1
|
Hewitt S, Aragon M, Ashmore PL, Collins TS, Dhingra A. Transcriptome analysis reveals activation of detoxification and defense mechanisms in smoke-exposed Merlot grape (Vitis vinifera) berries. Sci Rep 2024; 14:21330. [PMID: 39266584 PMCID: PMC11393342 DOI: 10.1038/s41598-024-72079-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 09/03/2024] [Indexed: 09/14/2024] Open
Abstract
A significant consequence of climate change is the rising incidence of wildfires. When wildfires occur close to wine grape (Vitis vinifera) production areas, smoke-derived volatile phenolic compounds can be taken up by the grape berries, negatively affecting the flavor and aroma profile of the resulting wine and compromising the production value of entire vineyards. Evidence for the permeation of smoke-associated compounds into grape berries has been provided through metabolomics; however, the basis for grapevines' response to smoke at the gene expression level has not been investigated in detail. To address this knowledge gap, we employed time-course RNA sequencing to observe gene expression-level changes in grape berries in response to smoke exposure. Significant increases in gene expression (and enrichment of gene ontologies) associated with detoxification of reactive compounds, maintenance of redox homeostasis, and cell wall fortification were observed in response to smoke. These findings suggest that the accumulation of volatile phenols from smoke exposure activates mechanisms that render smoke-derived compounds less reactive while simultaneously fortifying intracellular defense mechanisms. The results of this work lend a better understanding of the molecular basis for grapevines' response to smoke and provide insight into the origins of smoke-taint-associated flavor and aroma attributes in wine produced from smoke-exposed grapes.
Collapse
Affiliation(s)
- Seanna Hewitt
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, USA
| | - Mackenzie Aragon
- Department of Viticulture and Enology, Washington State University, Richland, WA, 99354, USA
| | - P Layton Ashmore
- Department of Viticulture and Enology, Washington State University, Richland, WA, 99354, USA
| | - Thomas S Collins
- Department of Viticulture and Enology, Washington State University, Richland, WA, 99354, USA
| | - Amit Dhingra
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
2
|
Hu J, Huang B, Yin H, Qi K, Jia Y, Xie Z, Gao Y, Li H, Li Q, Wang Z, Zou Y, Zhang S, Qiao X. PearMODB: a multiomics database for pear (Pyrus) genomics, genetics and breeding study. Database (Oxford) 2023; 2023:baad050. [PMID: 37410918 PMCID: PMC10325485 DOI: 10.1093/database/baad050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/06/2023] [Accepted: 06/21/2023] [Indexed: 07/08/2023]
Abstract
Pear (Pyrus ssp.) belongs to Rosaceae and is an important fruit tree widely cultivated around the world. Currently, challenges to cope with the burgeoning sets of multiomics data are rapidly increasing. Here, we constructed the Pear Multiomics Database (PearMODB) by integrating genome, transcriptome, epigenome and population variation data, and aimed to provide a portal for accessing and analyzing pear multiomics data. A variety of online tools were built including gene search, BLAST, JBrowse, expression heatmap, synteny analysis and primer design. The information of DNA methylation sites and single-nucleotide polymorphisms can be retrieved through the custom JBrowse, providing an opportunity to explore the genetic polymorphisms linked to phenotype variation. Moreover, different gene families involving transcription factors, transcription regulators and disease resistance (nucleotide-binding site leucine-rich repeat) were identified and compiled for quick search. In particular, biosynthetic gene clusters (BGCs) were identified in pear genomes, and specialized webpages were set up to show detailed information of BGCs, laying a foundation for studying metabolic diversity among different pear varieties. Overall, PearMODB provides an important platform for pear genomics, genetics and breeding studies. Database URL http://pearomics.njau.edu.cn.
Collapse
Affiliation(s)
- Jian Hu
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, China
- Jiangsu Engineering Research Center for Pear, Nanjing Agricultural University, Nanjing 210095, China
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Baisha Huang
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, China
- Jiangsu Engineering Research Center for Pear, Nanjing Agricultural University, Nanjing 210095, China
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Hao Yin
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, China
- Jiangsu Engineering Research Center for Pear, Nanjing Agricultural University, Nanjing 210095, China
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Kaijie Qi
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, China
- Jiangsu Engineering Research Center for Pear, Nanjing Agricultural University, Nanjing 210095, China
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuanyuan Jia
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, China
| | - Zhihua Xie
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, China
- Jiangsu Engineering Research Center for Pear, Nanjing Agricultural University, Nanjing 210095, China
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuan Gao
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongxiang Li
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, China
- Jiangsu Engineering Research Center for Pear, Nanjing Agricultural University, Nanjing 210095, China
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Qionghou Li
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, China
- Jiangsu Engineering Research Center for Pear, Nanjing Agricultural University, Nanjing 210095, China
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zewen Wang
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, China
- Jiangsu Engineering Research Center for Pear, Nanjing Agricultural University, Nanjing 210095, China
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Zou
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, China
- Jiangsu Engineering Research Center for Pear, Nanjing Agricultural University, Nanjing 210095, China
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Shaoling Zhang
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, China
- Jiangsu Engineering Research Center for Pear, Nanjing Agricultural University, Nanjing 210095, China
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Qiao
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, China
- Jiangsu Engineering Research Center for Pear, Nanjing Agricultural University, Nanjing 210095, China
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
3
|
Li J, Dai X, Li Q, Jiang F, Xu X, Guo T, Zhang H. Low temperatures inhibit the pectin degradation of 'Docteur Jules Guyot' pear (Pyrus communis L.). Int J Biol Macromol 2023; 242:124719. [PMID: 37150373 DOI: 10.1016/j.ijbiomac.2023.124719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/12/2023] [Accepted: 04/30/2023] [Indexed: 05/09/2023]
Abstract
The most remarkable characteristic of European pears is extremely perishable and difficult to store after postharvest softening. Low-temperature storage is one of the most commonly used methods to prolong the shelf life of European pears. However, the regulatory mechanism of the low-temperature delay of the softening of European pears is still unclear. In this study, the fruit firmness, pectin polysaccharide content, pectin-degrading enzyme activity, and pectin degradation gene expression of 'Docteur Jules Guyot' pears under low temperature (LT) and room temperature (RT) were analyzed. It was found that water-soluble pectin (WSP) was significantly negatively correlated with fruit flesh firmness, and the activities of several pectin-degrading enzymes were inhibited under LT storage conditions. In addition, it was also found that the gene expression patterns of PcPME2, PcPME3, PcPG1, PcPG2, PcPL, PcGAL1, PcGAL2, PcGAL4, and PcARF1 were inhibited by LT. The C-repeat binding factors PcCBF1 and PcCBF2 were also inhibited by long-term LT storage. Correlation analysis showed that the expression of PcCBFs was positively correlated with pectin-degradation enzyme genes, and we found that the promoters of many pectin-degradation enzyme genes contain the CRT/DRE motif, which CBF can directly bind. Therefore, it is speculated that long-term low-temperature conditions inhibit pectin degradation through PcCBFs.
Collapse
Affiliation(s)
- Jianzhao Li
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong Province 264025, China; The Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in the Universities of Shandong, Ludong University, 186 Hongqizhong Road, Yantai 264025, China.
| | - Xiaonan Dai
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong Province 264025, China
| | - Qingyu Li
- Yantai Academy of Agricultural Sciences, Yantai, Shandong Province 265500, China
| | - Fudong Jiang
- Yantai Academy of Agricultural Sciences, Yantai, Shandong Province 265500, China
| | - Xiaofei Xu
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong Province 264025, China
| | - Tingting Guo
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong Province 264025, China
| | - Hongxia Zhang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong Province 264025, China; The Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in the Universities of Shandong, Ludong University, 186 Hongqizhong Road, Yantai 264025, China; Shandong Institute of Sericulture, Shandong Academy of Agricultural Sciences, 21 Zhichubei Road, Yantai, Shandong Province 264001, China.
| |
Collapse
|
4
|
Zhang H, Wafula EK, Eilers J, Harkess A, Ralph PE, Timilsena PR, dePamphilis CW, Waite JM, Honaas LA. Building a foundation for gene family analysis in Rosaceae genomes with a novel workflow: A case study in Pyrus architecture genes. FRONTIERS IN PLANT SCIENCE 2022; 13:975942. [PMID: 36452099 PMCID: PMC9702816 DOI: 10.3389/fpls.2022.975942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/21/2022] [Indexed: 05/26/2023]
Abstract
The rapid development of sequencing technologies has led to a deeper understanding of plant genomes. However, direct experimental evidence connecting genes to important agronomic traits is still lacking in most non-model plants. For instance, the genetic mechanisms underlying plant architecture are poorly understood in pome fruit trees, creating a major hurdle in developing new cultivars with desirable architecture, such as dwarfing rootstocks in European pear (Pyrus communis). An efficient way to identify genetic factors for important traits in non-model organisms can be to transfer knowledge across genomes. However, major obstacles exist, including complex evolutionary histories and variable quality and content of publicly available plant genomes. As researchers aim to link genes to traits of interest, these challenges can impede the transfer of experimental evidence across plant species, namely in the curation of high-quality, high-confidence gene models in an evolutionary context. Here we present a workflow using a collection of bioinformatic tools for the curation of deeply conserved gene families of interest across plant genomes. To study gene families involved in tree architecture in European pear and other rosaceous species, we used our workflow, plus a draft genome assembly and high-quality annotation of a second P. communis cultivar, 'd'Anjou.' Our comparative gene family approach revealed significant issues with the most recent 'Bartlett' genome - primarily thousands of missing genes due to methodological bias. After correcting assembly errors on a global scale in the 'Bartlett' genome, we used our workflow for targeted improvement of our genes of interest in both P. communis genomes, thus laying the groundwork for future functional studies in pear tree architecture. Further, our global gene family classification of 15 genomes across 6 genera provides a valuable and previously unavailable resource for the Rosaceae research community. With it, orthologs and other gene family members can be easily identified across any of the classified genomes. Importantly, our workflow can be easily adopted for any other plant genomes and gene families of interest.
Collapse
Affiliation(s)
- Huiting Zhang
- Tree Fruit Research Laboratory, Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Wenatchee, WA, United States
- Department of Horticulture, Washington State University, Pullman, WA, United States
| | - Eric K. Wafula
- Department of Biology, The Pennsylvania State University, University Park, PA, United States
| | - Jon Eilers
- Tree Fruit Research Laboratory, Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Wenatchee, WA, United States
| | - Alex E. Harkess
- College of Agriculture, Auburn University, Auburn, AL, United States
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
| | - Paula E. Ralph
- Department of Biology, The Pennsylvania State University, University Park, PA, United States
| | - Prakash Raj Timilsena
- Department of Biology, The Pennsylvania State University, University Park, PA, United States
| | - Claude W. dePamphilis
- Department of Biology, The Pennsylvania State University, University Park, PA, United States
| | - Jessica M. Waite
- Tree Fruit Research Laboratory, Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Wenatchee, WA, United States
| | - Loren A. Honaas
- Tree Fruit Research Laboratory, Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Wenatchee, WA, United States
| |
Collapse
|
5
|
Mo Y, Jiang B, Huo J, Lu J, Zeng X, Zhou Y, Zhang T, Yang M, Wei Y, Liu K. Quantitative Ubiquitylomic Analysis of the Dynamic Changes and Extensive Modulation of Ubiquitylation in Papaya During the Fruit Ripening Process. FRONTIERS IN PLANT SCIENCE 2022; 13:890581. [PMID: 35548272 PMCID: PMC9082147 DOI: 10.3389/fpls.2022.890581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 03/28/2022] [Indexed: 06/15/2023]
Abstract
Lysine ubiquitination is a highly conserved post-translational modification with diverse biological functions. However, there is little available information on lysine ubiquitination of non-histone proteins in papaya (Carica papaya L.). In total, 3,090 ubiquitination sites on 1,249 proteins with diverse localizations and functions were identified. Five conserved ubiquitinated K motifs were identified. Enrichment analysis showed that many Hsps were differentially ubiquitinated proteins (DUPs), suggesting an essential role of ubiquitination in degradation of molecular chaperone. Furthermore, 12 sugar metabolism-related enzymes were identified as DUPs, including an involvement of ubiquitination in nutrimental changes during the papaya ripening process. The ubiquitination levels of five fruit ripening-related DUPs, including one ethylene-inducible protein, two 1-aminocyclopropane-1-carboxylic acid oxidases, one endochitinase, and one cell wall invertase, were significantly changed during the ripening process. Our study extends the understanding of diverse functions for lysine ubiquitination in regulation of the papaya fruit ripening process.
Collapse
Affiliation(s)
- Yuxing Mo
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, China
| | - Bian Jiang
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, China
| | - Jingxin Huo
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, China
| | - Jiayi Lu
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, China
| | - Xiaoyue Zeng
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, China
| | - Yan Zhou
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, China
| | - Tao Zhang
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, China
| | - Min Yang
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (MOA), Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yuerong Wei
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (MOA), Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Kaidong Liu
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, China
| |
Collapse
|
6
|
Borredá C, Perez-Roman E, Talon M, Terol J. Comparative transcriptomics of wild and commercial Citrus during early ripening reveals how domestication shaped fruit gene expression. BMC PLANT BIOLOGY 2022; 22:123. [PMID: 35300613 PMCID: PMC8928680 DOI: 10.1186/s12870-022-03509-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/03/2022] [Indexed: 05/03/2023]
Abstract
BACKGROUND Interspecific hybridizations and admixtures were key in Citrus domestication, but very little is known about their impact at the transcriptomic level. To determine the effects of genome introgressions on gene expression, the transcriptomes of the pulp and flavedo of three pure species (citron, pure mandarin and pummelo) and four derived domesticated genetic admixtures (sour orange, sweet orange, lemon and domesticated mandarin) have been analyzed at color break. RESULTS Many genes involved in relevant physiological processes for domestication, such sugar/acid metabolism and carotenoid/flavonoid synthesis, were differentially expressed among samples. In the low-sugar, highly acidic species lemon and citron, many genes involved in sugar metabolism, the TCA cycle and GABA shunt displayed a reduced expression, while the P-type ATPase CitPH5 and most subunits of the vacuolar ATPase were overexpressed. The red-colored species and admixtures were generally characterized by the overexpression in the flavedo of specific pivotal genes involved in the carotenoid biosynthesis, including phytoene synthase, ζ-carotene desaturase, β-lycopene cyclase and CCD4b, a carotenoid cleavage dioxygenase. The expression patterns of many genes involved in flavonoid modifications, especially the flavonoid and phenylpropanoid O-methyltransferases showed extreme diversity. However, the most noticeable differential expression was shown by a chalcone synthase gene, which catalyzes a key step in the biosynthesis of flavonoids. This chalcone synthase was exclusively expressed in mandarins and their admixed species, which only expressed the mandarin allele. In addition, comparisons between wild and domesticated mandarins revealed that the major differences between their transcriptomes concentrate in the admixed regions. CONCLUSION In this work we present a first study providing broad evidence that the genome introgressions that took place during citrus domestication largely shaped gene expression in their fruits.
Collapse
Affiliation(s)
- Carles Borredá
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113, Moncada, Valencia, Spain
| | - Estela Perez-Roman
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113, Moncada, Valencia, Spain
| | - Manuel Talon
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113, Moncada, Valencia, Spain
| | - Javier Terol
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113, Moncada, Valencia, Spain.
| |
Collapse
|
7
|
Transcriptome Analysis Reveals Potential Mechanisms for Ethylene-Inducible Pedicel–Fruit Abscission Zone Activation in Non-Climacteric Sweet Cherry (Prunus avium L.). HORTICULTURAE 2021; 7. [PMID: 36313595 PMCID: PMC9608358 DOI: 10.3390/horticulturae7090270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The harvesting of sweet cherry (Prunus avium L.) fruit is a labor-intensive process. The mechanical harvesting of sweet cherry fruit is feasible; however, it is dependent on the formation of an abscission zone at the fruit–pedicel junction. The natural propensity for pedicel—fruit abscission zone (PFAZ) activation varies by cultivar, and the general molecular basis for PFAZ activation is not well characterized. In this study, ethylene-inducible change in pedicel fruit retention force (PFRF) was recorded in a developmental time-course with a concomitant analysis of the PFAZ transcriptome from three sweet cherry cultivars. In ‘Skeena’, mean PFRF for both control and treatment fruit dropped below the 0.40 kg-force (3.92 N) threshold for mechanical harvesting, indicating the activation of a discrete PFAZ. In ‘Bing’, mean PFRF for both control and treatment groups decreased over time. However, a mean PFRF conducive to mechanical harvesting was achieved only in the ethylene-treated fruit. While in ‘Chelan’ the mean PFRF of the control and treatment groups did not meet the threshold required for efficient mechanical harvesting. Transcriptome analysis of the PFAZ region followed by the functional annotation, differential expression analysis, and gene ontology (GO) enrichment analyses of the data facilitated the identification of phytohormone-responsive and abscission-related transcripts, as well as processes that exhibited differential expression and enrichment in a cultivar-dependent manner over the developmental time-course. Additionally, read alignment-based variant calling revealed several short variants in differentially expressed genes, associated with enriched gene ontologies and associated metabolic processes, lending potential insight into the genetic basis for different abscission responses between the cultivars. These results provide genetic targets for the induction or inhibition of PFAZ activation, depending on the desire to harvest the fruit with or without the stem attached. Understanding the genetic mechanisms underlying the development of the PFAZ will inform future cultivar development while laying a foundation for mechanized sweet cherry harvest.
Collapse
|
8
|
Hewitt S, Dhingra A. Beyond Ethylene: New Insights Regarding the Role of Alternative Oxidase in the Respiratory Climacteric. FRONTIERS IN PLANT SCIENCE 2020; 11:543958. [PMID: 33193478 PMCID: PMC7652990 DOI: 10.3389/fpls.2020.543958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
Climacteric fruits are characterized by a dramatic increase in autocatalytic ethylene production that is accompanied by a spike in respiration at the onset of ripening. The change in the mode of ethylene production from autoinhibitory to autostimulatory is known as the System 1 (S1) to System 2 (S2) transition. Existing physiological models explain the basic and overarching genetic, hormonal, and transcriptional regulatory mechanisms governing the S1 to S2 transition of climacteric fruit. However, the links between ethylene and respiration, the two main factors that characterize the respiratory climacteric, have not been examined in detail at the molecular level. Results of recent studies indicate that the alternative oxidase (AOX) respiratory pathway may play an essential role in mediating cross-talk between ethylene response, carbon metabolism, ATP production, and ROS signaling during climacteric ripening. New genomic, metabolic, and epigenetic information sheds light on the interconnectedness of ripening metabolic pathways, necessitating an expansion of the current, ethylene-centric physiological models. Understanding points at which ripening responses can be manipulated may reveal key, species- and cultivar-specific targets for regulation of ripening, enabling superior strategies for reducing postharvest wastage.
Collapse
Affiliation(s)
- Seanna Hewitt
- Molecular Plant Sciences Program, Washington State University, Pullman, WA, United States
- Department of Horticulture, Washington State University, Pullman, WA, United States
| | - Amit Dhingra
- Molecular Plant Sciences Program, Washington State University, Pullman, WA, United States
- Department of Horticulture, Washington State University, Pullman, WA, United States
| |
Collapse
|