechanisms are further explored at length.
Collapse
Affiliation(s)
- Yingmin Jin
- School of Chem. Sci. and Engineering, Tongji University, Siping Road 1239, Shanghai, 200092, China
| | - Bing Yan
- School of Chem. Sci. and Engineering, Tongji University, Siping Road 1239, Shanghai, 200092, China; School of Materials Science and Engineering, Liaocheng University, Liaocheng, 252000, China.
| |
Collapse
|
15
|
Monika, Yadav RS, Rai A, Rai SB. NIR light guided enhanced photoluminescence and temperature sensing in Ho 3+/Yb 3+/Bi 3+ co-doped ZnGa 2O 4 phosphor. Sci Rep 2021; 11:4148. [PMID: 33603159 PMCID: PMC7893055 DOI: 10.1038/s41598-021-83644-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/16/2020] [Indexed: 01/05/2023] Open
Abstract
The conversion of NIR light into visible light has been studied in Ho3+/Yb3+/Bi3+ co-doped ZnGa2O4 phosphor for the first time. The crystallinity and particles size of the phosphor increase through Bi3+ doping. The absorption characteristics of Ho3+, Yb3+ and Bi3+ ions are identified by the UV-vis-NIR measurements. The Ho3+ doped phosphor produces intense green upconversion (UC) emission under 980 nm excitations. The emission intensity ~ excitation power density plots show contribution of two photons for the UC emissions. The UC intensity of green emission is weak in the Ho3+ doped phosphor, which enhances upto 128 and 228 times through co-doping of Yb3+ and Yb3+/Bi3+ ions, respectively. The relative and absolute temperature sensing sensitivities of Ho3+/Yb3+/5Bi3+ co-doped ZnGa2O4 phosphor are calculated to be 13.6 × 10-4 and 14.3 × 10-4 K-1, respectively. The variation in concentration of Bi3+ ion and power density produces excellent color tunability from green to red via yellow regions. The CCT also varies with concentration of Bi3+ ion and power density from cool to warm light. The color purity of phosphor is achieved to 98.6% through Bi3+ doping. Therefore, the Ho3+/Yb3+/Bi3+:ZnGa2O4 phosphors can be suitable for UC-based color tunable devices, green light emitting diodes and temperature sensing.
Collapse
Affiliation(s)
- Monika
- Laser and Spectroscopy Laboratory, Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Ram Sagar Yadav
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| | - Anita Rai
- Department of Chemistry, PPN College, Kanpur, 208001, India
| | - Shyam Bahadur Rai
- Laser and Spectroscopy Laboratory, Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
16
|
Zhang Y, Gao Z, Li Y, Pun EYB, Lin H. The thermo-optic relevance of Ho 3+ in fluoride microcrystals embedded in electrospun fibers. RSC Adv 2020; 10:41004-41012. [PMID: 35519182 PMCID: PMC9057727 DOI: 10.1039/d0ra08696g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 10/27/2020] [Indexed: 11/21/2022] Open
Abstract
Na(Y1-x-y Ho x Yb y )F4/PAN (NYF-HY/PAN) composite fibers were synthesized using an electrospinning method, and the sub-micron crystals embedded in the fibers had complete hexagonal crystal structures. Under 977 nm laser excitation, strong green and red up-conversion (UC) emission that originated from flexible fibers were due to the radiative transitions (5F4, 5S2) → 5I8 and 5F5 → 5I8 of Ho3+, respectively. The effective green fluorescence emission (539 and 548 nm) can be applied to micro-domain non-contact temperature measurements, realizing rapid and dynamic temperature acquisition in a complex environment without destroying the temperature field. In the temperature range of 313-393 K, the absolute and relative sensitivity of the fibers are 0.00373 K-1 and 0.723% K-1, respectively, which indicates that the NYF-HY/PAN composite fibers have good thermal sensitivity. Composite fibers in which crystallites are embedded have superior properties, with great stability, high sensitivity, and excellent flexibility, providing a reliable reference for developing temperature-sensing materials for the biomedical field.
Collapse
Affiliation(s)
- Yan Zhang
- School of Textile and Material Engineering, Dalian Polytechnic University Dalian 116034 China
| | - Zelin Gao
- School of Textile and Material Engineering, Dalian Polytechnic University Dalian 116034 China
| | - Yue Li
- Department of Electrical Engineering and State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong Tat Chee Avenue Kowloon Hong Kong China
| | - Edwin Yue Bun Pun
- Department of Electrical Engineering and State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong Tat Chee Avenue Kowloon Hong Kong China
| | - Hai Lin
- School of Textile and Material Engineering, Dalian Polytechnic University Dalian 116034 China
- Department of Electrical Engineering and State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong Tat Chee Avenue Kowloon Hong Kong China
| |
Collapse
|
17
|
Wang J, Zakrzewski JJ, Zychowicz M, Vieru V, Chibotaru LF, Nakabayashi K, Chorazy S, Ohkoshi SI. Holmium(iii) molecular nanomagnets for optical thermometry exploring the luminescence re-absorption effect. Chem Sci 2020; 12:730-741. [PMID: 34163806 PMCID: PMC8179016 DOI: 10.1039/d0sc04871b] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/30/2020] [Indexed: 11/21/2022] Open
Abstract
Coordination complexes of lanthanide(3+) ions can combine Single-Molecule Magnetism (SMM) with thermally modulated luminescence applicable in optical thermometry. We report an innovative approach towards high performance SMM-based optical thermometers which explores tunable anisotropy and the luminescence re-absorption effect of HoIII complexes. Our concept is shown in dinuclear cyanido-bridged molecules, {[HoIII(4-pyridone)4(H2O)2][MIII(CN)6]}·nH2O (M = Co, 1; Rh, 2; Ir, 3) and their magnetically diluted analogues, {[HoIII x YIII 1-x (4-pyridone)4(H2O)2][MIII(CN)6]}·nH2O (M = Co, x = 0.11, 1@Y; Rh, x = 0.12, 2@Y; Ir, x = 0.10, 3@Y). They are built of pentagonal bipyramidal HoIII complexes revealing the zero-dc-field SMM effect. Experimental studies and the ab initio calculations indicate an Orbach magnetic relaxation with energy barriers varying from 89.8 to 86.7 and 78.7 cm-1 K for 1, 2, and 3, respectively. 1-3 also differ in the strength of quantum tunnelling of magnetization which is suppressed by hyperfine interactions, and, further, by the magnetic dilution. The YIII-based dilution governs the optical properties as 1-3 exhibit poor emission due to the dominant re-absorption from HoIII while 1@Y-3@Y show room-temperature blue emission of 4-pyridone. Within ligand emission bands, the sharp re-absorption lines of the HoIII electronic transitions were observed. Their strong thermal variation was used in achieving highly sensitive ratiometric optical thermometers whose good performance ranges, lying between 25 and 205 K, are adjustable by using hexacyanidometallates. This work shows that HoIII complexes are great prerequisites for advanced opto-magnetic systems linking slow magnetic relaxation with unique optical thermometry exploiting a luminescence re-absorption phenomenon.
Collapse
Affiliation(s)
- Junhao Wang
- Department of Chemistry, School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Jakub J Zakrzewski
- Faculty of Chemistry, Jagiellonian University Gronostajowa 2 30-387 Kraków Poland
| | - Mikolaj Zychowicz
- Faculty of Chemistry, Jagiellonian University Gronostajowa 2 30-387 Kraków Poland
- Theory of Nanomaterials Group, Katholieke Universiteit Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Veacheslav Vieru
- Theory of Nanomaterials Group, Katholieke Universiteit Leuven Celestijnenlaan 200F 3001 Leuven Belgium
- Maastricht Science Programme, Faculty of Science and Engineering, Maastricht University Paul-Henri Spaaklaan 1 6229 EN Maastricht The Netherlands
| | - Liviu F Chibotaru
- Theory of Nanomaterials Group, Katholieke Universiteit Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Koji Nakabayashi
- Department of Chemistry, School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Szymon Chorazy
- Faculty of Chemistry, Jagiellonian University Gronostajowa 2 30-387 Kraków Poland
| | - Shin-Ichi Ohkoshi
- Department of Chemistry, School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| |
Collapse
|
18
|
Drabik J, Kowalski R, Marciniak L. Enhancement of the sensitivity of single band ratiometric luminescent nanothermometers based on Tb 3+ ions through activation of the cross relaxation process. Sci Rep 2020; 10:11190. [PMID: 32636451 PMCID: PMC7341850 DOI: 10.1038/s41598-020-68145-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 06/19/2020] [Indexed: 02/05/2023] Open
Abstract
The description of luminescent processes and their thermally induced changes, that may be also influenced by the optically active ions concentration, and thus by the various inter-ionic processes, is the key to the improved development of luminescence thermometry. A phosphor doped with only trivalent terbium ions was described, which, by using two excitation lines fitted to the 7F6 → 5D3 and 7F5 → 5D3 transitions, shows a luminescent signals with the opposite characteristics of intensity changes as a function of temperature. By modifying the concentration of Tb3+ ions, the probability of {5D3, 7F6} ↔ {5D4, 7F0} cross-relaxation was being altered, which turned out to have a beneficial effect on the properties of the described nanothermometers. The ratio of intensities for both excitations was found to be temperature dependent, which resulted in high relative sensitivities of temperature readout reaching 3.2%/°C for 190 °C and not reaching values below 2%/°C in the broad range of the temperature. Extensive decay time measurements for 5D3 and 5D4 emissive levels were presented and the variability of both rise- and decay times as a function of terbium concentration and temperature was investigated. Thanks to this, conclusions were drawn regarding thermally dependent optical processes occurring in a given and similar systems.
Collapse
Affiliation(s)
- Joanna Drabik
- Włodzimierz Trzebiatowski Institute of Low Temperature and Structure Research, Wrocław, Poland.
| | - Robert Kowalski
- Włodzimierz Trzebiatowski Institute of Low Temperature and Structure Research, Wrocław, Poland
| | - Lukasz Marciniak
- Włodzimierz Trzebiatowski Institute of Low Temperature and Structure Research, Wrocław, Poland.
| |
Collapse
|