1
|
Nagarajan A, Laird J, Ugochukwu O, Reppe S, Gautvik K, Ross RD, Bennett DA, Rosen C, Kiel DP, Higginbotham LA, Seyfried NT, Lary CW. Network Analysis of Brain and Bone Tissue Transcripts Reveals Shared Molecular Mechanisms Underlying Alzheimer's Disease and Related Dementias and Osteoporosis. J Gerontol A Biol Sci Med Sci 2024; 79:glae211. [PMID: 39194133 PMCID: PMC11503475 DOI: 10.1093/gerona/glae211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Alzheimer's disease and related dementias (ADRD) and osteoporosis (OP) are 2 prevalent diseases of aging with demonstrated epidemiological association, but the underlying molecular mechanisms contributing to this association are unknown. METHODS We used network analysis of bone and brain transcriptomes to discover common molecular mechanisms underlying these 2 diseases. Our study included RNA-sequencing data from the dorsolateral prefrontal cortex tissue of autopsied brains in 629 participants from ROSMAP (Religious Orders Study and the Rush Memory and Aging Project), with a subgroup of 298 meeting criteria for inclusion in 5 ADRD categories, and RNA array data from transiliac bone biopsies in 84 participants from the Oslo study of postmenopausal women. After developing each network within each tissue, we analyzed associations between modules (groups of coexpressed genes) with multiple bone and neurological traits, examined overlap in modules between networks, and performed pathway enrichment analysis to discover conserved mechanisms. RESULTS We discovered 3 modules in ROSMAP that showed significant associations with ADRD and bone-related traits and 4 modules in Oslo that showed significant associations with multiple bone outcomes. We found significant module overlap between the 2 networks in modules linked to signaling, tissue homeostasis, and development, and Wingless-related integration site (Wnt) signaling was found to be highly enriched in OP and ADRD modules of interest. CONCLUSIONS These results provide translational opportunities in the development of treatments and biomarkers for ADRD and OP.
Collapse
Affiliation(s)
- Archana Nagarajan
- Roux Institute, Northeastern University, Portland, Maine, USA
- Tufts University Graduate School of Biomedical Sciences, Boston, Massachusetts, USA
| | - Jason Laird
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Obiadada Ugochukwu
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Sjur Reppe
- Unger-Vetlesen Institute, Lovisenberg Diaconal Hospital, Oslo, Norway
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Kaare Gautvik
- Unger-Vetlesen Institute, Lovisenberg Diaconal Hospital, Oslo, Norway
| | - Ryan D Ross
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, Illinois, USA
| | - David A Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, USA
| | - Clifford Rosen
- MaineHealth Institute for Research, Scarborough, Maine, USA
| | - Douglas P Kiel
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, Massachusetts, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Lenora A Higginbotham
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Nicholas T Seyfried
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Christine W Lary
- Roux Institute, Northeastern University, Portland, Maine, USA
- MaineHealth Institute for Research, Scarborough, Maine, USA
| |
Collapse
|
2
|
Hirouchi H, Takeuchi Y, Yang T, Yamamoto M, Hayashi S, Murakami G, Rodríguez-Vázquez JF, Abe S. Transient contribution of the sphenoid ala major to the socket of the temporomandibular joint in near-term fetuses. Anat Rec (Hoboken) 2024; 307:3574-3581. [PMID: 38794819 DOI: 10.1002/ar.25507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024]
Abstract
The temporomandibular joint (TMJ) is a complex structure that plays a vital role in the movement of the jaw. Some anatomy and dental textbooks show that, at the medial margin, the TMJ capsule attaches to a suture between the sphenoid ala major and the temporal bone squamosa. In near-term fetuses, the ala major extends posterolaterally to approach the TMJ. In this study, we aimed to investigate the contribution of the sphenoid ala major to the socket of the TMJ in near-term fetuses. We examined histological sections from 22 human fetuses (approximately 15-40 weeks). At midterm, the lateral and superior walls of the TMJ cavity were formed by the temporal bone squamosa, whereas the ala major was distant from the joint. However, at near-term, the ala major formed the medial wall of almost the entire part of the joint cavity. The top of the TMJ was attached to both the squamosa and ala major, with the condylar head consistently separated from the sphenoid by the joint disk. We observed a significant descent of the middle cranial fossa in near-term fetuses, which brought the ala major close to the TMJ. This transient position of the TMJ near the sphenoid is likely due to brain enlargement and posterolateral growth of the ala major. After birth, occlusion causes the anterior growth of the mandibular fossa of the squamosa, which moves the ala major away from the TMJ. Similarly, the lateral growth of the sphenoid toward the squamosa suture may also stop in children.
Collapse
Affiliation(s)
| | - Yuki Takeuchi
- Department of Anatomy, Tokyo Dental College, Tokyo, Japan
| | - Tianyi Yang
- Department of Anatomy, Tokyo Dental College, Tokyo, Japan
| | - Masahito Yamamoto
- Division of Basic Medical Science, Tokai University School of Medicine, Isehara-shi, Japan
| | - Shogo Hayashi
- Division of Basic Medical Science, Tokai University School of Medicine, Isehara-shi, Japan
| | - Gen Murakami
- Department of Anatomy, Tokyo Dental College, Tokyo, Japan
- Division of Internal Medicine, Cupid Clinic, Iwamizawa, Japan
| | | | - Shinichi Abe
- Department of Anatomy, Tokyo Dental College, Tokyo, Japan
| |
Collapse
|
3
|
Haidar-Montes AA, Mauro A, El Khatib M, Prencipe G, Pierdomenico L, Tosi U, Wouters G, Cerveró-Varona A, Berardinelli P, Russo V, Barboni B. Mechanobiological Strategies to Enhance Ovine ( Ovis aries) Adipose-Derived Stem Cells Tendon Plasticity for Regenerative Medicine and Tissue Engineering Applications. Animals (Basel) 2024; 14:2233. [PMID: 39123758 PMCID: PMC11310997 DOI: 10.3390/ani14152233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Adipose-derived stem cells (ADSCs) hold promise for tendon repair, even if their tenogenic plasticity and underlying mechanisms remain only partially understood, particularly in cells derived from the ovine animal model. This study aimed to characterize oADSCs during in vitro expansion to validate their phenotypic properties pre-transplantation. Moreover, their tenogenic potential was assessed using two in vitro-validated approaches: (1) teno-inductive conditioned media (CM) derived from a co-culture between ovine amniotic stem cells and fetal tendon explants, and (2) short- (48 h) and long-term (14 days) seeding on highly aligned PLGA (ha-PLGA) electrospun scaffold. Our findings indicate that oADSCs can be expanded without senescence and can maintain the expression of stemness (Sox2, Oct4, Nanog) and mesenchymal (CD29, CD166, CD44, CD90) markers while remaining negative for hematopoietic (CD31, CD45) and MHC-II antigens. Of note, oADSCs' tendon differentiation potential greatly depended on the in vitro strategy. oADSCs exposed to CM significantly upregulated tendon-related genes (COL1, TNMD, THBS4) but failed to accumulate TNMD protein at 14 days of culture. Conversely, oADSCs seeded on ha-PLGA fleeces quickly upregulated the tendon-related genes (48 h) and in 14 days accumulated high levels of the TNMD protein into the cytoplasm of ADSCs, displaying a tenocyte-like morphology. This mechano-sensing cellular response involved a complete SOX9 downregulation accompanied by YAP activation, highlighting the efficacy of biophysical stimuli in promoting tenogenic differentiation. These findings underscore oADSCs' long-term self-renewal and tendon differentiative potential, thus opening their use in a preclinical setting to develop innovative stem cell-based and tissue engineering protocols for tendon regeneration, applied to the veterinary field.
Collapse
Affiliation(s)
- Arlette A. Haidar-Montes
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (A.A.H.-M.); (M.E.K.); (G.P.); (U.T.); (A.C.-V.); (P.B.); (V.R.); (B.B.)
| | - Annunziata Mauro
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (A.A.H.-M.); (M.E.K.); (G.P.); (U.T.); (A.C.-V.); (P.B.); (V.R.); (B.B.)
| | - Mohammad El Khatib
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (A.A.H.-M.); (M.E.K.); (G.P.); (U.T.); (A.C.-V.); (P.B.); (V.R.); (B.B.)
| | - Giuseppe Prencipe
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (A.A.H.-M.); (M.E.K.); (G.P.); (U.T.); (A.C.-V.); (P.B.); (V.R.); (B.B.)
| | - Laura Pierdomenico
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy;
| | - Umberto Tosi
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (A.A.H.-M.); (M.E.K.); (G.P.); (U.T.); (A.C.-V.); (P.B.); (V.R.); (B.B.)
| | - Guy Wouters
- FAT STEM Company, Erembodegem, 9300 Aalst, Belgium;
| | - Adrián Cerveró-Varona
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (A.A.H.-M.); (M.E.K.); (G.P.); (U.T.); (A.C.-V.); (P.B.); (V.R.); (B.B.)
| | - Paolo Berardinelli
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (A.A.H.-M.); (M.E.K.); (G.P.); (U.T.); (A.C.-V.); (P.B.); (V.R.); (B.B.)
| | - Valentina Russo
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (A.A.H.-M.); (M.E.K.); (G.P.); (U.T.); (A.C.-V.); (P.B.); (V.R.); (B.B.)
| | - Barbara Barboni
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (A.A.H.-M.); (M.E.K.); (G.P.); (U.T.); (A.C.-V.); (P.B.); (V.R.); (B.B.)
| |
Collapse
|
4
|
Akter M, Sepehrimanesh M, Xu W, Ding B. Assembling a Coculture System to Prepare Highly Pure Induced Pluripotent Stem Cell-Derived Neurons at Late Maturation Stages. eNeuro 2024; 11:ENEURO.0165-24.2024. [PMID: 39009447 PMCID: PMC11289586 DOI: 10.1523/eneuro.0165-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/17/2024] Open
Abstract
Generation of human induced pluripotent stem cell (hiPSC)-derived motor neurons (MNs) offers an unprecedented approach to modeling movement disorders such as dystonia and amyotrophic lateral sclerosis. However, achieving survival poses a significant challenge when culturing induced MNs, especially when aiming to reach late maturation stages. Utilizing hiPSC-derived motor neurons and primary mouse astrocytes, we assembled two types of coculture systems: direct coculturing of neurons with astrocytes and indirect coculture using culture inserts that physically separate neurons and astrocytes. Both systems significantly enhance neuron survival. Compared with these two systems, no significant differences in neurodevelopment, maturation, and survival within 3 weeks, allowing to prepare neurons at maturation stages. Using the indirect coculture system, we obtained highly pure MNs at the late mature stage from hiPSCs. Transcriptomic studies of hiPSC-derived MNs showed a typical neurodevelopmental switch in gene expression from the early immature stage to late maturation stages. Mature genes associated with neurodevelopment and synaptogenesis are highly enriched in MNs at late stages, demonstrating that these neurons achieve maturation. This study introduces a novel tool for the preparation of highly pure hiPSC-derived neurons, enabling the determination of neurological disease pathogenesis in neurons at late disease onset stages through biochemical approaches, which typically necessitate highly pure neurons. This advancement is particularly significant in modeling age-related neurodegeneration.
Collapse
Affiliation(s)
- Masuma Akter
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center at Shreveport, Shreveport Louisiana 71130-3932
| | - Masood Sepehrimanesh
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center at Shreveport, Shreveport Louisiana 71130-3932
| | - Wu Xu
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette Louisiana 70504
| | - Baojin Ding
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center at Shreveport, Shreveport Louisiana 71130-3932
| |
Collapse
|
5
|
Kitamura A, Yamamoto M, Hirouchi H, Watanabe G, Taniguchi S, Sekiya S, Ishizuka S, Jeong J, Higa K, Yamashita S, Abe S. Downregulation of SOX9 expression in developing entheses adjacent to intramembranous bone. PLoS One 2024; 19:e0301080. [PMID: 38728328 PMCID: PMC11086909 DOI: 10.1371/journal.pone.0301080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/08/2024] [Indexed: 05/12/2024] Open
Abstract
Entheses are classified into three types: fibrocartilaginous, fibrous, and periosteal insertions. However, the mechanism behind the development of fibrous entheses and periosteal insertions remains unclear. Since both entheses are part of the temporomandibular joint (TMJ), this study analyzes the TMJ entheses. Here, we show that SOX9 expression is negatively regulated during TMJ enthesis development, unlike fibrocartilage entheses which are modularly formed by SCX and SOX9 positive progenitors. The TMJ entheses was adjacent to the intramembranous bone rather than cartilage. SOX9 expression was diminished during TMJ enthesis development. To clarify the functional role of Sox9 in the development of TMJ entheses, we examined these structures in TMJ using Wnt1Cre;Sox9flox/+ reporter mice. Wnt1Cre;Sox9flox/+ mice showed enthesial deformation at the TMJ. Next, we also observed a diminished SOX9 expression area at the enthesis in contact with the clavicle's membranous bone portion, similar to the TMJ entheses. Together, these findings reveal that the timing of SOX9 expression varies with the ossification development mode.
Collapse
Affiliation(s)
- Asahi Kitamura
- Department of Removable Partial Prosthodontics, Tokyo Dental College, Chiyoda-ku, Tokyo, Japan
| | - Masahito Yamamoto
- Division of Basic Medical Science, Department of Anatomy, Tokai University School of Medicine, Kanagawa, Japan
- Department of Anatomy, Tokyo Dental College, Chiyoda-ku, Tokyo, Japan
| | - Hidetomo Hirouchi
- Department of Anatomy, Tokyo Dental College, Chiyoda-ku, Tokyo, Japan
| | - Genji Watanabe
- Department of Anatomy, Tokyo Dental College, Chiyoda-ku, Tokyo, Japan
| | | | - Sayo Sekiya
- Department of Anatomy, Tokyo Dental College, Chiyoda-ku, Tokyo, Japan
| | - Satoshi Ishizuka
- Department of Pharmacology, Tokyo Dental College, Chiyoda-ku, Tokyo, Japan
| | - Juhee Jeong
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, United States of America
| | - Kazunari Higa
- Ophthalmology/Cornea Center, Tokyo Dental College Ichikawa General Hospital, Ichikawa, Chiba, Japan
| | - Shuichiro Yamashita
- Department of Removable Partial Prosthodontics, Tokyo Dental College, Chiyoda-ku, Tokyo, Japan
| | - Shinichi Abe
- Department of Anatomy, Tokyo Dental College, Chiyoda-ku, Tokyo, Japan
| |
Collapse
|
6
|
Hirouchi H, Suzuki R, Hanada S, Takeuchi Y, Sugiyama Y, Takayama T, Hayashi K, Murakami G, Abe S. Exploratory Study of Growth of Circumference of Mandibular Fossa Adjacent to Petrous Portion of Temporal Bone Using Dried Skulls. THE BULLETIN OF TOKYO DENTAL COLLEGE 2024; 65:11-17. [PMID: 38355117 DOI: 10.2209/tdcpublication.2023-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
The morphogenetic process of development of the circumference of the mandibular fossa during tooth eruption, which involves the replacement of deciduous teeth with permanent teeth, is strongly affected by occlusion. To the best of our knowledge, no studies have investigated the effect of occlusion on this process. This study investigated the morphogenetic process of development during tooth eruption using dried skulls harvested from Indian donors. The average distance between the ala-major-squamosa suture and the foramen ovale according to age group was as follows: 3.24 mm in the 8-month-old group and 8.92 mm in the adult group. The average distance between the ala-major-squamosa suture and the apex of the articular tubercle according to age groups was as follows: 10.38 mm in the 8-month-old group and 19.34 mm in the adult group. The average distance between the point of intersection of the petrosquamous fissure and petrotympanic fissure located on the perpendicular line drawn posteriorly from the shortest distance of the medio-lateral axis between the ala-major-squamosa suture and the apex of the articular tubercle according to age group was as follows: 9.68 mm in the 8-month-old group and 14.3 mm in the adult group. These results suggest that the mandibular fossa is strongly affected by load due to occlusion, unlike the growth of the neurocranium. This indicates that the effect of occlusion is a secondary element in the morphogenetic process of development of the circumference of the mandibular fossa.
Collapse
Affiliation(s)
| | - Ryu Suzuki
- Department of Anatomy, Tokyo Dental College
| | | | | | - Yuki Sugiyama
- Department of Anatomy, Tokyo Dental College
- Dentistry and Oral surgery, The Jikei University School of Medicine
| | - Takeshi Takayama
- Dentistry and Oral surgery, The Jikei University School of Medicine
| | | | - Gen Murakami
- Department of Anatomy, Tokyo Dental College
- Division of Internal Medicine, Cupid Clinic
| | | |
Collapse
|
7
|
Yamamoto M, Hirota Y, Watanabe G, Taniguchi S, Murakami G, Rodríguez-Vázquez JF, Abe SI. Development and growth of median structures in the human tongue: A histological study using human fetuses and adult cadavers. Anat Rec (Hoboken) 2024; 307:426-441. [PMID: 36939757 DOI: 10.1002/ar.25198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/21/2023]
Abstract
Glossectomy is a surgical procedure performed to remove all or part of the tongue in patients with cancer. The removal of a significant part of the tongue has a marked effect on speech and swallowing function, as patients may lose not only the tongue muscles but also the median lingual septum (MLS). Therefore, to achieve successful tongue regeneration, it is necessary to investigate the developmental processes of not only the tongue muscles but also the MLS. This study was conducted to clarify the mutual development of the tongue muscles and the MLS in human fetuses. Serial or semi-serial histological sections from 37 embryos and fetuses (aged 5-39 weeks) as well as nine adults were analyzed. The MLS appeared at Carnegie stage 15 (CS15), and until 12 weeks of gestation, abundant fibers of the intrinsic transverse muscle crossed the septum in the entire tongue. However, in near-term fetuses and adults, the contralaterally extending muscles were restricted to the deepest layer just above the genioglossus muscle. This finding indicates that the crossing transverse muscle showed the highest density at mid-term. A thorough understanding of both the MLS and the tongue muscles is necessary for successful tongue regeneration.
Collapse
Affiliation(s)
| | | | - Genji Watanabe
- Department of Anatomy, Tokyo Dental College, Tokyo, Japan
| | | | - Gen Murakami
- Department of Anatomy, Tokyo Dental College, Tokyo, Japan
- Division of Internal Medicine, Cupid Clinic, Iwamizawa, Japan
| | | | - Shin-Ichi Abe
- Department of Anatomy, Tokyo Dental College, Tokyo, Japan
| |
Collapse
|
8
|
Pontius WD, Hong ES, Faber ZJ, Gray J, Peacock CD, Bayles I, Lovrenert K, Chin DH, Gryder BE, Bartels CF, Scacheri PC. Temporal chromatin accessibility changes define transcriptional states essential for osteosarcoma metastasis. Nat Commun 2023; 14:7209. [PMID: 37938582 PMCID: PMC10632377 DOI: 10.1038/s41467-023-42656-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 10/17/2023] [Indexed: 11/09/2023] Open
Abstract
The metastasis-invasion cascade describes the series of steps required for a cancer cell to successfully spread from its primary tumor and ultimately grow within a secondary organ. Despite metastasis being a dynamic, multistep process, most omics studies to date have focused on comparing primary tumors to the metastatic deposits that define end-stage disease. This static approach means we lack information about the genomic and epigenomic changes that occur during the majority of tumor progression. One particularly understudied phase of tumor progression is metastatic colonization, during which cells must adapt to the new microenvironment of the secondary organ. Through temporal profiling of chromatin accessibility and gene expression in vivo, we identify dynamic changes in the epigenome that occur as osteosarcoma tumors form and grow within the lung microenvironment. Furthermore, we show through paired in vivo and in vitro CRISPR drop-out screens and pharmacological validation that the upstream transcription factors represent a class of metastasis-specific dependency genes. While current models depict lung colonization as a discrete step within the metastatic cascade, our study shows it is a defined trajectory through multiple epigenetic states, revealing new therapeutic opportunities undetectable with standard approaches.
Collapse
Affiliation(s)
- W Dean Pontius
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA.
| | - Ellen S Hong
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Zachary J Faber
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Jeremy Gray
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Craig D Peacock
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Ian Bayles
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Katreya Lovrenert
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Diana H Chin
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Berkley E Gryder
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Cynthia F Bartels
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Peter C Scacheri
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
- Amgen Research, Discovery Biomarkers, Thousand Oaks, CA, USA.
| |
Collapse
|
9
|
Watanabe G, Yamamoto M, Taniguchi S, Sugiyama Y, Hirouchi H, Ishizuka S, Kitamura K, Mizoguchi T, Takayama T, Hayashi K, Abe S. Chronological Changes in the Expression and Localization of Sox9 between Achilles Tendon Injury and Functional Recovery in Mice. Int J Mol Sci 2023; 24:11305. [PMID: 37511063 PMCID: PMC10379325 DOI: 10.3390/ijms241411305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/03/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
Tendons help transmit forces from the skeletal muscles and bones. However, tendons have inferior regenerative ability compared to muscles. Despite studies on the regeneration of muscles and bone tissue, only a few have focused on tendinous tissue regeneration, especially tendon regeneration. Sex-determining region Y-box transcription factor 9 (Sox9) is an SRY-related transcription factor with a DNA-binding domain and is an important control factor for cartilage formation. Sox9 is critical to the early-to-middle stages of tendon development. However, how Sox9 participates in the healing process after tendon injury is unclear. We hypothesized that Sox9 is expressed in damaged tendons and is crucially involved in restoring tendon functions. We constructed a mouse model of an Achilles tendon injury by performing a 0.3 mm wide partial excision in the Achilles tendon of mice, and chronologically evaluated the function restoration and localization of the Sox9 expressed in the damaged sites. The results reveal that Sox9 was expressed simultaneously with the formation of the pre-structure of the epitenon, an essential part of the tendinous tissue, indicating that its expression is linked to the functional restoration of tendons. Lineage tracing for Sox9 expressed during tendon restoration revealed the tendon restoration involvement of cells that switched into Sox9-expressing cells after tendon injury. The stem cells involved in tendon regeneration may begin to express Sox9 after injury.
Collapse
Affiliation(s)
- Genji Watanabe
- Department of Anatomy, Tokyo Dental College, 2-9-18 Kandamisaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Masahito Yamamoto
- Department of Anatomy, Tokyo Dental College, 2-9-18 Kandamisaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Shuichirou Taniguchi
- Department of Anatomy, Tokyo Dental College, 2-9-18 Kandamisaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Yuki Sugiyama
- Department of Anatomy, Tokyo Dental College, 2-9-18 Kandamisaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Hidetomo Hirouchi
- Department of Anatomy, Tokyo Dental College, 2-9-18 Kandamisaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Satoshi Ishizuka
- Department of Pharmacology, Tokyo Dental College, 2-9-18 Kandamisaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Kei Kitamura
- Department of Histology and Developmental Biology, Tokyo Dental College, 2-9-18 Kandamisaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Toshihide Mizoguchi
- Oral Health Science Center, Tokyo Dental College, 2-9-18 Kandamisaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Takashi Takayama
- Department of Dentistry, The Jikei University School of Medicine, 3-19-18 Nishi-shinnbashi, Minato, Tokyo 105-8471, Japan
| | - Katsuhiko Hayashi
- Department of Dentistry, The Jikei University School of Medicine, 3-19-18 Nishi-shinnbashi, Minato, Tokyo 105-8471, Japan
| | - Shinichi Abe
- Department of Anatomy, Tokyo Dental College, 2-9-18 Kandamisaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan
| |
Collapse
|
10
|
Lutz M, Levanti M, Karns R, Gourdon G, Lindquist D, Timchenko NA, Timchenko L. Therapeutic Targeting of the GSK3β-CUGBP1 Pathway in Myotonic Dystrophy. Int J Mol Sci 2023; 24:10650. [PMID: 37445828 PMCID: PMC10342152 DOI: 10.3390/ijms241310650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Myotonic Dystrophy type 1 (DM1) is a neuromuscular disease associated with toxic RNA containing expanded CUG repeats. The developing therapeutic approaches to DM1 target mutant RNA or correct early toxic events downstream of the mutant RNA. We have previously described the benefits of the correction of the GSK3β-CUGBP1 pathway in DM1 mice (HSALR model) expressing 250 CUG repeats using the GSK3 inhibitor tideglusib (TG). Here, we show that TG treatments corrected the expression of ~17% of genes misregulated in DM1 mice, including genes involved in cell transport, development and differentiation. The expression of chloride channel 1 (Clcn1), the key trigger of myotonia in DM1, was also corrected by TG. We found that correction of the GSK3β-CUGBP1 pathway in mice expressing long CUG repeats (DMSXL model) is beneficial not only at the prenatal and postnatal stages, but also during adulthood. Using a mouse model with dysregulated CUGBP1, which mimics alterations in DM1, we showed that the dysregulated CUGBP1 contributes to the toxicity of expanded CUG repeats by changing gene expression and causing CNS abnormalities. These data show the critical role of the GSK3β-CUGBP1 pathway in DM1 muscle and in CNS pathologies, suggesting the benefits of GSK3 inhibitors in patients with different forms of DM1.
Collapse
Affiliation(s)
- Maggie Lutz
- Division of Neurology, Cincinnati Children’s Hospital, Cincinnati, OH 45229, USA; (M.L.); (M.L.)
| | - Miranda Levanti
- Division of Neurology, Cincinnati Children’s Hospital, Cincinnati, OH 45229, USA; (M.L.); (M.L.)
| | - Rebekah Karns
- Departments of Gastroenterology, Hepatology & Nutrition, Cincinnati Children’s Hospital, Cincinnati, OH 45229, USA;
| | - Genevieve Gourdon
- Sorbonne Université, Inserm, institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France;
| | - Diana Lindquist
- Imagine Research Center, Cincinnati Children’s Hospital, Cincinnati, OH 45229, USA;
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45221, USA;
| | - Nikolai A. Timchenko
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45221, USA;
- Department of Surgery, Cincinnati Children’s Hospital, Cincinnati, OH 45229, USA
| | - Lubov Timchenko
- Division of Neurology, Cincinnati Children’s Hospital, Cincinnati, OH 45229, USA; (M.L.); (M.L.)
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45221, USA;
| |
Collapse
|
11
|
Fitzgerald MJ, Mustapich T, Liang H, Larsen CG, Nellans KW, Grande DA. Tendon Transection Healing Can Be Improved With Adipose-Derived Stem Cells Cultured With Growth Differentiation Factor 5 and Platelet-Derived Growth Factor. Hand (N Y) 2023; 18:436-445. [PMID: 34340572 PMCID: PMC10152530 DOI: 10.1177/15589447211028929] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND As hand surgeons, tendon injuries and lacerations are a particularly difficult problem to treat, as poor healing potential and adhesions hamper optimal recovery. Adipose-derived stem cells (ADSCs) have been shown to aid in rat Achilles tendon healing after a puncture defect, and this model can be used to study tendon healing in the upper extremity. We hypothesized that ADSCs cultured with growth differentiation factor 5 (GDF5) and platelet-derived growth factor (PDGF) would improve tendon healing after a transection injury. METHODS Rat Achilles tendons were transected and then left either unrepaired or repaired. Both groups were treated with a hydrogel alone, a hydrogel with ADSCs, or a hydrogel with ADSCs that were cultured with GDF5 and PDGF prior to implantation. Tissue harvested from the tendons was evaluated for gene expression of several genes known to play an important role in successful tendon healing. Histological examination of the tendon healing was also performed. RESULTS In both repaired and unrepaired tendons, those treated with ADSCs cultured with GDF5/PDGF prior to implantation showed the best tendon fiber organization, the smallest gaps, and the most organized blood vessels. Treatment with GDF5/PDGF increased expression of the protenogenesis gene SOX9, promoted cell-to-cell connections, improved cellular proliferation, and enhanced tissue remodeling. CONCLUSIONS Adipose-derived stem cells cultured with GDF5/PDGF prior to implantation can promote tendon repair by improving cellular proliferation, tenogenesis, and vascular infiltration. This effect results in a greater degree of organized tendon healing.
Collapse
Affiliation(s)
| | | | | | | | - Kate W. Nellans
- Northwell Health, Manhasset, NY, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Daniel A. Grande
- Northwell Health, Manhasset, NY, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| |
Collapse
|
12
|
Chen W, Wang C, Yang ZX, Zhang F, Wen W, Schaniel C, Mi X, Bock M, Zhang XB, Qiu H, Wang C. Reprogramming of human peripheral blood mononuclear cells into induced mesenchymal stromal cells using non-integrating vectors. Commun Biol 2023; 6:393. [PMID: 37041280 PMCID: PMC10090171 DOI: 10.1038/s42003-023-04737-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 03/20/2023] [Indexed: 04/13/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) have great value in cell therapies. The MSC therapies have many challenges due to its inconsistent potency and limited quantity. Here, we report a strategy to generate induced MSCs (iMSCs) by directly reprogramming human peripheral blood mononuclear cells (PBMCs) with OCT4, SOX9, MYC, KLF4, and BCL-XL using a nonintegrating episomal vector system. While OCT4 was not required to reprogram PBMCs into iMSCs, omission of OCT4 significantly impaired iMSC functionality. The omission of OCT4 resulted in significantly downregulating MSC lineage specific and mesoderm-regulating genes, including SRPX, COL5A1, SOX4, SALL4, TWIST1. When reprogramming PBMCs in the absence of OCT4, 67 genes were significantly hypermethylated with reduced transcriptional expression. These data indicate that transient expression of OCT4 may serve as a universal reprogramming factor by increasing chromatin accessibility and promoting demethylation. Our findings represent an approach to produce functional MSCs, and aid in identifying putative function associated MSC markers.
Collapse
Affiliation(s)
- Wanqiu Chen
- Center for Genomics, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Chenguang Wang
- Center for Genomics, School of Medicine, Loma Linda University, Loma Linda, CA, USA
- Shanghai Institute of Microsystem and Information Technology Chinese Academy of Sciences, Shanghai, China
| | - Zhi-Xue Yang
- Department of Medicine, Loma Linda University, Loma Linda, CA, USA
- State Key Laboratory of Experimental Hematology, Tianjin, China
| | - Feng Zhang
- Department of Medicine, Loma Linda University, Loma Linda, CA, USA
- State Key Laboratory of Experimental Hematology, Tianjin, China
| | - Wei Wen
- Department of Medicine, Loma Linda University, Loma Linda, CA, USA
- State Key Laboratory of Experimental Hematology, Tianjin, China
| | - Christoph Schaniel
- Division of Hematology and Medical Oncology, Black Family Stem Cell Institute, Tisch Cancer Institute, Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xianqiang Mi
- Shanghai Institute of Microsystem and Information Technology Chinese Academy of Sciences, Shanghai, China
| | - Matthew Bock
- Department of Pediatrics, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Xiao-Bing Zhang
- Department of Medicine, Loma Linda University, Loma Linda, CA, USA.
| | - Hongyu Qiu
- Translational Cardiovascular Research Center, Department of Internal Medicine, University of Arizona - College of Medicine at Phoenix, Phoenix, AZ, USA.
| | - Charles Wang
- Center for Genomics, School of Medicine, Loma Linda University, Loma Linda, CA, USA.
- Division of Microbiology & Molecular Genetics, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA.
| |
Collapse
|
13
|
Malhan D, Yalçin M, Schoenrock B, Blottner D, Relógio A. Skeletal muscle gene expression dysregulation in long-term spaceflights and aging is clock-dependent. NPJ Microgravity 2023; 9:30. [PMID: 37012297 PMCID: PMC10070655 DOI: 10.1038/s41526-023-00273-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 03/13/2023] [Indexed: 04/05/2023] Open
Abstract
The circadian clock regulates cellular and molecular processes in mammals across all tissues including skeletal muscle, one of the largest organs in the human body. Dysregulated circadian rhythms are characteristic of aging and crewed spaceflight, associated with, for example, musculoskeletal atrophy. Molecular insights into spaceflight-related alterations of circadian regulation in skeletal muscle are still missing. Here, we investigated potential functional consequences of clock disruptions on skeletal muscle using published omics datasets obtained from spaceflights and other clock-altering, external (fasting and exercise), or internal (aging) conditions on Earth. Our analysis identified alterations of the clock network and skeletal muscle-associated pathways, as a result of spaceflight duration in mice, which resembles aging-related gene expression changes observed in humans on Earth (e.g., ATF4 downregulation, associated with muscle atrophy). Furthermore, according to our results, external factors such as exercise or fasting lead to molecular changes in the core-clock network, which may compensate for the circadian disruption observed during spaceflights. Thus, maintaining circadian functioning is crucial to ameliorate unphysiological alterations and musculoskeletal atrophy reported among astronauts.
Collapse
Affiliation(s)
- Deeksha Malhan
- Institute for Theoretical Biology (ITB), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany
- Molecular Cancer Research Center (MKFZ), Medical Department of Hematology, Oncology, and Tumour Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany
- Institute for Systems Medicine and Faculty of Human Medicine, MSH Medical School Hamburg, Hamburg, 20457, Germany
| | - Müge Yalçin
- Institute for Theoretical Biology (ITB), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany
- Molecular Cancer Research Center (MKFZ), Medical Department of Hematology, Oncology, and Tumour Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany
- Institute for Systems Medicine and Faculty of Human Medicine, MSH Medical School Hamburg, Hamburg, 20457, Germany
| | - Britt Schoenrock
- Institute of Integrative Neuroanatomy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany
| | - Dieter Blottner
- Institute of Integrative Neuroanatomy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany
- Neuromuscular System and Neuromuscular Signaling, Berlin Center of Space Medicine & Extreme Environments, Berlin, 10115, Germany
| | - Angela Relógio
- Institute for Theoretical Biology (ITB), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany.
- Molecular Cancer Research Center (MKFZ), Medical Department of Hematology, Oncology, and Tumour Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany.
- Institute for Systems Medicine and Faculty of Human Medicine, MSH Medical School Hamburg, Hamburg, 20457, Germany.
| |
Collapse
|
14
|
Amemiya H, Yamamoto M, Higa K, Watanabe G, Taniguchi S, Kitamura K, Jeong J, Yanagisawa N, Fukuda KI, Abe S. Effects of Myostatin on Nuclear Morphology at the Myotendinous Junction. Int J Mol Sci 2023; 24:ijms24076634. [PMID: 37047606 PMCID: PMC10094852 DOI: 10.3390/ijms24076634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/22/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Myostatin (Myo) is known to suppress skeletal muscle growth, and was recently reported to control tendon homeostasis. The purpose of the present study was to investigate the regulatory involvement of Myo in the myotendinous junction (MTJ) in vivo and in vitro. After Achilles tendon injury in mice, we identified unexpected cell accumulation on the tendon side of the MTJ. At postoperative day 7 (POD7), the nuclei had an egg-like profile, whereas at POD28 they were spindle-shaped. The aspect ratio of nuclei on the tendon side of the MTJ differed significantly between POD7 and POD28 (p = 4.67 × 10−34). We then investigated Myo expression in the injured Achilles tendon. At the MTJ, Myo expression was significantly increased at POD28 relative to POD7 (p = 0.0309). To investigate the action of Myo in vitro, we then prepared laminated sheets of myoblasts (C2C12) and fibroblasts (NIH3T3) (a pseudo MTJ model). Myo did not affect the expression of Pax7 and desmin (markers of muscle development), scleraxis and temonodulin (markers of tendon development), or Sox9 (a common marker of muscle and tendon development) in the cell sheets. However, Myo changed the nuclear morphology of scleraxis-positive cells arrayed at the boundary between the myoblast sheet and the fibroblast sheet (aspect ratio of the cell nuclei, myostatin(+) vs. myostatin(-): p = 0.000134). Myo may strengthen the connection at the MTJ in the initial stages of growth and wound healing.
Collapse
Affiliation(s)
- Hikari Amemiya
- Division of Special Needs Dentistry and Orofacial Pain, Department of Oral Health and Clinical Science, Tokyo Dental College, 2-9-18 Kandamisaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Masahito Yamamoto
- Department of Anatomy, Tokyo Dental College, 2-9-18 Kandamisaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Kazunari Higa
- Ophthalmology/Cornea Center, Tokyo Dental College Ichikawa General Hospital, 5-11-13 Sugano, Ichikawa, Chiba 272-8513, Japan
| | - Genji Watanabe
- Department of Anatomy, Tokyo Dental College, 2-9-18 Kandamisaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Shuichiro Taniguchi
- Department of Anatomy, Tokyo Dental College, 2-9-18 Kandamisaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Kei Kitamura
- Department of Histology and Developmental Biology, Tokyo Dental College, 2-9-18 Kandamisaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Juhee Jeong
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, 345 E. 24th Street, New York, NY 10010, USA
| | - Nobuaki Yanagisawa
- Division of Oral Health Sciences, Department of Health Sciences, School of Health and Social Services, Saitama Prefectural University, 820 Sannomia, Koshigaya-shi, Saitama 343-0036, Japan
| | - Ken-ichi Fukuda
- Division of Special Needs Dentistry and Orofacial Pain, Department of Oral Health and Clinical Science, Tokyo Dental College, 2-9-18 Kandamisaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Shinichi Abe
- Department of Anatomy, Tokyo Dental College, 2-9-18 Kandamisaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan
| |
Collapse
|
15
|
Markman S, Zada M, David E, Giladi A, Amit I, Zelzer E. A single-cell census of mouse limb development identifies complex spatiotemporal dynamics of skeleton formation. Dev Cell 2023; 58:565-581.e4. [PMID: 36931270 DOI: 10.1016/j.devcel.2023.02.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 10/20/2022] [Accepted: 02/20/2023] [Indexed: 03/18/2023]
Abstract
Limb development has long served as a model system for coordinated spatial patterning of progenitor cells. Here, we identify a population of naive limb progenitors and show that they differentiate progressively to form the skeleton in a complex, non-consecutive, three-dimensional pattern. Single-cell RNA sequencing of the developing mouse forelimb identified three progenitor states: naive, proximal, and autopodial, as well as Msx1 as a marker for the naive progenitors. In vivo lineage tracing confirmed this role and localized the naive progenitors to the outer margin of the limb, along the anterior-posterior axis. Sequential pulse-chase experiments showed that the progressive transition of Msx1+ naive progenitors into proximal and autopodial progenitors coincides with their differentiation to Sox9+ chondroprogenitors, which occurs along all the forming skeletal segments. Indeed, tracking the spatiotemporal sequence of differentiation showed that the skeleton forms progressively in a complex pattern. These findings suggest an alternative model for limb skeleton development.
Collapse
Affiliation(s)
- Svetlana Markman
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Mor Zada
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Eyal David
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Amir Giladi
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ido Amit
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Elazar Zelzer
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
16
|
McCourt JL, Stearns-Reider KM, Mamsa H, Kannan P, Afsharinia MH, Shu C, Gibbs EM, Shin KM, Kurmangaliyev YZ, Schmitt LR, Hansen KC, Crosbie RH. Multi-omics analysis of sarcospan overexpression in mdx skeletal muscle reveals compensatory remodeling of cytoskeleton-matrix interactions that promote mechanotransduction pathways. Skelet Muscle 2023; 13:1. [PMID: 36609344 PMCID: PMC9817407 DOI: 10.1186/s13395-022-00311-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 12/06/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The dystrophin-glycoprotein complex (DGC) is a critical adhesion complex of the muscle cell membrane, providing a mechanical link between the extracellular matrix (ECM) and the cortical cytoskeleton that stabilizes the sarcolemma during repeated muscle contractions. One integral component of the DGC is the transmembrane protein, sarcospan (SSPN). Overexpression of SSPN in the skeletal muscle of mdx mice (murine model of DMD) restores muscle fiber attachment to the ECM in part through an associated increase in utrophin and integrin adhesion complexes at the cell membrane, protecting the muscle from contraction-induced injury. In this study, we utilized transcriptomic and ECM protein-optimized proteomics data sets from wild-type, mdx, and mdx transgenic (mdxTG) skeletal muscle tissues to identify pathways and proteins driving the compensatory action of SSPN overexpression. METHODS The tibialis anterior and quadriceps muscles were isolated from wild-type, mdx, and mdxTG mice and subjected to bulk RNA-Seq and global proteomics analysis using methods to enhance capture of ECM proteins. Data sets were further analyzed through the ingenuity pathway analysis (QIAGEN) and integrative gene set enrichment to identify candidate networks, signaling pathways, and upstream regulators. RESULTS Through our multi-omics approach, we identified 3 classes of differentially expressed genes and proteins in mdxTG muscle, including those that were (1) unrestored (significantly different from wild type, but not from mdx), (2) restored (significantly different from mdx, but not from wild type), and (3) compensatory (significantly different from both wild type and mdx). We identified signaling pathways that may contribute to the rescue phenotype, most notably cytoskeleton and ECM organization pathways. ECM-optimized proteomics revealed an increased abundance of collagens II, V, and XI, along with β-spectrin in mdxTG samples. Using ingenuity pathway analysis, we identified upstream regulators that are computationally predicted to drive compensatory changes, revealing a possible mechanism of SSPN rescue through a rewiring of cell-ECM bidirectional communication. We found that SSPN overexpression results in upregulation of key signaling molecules associated with regulation of cytoskeleton organization and mechanotransduction, including Yap1, Sox9, Rho, RAC, and Wnt. CONCLUSIONS Our findings indicate that SSPN overexpression rescues dystrophin deficiency partially through mechanotransduction signaling cascades mediated through components of the ECM and the cortical cytoskeleton.
Collapse
Affiliation(s)
- Jackie L McCourt
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, 90095, USA
| | - Kristen M Stearns-Reider
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, 90095, USA
- Department of Orthopedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Hafsa Mamsa
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, 90095, USA
| | - Pranav Kannan
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, 90095, USA
| | | | - Cynthia Shu
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, 90095, USA
| | - Elizabeth M Gibbs
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, 90095, USA
| | - Kara M Shin
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, 90095, USA
| | - Yerbol Z Kurmangaliyev
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Lauren R Schmitt
- Department of Biochemistry and Molecular Genetics, University of Colorado, Denver, CO, USA
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado, Denver, CO, USA
| | - Rachelle H Crosbie
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, 90095, USA.
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California, Los Angeles, CA, USA.
- Broad Stem Cell Research Center, University of California, Los Angeles, CA, USA.
| |
Collapse
|
17
|
Bellidifolin Inhibits SRY-Related High Mobility Group-Box Gene 9 to Block TGF-β Signalling Activation to Ameliorate Myocardial Fibrosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6841276. [PMID: 35586685 PMCID: PMC9110156 DOI: 10.1155/2022/6841276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/13/2022] [Accepted: 04/13/2022] [Indexed: 11/17/2022]
Abstract
Myocardial fibrosis is the main morphological change of ventricular remodelling caused by cardiovascular diseases, mainly manifested due to the excessive production of collagen proteins. SRY-related high mobility group-box gene 9 (SOX9) is a new target regulating myocardial fibrosis. Bellidifolin (BEL), the active component of G. acuta, can prevent heart damage. However, it is unclear whether BEL can regulate SOX9 to alleviate myocardial fibrosis. The mice were subjected to isoproterenol (ISO) to establish myocardial fibrosis, and human myocardial fibroblasts (HCFs) were activated by TGF-β1 in the present study. The pathological changes of cardiac tissue were observed by HE staining. Masson staining was applied to reveal the collagen deposition in the heart. The measurement for expression of fibrosis-related proteins, SOX9, and TGF-β1 signalling molecules adopted Western blot and immunohistochemistry. The effects of BEL on HCFs, activity were detected by CCK-8. The result showed that BEL did not affect cell viability. And, the data indicated that BEL inhibited the elevations in α-SMA, Collagen I, and Collagen III by decreasing SOX9 expression. Additionally, SOX9 suppression by siRNA downregulated the TGF-β1 expression and prevented Smad3 phosphorylation, as supported by reducing the expression of α-SMA, Collagen I, and Collagen III. In vivo study verified that BEL ameliorated myocardial fibrosis by inhibiting SOX9. Therefore, BEL inhibited SOX9 to block TGF-β1 signalling activation to ameliorate myocardial fibrosis.
Collapse
|
18
|
Bolam SM, Konar S, Park YE, Callon KE, Workman J, Monk AP, Coleman B, Cornish J, Vickers MH, Munro JT, Musson DS. A high-fat diet has negative effects on tendon resident cells in an in vivo rat model. INTERNATIONAL ORTHOPAEDICS 2022; 46:1181-1190. [PMID: 35201374 PMCID: PMC9001221 DOI: 10.1007/s00264-022-05340-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 02/04/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND Tendinopathy is a major complication of diet-induced obesity. However, the effects of a high-fat diet (HFD) on tendon have not been well characterised. We aimed to determine: [1] the impact of a HFD on tendon properties and gene expression; and [2] whether dietary transition to a control diet (CD) could restore normal tendon health. METHODS Sprague-Dawley rats were randomised into three groups from weaning and fed either a: CD, HFD or HFD for 12 weeks and then CD thereafter (HF-CD). Biomechanical, histological and structural evaluation of the Achilles tendon was performed at 17 and 27 weeks of age. Tail tenocytes were isolated with growth rate and collagen production determined. Tenocytes and activated THP-1 cells were exposed to conditioned media (CM) of visceral adipose tissue explants, and gene expression was analysed. RESULTS There were no differences in the biomechanical, histological or structural tendon properties between groups. However, tenocyte growth and collagen production were increased in the HFD group at 27 weeks. There was lower SOX-9 expression in the HFD and HF-CD groups at 17 weeks and higher expression of collagen-Iα1 and matrix metalloproteinase-13 in the HFD group at 27 weeks. THP-1 cells exposed to adipose tissue CM from animals fed a HFD or HF-CD had lower expression of Il-10 and higher expression of Il-1β. CONCLUSIONS In this rodent model, a HFD negatively altered tendon cell characteristics. Dietary intervention restored some gene expression changes; however, adipose tissue secretions from the HF-CD group promoted an increased inflammatory state in macrophages. These changes may predispose tendon to injury and adverse events later in life.
Collapse
Affiliation(s)
- Scott M Bolam
- Department of Medicine, University of Auckland, 85 Park Road, Grafton, Auckland, New Zealand
- Department of Orthopedic Surgery, Auckland City Hospital, 2 Park Road, Grafton, Auckland, New Zealand
| | - Subhajit Konar
- Department of Medicine, University of Auckland, 85 Park Road, Grafton, Auckland, New Zealand
| | - Young-Eun Park
- Department of Medicine, University of Auckland, 85 Park Road, Grafton, Auckland, New Zealand
| | - Karen E Callon
- Department of Medicine, University of Auckland, 85 Park Road, Grafton, Auckland, New Zealand
| | - Josh Workman
- Chemical and Materials Engineering, University of Auckland, 5 Grafton Rd, Auckland, New Zealand
| | - A Paul Monk
- Department of Orthopedic Surgery, Auckland City Hospital, 2 Park Road, Grafton, Auckland, New Zealand
- Auckland Bioengineering Institute, University of Auckland, 70 Symonds St, Grafton, Auckland, New Zealand
| | - Brendan Coleman
- Department of Orthopedic Surgery, Middlemore Hospital, 100 Hospital Road, Otahuhu, Auckland, New Zealand
| | - Jillian Cornish
- Department of Medicine, University of Auckland, 85 Park Road, Grafton, Auckland, New Zealand
| | - Mark H Vickers
- Liggins Institute, University of Auckland, 85 Park Road, Grafton, Auckland, New Zealand
| | - Jacob T Munro
- Department of Medicine, University of Auckland, 85 Park Road, Grafton, Auckland, New Zealand
- Department of Orthopedic Surgery, Auckland City Hospital, 2 Park Road, Grafton, Auckland, New Zealand
| | - David S Musson
- Department of Medicine, University of Auckland, 85 Park Road, Grafton, Auckland, New Zealand.
- Department of Nutrition & Dietetics, University of Auckland, 85 Park Road, Grafton, 1023, Auckland, New Zealand.
| |
Collapse
|
19
|
Development and Regeneration of Muscle, Tendon, and Myotendinous Junctions in Striated Skeletal Muscle. Int J Mol Sci 2022; 23:ijms23063006. [PMID: 35328426 PMCID: PMC8950615 DOI: 10.3390/ijms23063006] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/05/2022] [Accepted: 03/08/2022] [Indexed: 12/04/2022] Open
Abstract
Owing to a rapid increase in aging population in recent years, the deterioration of motor function in older adults has become an important social problem, and several studies have aimed to investigate the mechanisms underlying muscle function decline. Furthermore, structural maintenance of the muscle–tendon–bone complexes in the muscle attachment sites is important for motor function, particularly for joints; however, the development and regeneration of these complexes have not been studied thoroughly and require further elucidation. Recent studies have provided insights into the roles of mesenchymal progenitors in the development and regeneration of muscles and myotendinous junctions. In particular, studies on muscles and myotendinous junctions have—through the use of the recently developed scRNA-seq—reported the presence of syncytia, thereby suggesting that fibroblasts may be transformed into myoblasts in a BMP-dependent manner. In addition, the high mobility group box 1—a DNA-binding protein found in nuclei—is reportedly involved in muscle regeneration. Furthermore, studies have identified several factors required for the formation of locomotor apparatuses, e.g., tenomodulin (Tnmd) and mohawk (Mkx), which are essential for tendon maturation.
Collapse
|
20
|
Kanehira C, Yamamoto M, Hirouchi H, Ishizuka S, Sakiyama K, Higa K, Murakami G, Abe S. Tendinous annulus of Zinn for a common origin of the extraocular rectus muscles: a histological study of the orbital apex from donated elderly cadavers. Anat Sci Int 2022; 97:369-379. [PMID: 35157253 DOI: 10.1007/s12565-022-00649-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/18/2022] [Indexed: 11/29/2022]
Abstract
The medial, inferior, lateral, and superior rectus muscles (MR, IR, LR, SR), levator palpebrae superioris (LPS), and superior oblique muscle (SO) seem to originate from the tendinous annulus of Zinn, ring-like fibrous tissue crossing the bony orbital fissure. We observed the histological annulus structure using semi-serial histological sections of the orbital apex from 30 elderly donated cadavers. Nearly frontal sections demonstrated a ring-like fibrous structure (a candidate annulus) connecting or embedding four rectus muscles. The candidate annulus did not contain the LPS and SO, and, in the anterior side, the latter muscles originated from the optic canal opening. Far posterior to the annulus, there was a common tendon of the MR, IR, and LR attached to the infero-medial wall of the bony orbital fissure. At the superior part, the annulus is tightly attached to the optic nerve sheath and the periosteum. Sagittal (or Horizontal) sections clearly exhibited parts of the annulus at the MR (SR) origin. Both sagittal and horizontal sections displayed (1) the common origin of the three rectus muscles near the oculomotor nerve in the bony fissure and (2) an accessory, independent muscle bundle of the MR originating from the superomedial margin of the optic canal near the origins of the LPS or SO. Consequently, the so-called tendinous annulus appeared not to provide origins of all six muscles.
Collapse
Affiliation(s)
| | | | | | | | - Koji Sakiyama
- Division of Anatomy, Department of Human Development and Fostering, Meikai University School of Dentistry, 1-1 Keyaki-dai, Sakado-shi, Saitama, 350-0283, Japan
| | - Kazunari Higa
- Cornea Center Eye Bank, Tokyo Dental College Ichikawa General Hospital, Sugano, Ichikawa, Chiba, 5-11-13, Japan
| | - Gen Murakami
- Department of Anatomy, Tokyo Dental College, Tokyo, Japan.,Division of Internal Medicine, Cupid Clinic, Iwamizawa, Hokkaido, Japan
| | - Shinichi Abe
- Department of Anatomy, Tokyo Dental College, Tokyo, Japan.
| |
Collapse
|
21
|
Oncogenic role of SOX9-DHCR24-cholesterol biosynthesis axis in IGH-BCL2 positive diffuse large B-cell lymphomas. Blood 2021; 139:73-86. [PMID: 34624089 PMCID: PMC8740888 DOI: 10.1182/blood.2021012327] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 09/29/2021] [Indexed: 11/21/2022] Open
Abstract
SOX9 plays an oncogenic role in germinal center B-cell type, IGH-BCL2+ DLBCL, by promoting cell proliferation and inhibiting apoptosis. SOX9 drives lymphomagenesis through upregulation of DHCR24, the key final enzyme in the cholesterol biosynthesis pathway.
Although oncogenicity of the stem cell regulator SOX9 has been implicated in many solid tumors, its role in lymphomagenesis remains largely unknown. In this study, SOX9 was overexpressed preferentially in a subset of diffuse large B-cell lymphomas (DLBCLs) that harbor IGH-BCL2 translocations. SOX9 positivity in DLBCL correlated with an advanced stage of disease. Silencing of SOX9 decreased cell proliferation, induced G1/S arrest, and increased apoptosis of DLBCL cells, both in vitro and in vivo. Whole-transcriptome analysis and chromatin immunoprecipitation–sequencing assays identified DHCR24, a terminal enzyme in cholesterol biosynthesis, as a direct target of SOX9, which promotes cholesterol synthesis by increasing DHCR24 expression. Enforced expression of DHCR24 was capable of rescuing the phenotypes associated with SOX9 knockdown in DLBCL cells. In models of DLBCL cell line xenografts, SOX9 knockdown resulted in a lower DHCR24 level, reduced cholesterol content, and decreased tumor load. Pharmacological inhibition of cholesterol synthesis also inhibited DLBCL xenograft tumorigenesis, the reduction of which is more pronounced in DLBCL cell lines with higher SOX9 expression, suggesting that it may be addicted to cholesterol. In summary, our study demonstrated that SOX9 can drive lymphomagenesis through DHCR24 and the cholesterol biosynthesis pathway. This SOX9-DHCR24-cholesterol biosynthesis axis may serve as a novel treatment target for DLBCLs.
Collapse
|
22
|
Ishizuka S, Yamamoto M, Hirouchi H, Yotsuya M, Ohkubo M, Sato M, Abe S. Muscle-Bone Relationship in Temporomandibular Joint Disorders after Partial Discectomy. J Oral Biosci 2021; 63:436-443. [PMID: 34555528 DOI: 10.1016/j.job.2021.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/07/2021] [Accepted: 09/10/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Temporomandibular joint osteoarthritis (TMJ-OA) causes degenerative changes in TMJ tissues. The inter-tissue crosstalk that exacerbates illness and organic changes in bone secondary to TMJ-OA potentially affects the muscles; therefore, patients with a muscular disease might also suffer from bone disease. However, knowledge gaps exist concerning muscle pathology at the onset of TMJ-OA. In this study, we documented the pathogeneses of the bone and muscle at the onset of TMJ-OA using a mouse model. METHODS We performed a partial resection of the TMJ disk to establish a mouse model of TMJ-OA. After the onset of TMJ-OA, we performed various measurements at 8, 12, and 16 weeks post-surgery in the defined groups. RESULTS The volume of the mandibular head in the TMJ-OA group was significantly greater than that in the control group. The temporal muscles in the TMJ-OA group were significantly deformed compared with those in the control group; however, between-group comparisons did not reveal significant differences in the mandibular head or temporal muscles after surgery. Therefore, we hypothesized that the degree of mandibular head hypertrophy would alter the temporal muscles. A subsequent analysis of the correlation between the bone and muscle confirmed that the deformity of the temporal muscle increased with increasing hypertrophy of the mandibular head. Temporal and masseter muscle contact was observed in 25% of surgical groups. CONCLUSIONS This study demonstrates that TMJ-OA progressed when organic changes occurred in bones and muscles, supporting the symbiotic relationship between bones and muscles.
Collapse
Affiliation(s)
- Satoshi Ishizuka
- Department of Anatomy, Tokyo Dental College, 2-9-18 Kanda-misakicho, Tokyo, 101-0061, Japan; Tokyo Dental College Research Branding Project, 2-9-18 Kanda-misakicho, Tokyo, 101-0061, Japan.
| | - Masahito Yamamoto
- Department of Anatomy, Tokyo Dental College, 2-9-18 Kanda-misakicho, Tokyo, 101-0061, Japan; Tokyo Dental College Research Branding Project, 2-9-18 Kanda-misakicho, Tokyo, 101-0061, Japan.
| | - Hidetomo Hirouchi
- Department of Anatomy, Tokyo Dental College, 2-9-18 Kanda-misakicho, Tokyo, 101-0061, Japan.
| | - Mamoru Yotsuya
- Tokyo Dental College Research Branding Project, 2-9-18 Kanda-misakicho, Tokyo, 101-0061, Japan; Department of Fixed Prosthodontics, 2-9-18 Kanda-misakicho, Tokyo, 101-0061, Japan.
| | - Mai Ohkubo
- Tokyo Dental College Research Branding Project, 2-9-18 Kanda-misakicho, Tokyo, 101-0061, Japan; Department of Oral Health and Clinical Science, Division of Dysphagia Rehabilitation, 2-9-18 Kanda-misakicho, Tokyo, 101-0061, Japan.
| | - Masaki Sato
- Tokyo Dental College Research Branding Project, 2-9-18 Kanda-misakicho, Tokyo, 101-0061, Japan; Laboratory of Biology, 2-9-18 Kanda-misakicho, Tokyo, 101-0061, Japan.
| | - Shinichi Abe
- Department of Anatomy, Tokyo Dental College, 2-9-18 Kanda-misakicho, Tokyo, 101-0061, Japan; Tokyo Dental College Research Branding Project, 2-9-18 Kanda-misakicho, Tokyo, 101-0061, Japan.
| |
Collapse
|
23
|
Yamamoto M, Chen HK, Hidetomo H, Watanabe A, Sakiyama K, Kim HJ, Murakami G, Rodríguez-Vázquez JF, Abe S. Superior labial artery and vein anastomosis configuration to be considered in lip augmentation. Ann Anat 2021; 239:151808. [PMID: 34324994 DOI: 10.1016/j.aanat.2021.151808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 12/15/2022]
Abstract
The treatment of cleft lip and palate is performed over a long period, starting immediately after birth. However, esthetic problems remain after lip augmentation. Endothelial cells of new capillaries are important for wound healing. Thus, the reconstruction of vascular networks is key to postoperative wound healing during lip augmentation. However, studies describing the superior labial artery (SLA) and superior labial vein (SLV) are rare, and their mutual positional relationship thus remains unclear. We procured 29 adult cadavers and ten fetuses. Macroscopic and histological examinations were performed on adult cadavers. We extracted soft tissues and blood vessels after micro-computed tomography (CT) and 3D tissue reconstruction. We performed histological investigations of vascular networks within the cleft lip in fetal samples. In adults, the SLV was distributed throughout the cutaneous side of the orbicularis oris muscle and the SLA, throughout the mucosal side. The SLV and SLA were separated by this muscle. Micro-CT images revealed that the SLA on the mucosal side transversed the orbicularis oris muscle to the SLV (55%). Histological analysis of fetuses revealed that the SLA was on the mucosal side, similar to that in adults, and traversed the orbicularis oris muscle in continuity with the SLV of the cutaneous side (100%). In lip augmentation, the reconstruction of the vascular structure, which involves the anastomosis of SLA and SLV passing through the orbicularis oris muscle, is an important factor when considering esthetic repair.
Collapse
Affiliation(s)
- Masahito Yamamoto
- Department of Anatomy, Tokyo Dental College, 2-9-18 Misaki-cho, Chiyoda-ku, 101-0061 Tokyo, Japan; Tokyo Dental College Research Branding Project, 2-9-18 Kanda-misakicho, Tokyo, 101-0061, Japan.
| | - Hsiu-Kuo Chen
- Department of Anatomy, Tokyo Dental College, 2-9-18 Misaki-cho, Chiyoda-ku, 101-0061 Tokyo, Japan
| | - Hirouchi Hidetomo
- Department of Anatomy, Tokyo Dental College, 2-9-18 Misaki-cho, Chiyoda-ku, 101-0061 Tokyo, Japan
| | - Akira Watanabe
- Tokyo Dental College Research Branding Project, 2-9-18 Kanda-misakicho, Tokyo, 101-0061, Japan; Department of Oral and Maxillofacial Surgery, Tokyo Dental College, 2-9-18 Misaki-cho, Chiyoda-ku, 101-0061 Tokyo, Japan
| | - Koji Sakiyama
- Division of Anatomy, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283, Japan
| | - Hee-Jin Kim
- Division in Anatomy and Developmental Biology, Department of Oral Biology, College of Dentistry, Yonsei University, Seoul, Republic of Korea
| | - Gen Murakami
- Department of Anatomy, Tokyo Dental College, 2-9-18 Misaki-cho, Chiyoda-ku, 101-0061 Tokyo, Japan; Division of Internal Medicine, Jikou-kai Clinic of Home Visits, 4-4-18, Bieicho-Minamimachi, 071-0202 Kamikawa, Japan
| | | | - Shinichi Abe
- Department of Anatomy, Tokyo Dental College, 2-9-18 Misaki-cho, Chiyoda-ku, 101-0061 Tokyo, Japan; Tokyo Dental College Research Branding Project, 2-9-18 Kanda-misakicho, Tokyo, 101-0061, Japan
| |
Collapse
|
24
|
Yamamoto M, Abe H, Hirouchi H, Sato M, Murakami G, Rodríguez-Vázquez JF, Abe S. Development of the cartilaginous connecting apparatuses in the fetal sphenoid, with a focus on the alar process. PLoS One 2021; 16:e0251068. [PMID: 34252104 PMCID: PMC8274926 DOI: 10.1371/journal.pone.0251068] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 04/19/2021] [Indexed: 12/13/2022] Open
Abstract
The human fetal sphenoid is reported to have a cartilaginous connecting apparatus known as the alar process (AP), which connects the ala temporalis (AT) (angle of the greater wing of the sphenoid) to the basisphenoid (anlage of the sphenoid body). However, how the AP develops in humans is unclear. In addition, although the AP is a common structure of the mammalian chondrocranium, little is known about whether it is really a fundamental feature in mammals. This study examined the histological sections of 20 human embryos and fetuses from 6 to 14 weeks of development, of 20 mouse embryos from embryonic days 12-18, and of 4 rats embryos form embryonic days 17 and 20. In addition, we reconsidered the definition of the AP by comparing humans and rats with mice. In humans, the AP was continuous with the basisphenoid but was separated from the AT by a thick perichondrium. Then, the AP-AT connection had a key-and-keyhole structure. Unlike a joint, no cavitation developed in this connection. In mice, there was no boundary between the AT and the basisphenoid, indicating the absence of the AP in the mouse chondrocranium. In rats, the AP was, however, separated from the AT by a thick perichondrium. Therefore, the AP can be defined as follows: the AP is temporally separated from the AT by a thick perichondrium or a key-and-keyhole structure during the fetal period. This is the first study that confirms the absence of the alar process in the mice skull, and its presence in other mammals skull should be further investigated.
Collapse
Affiliation(s)
- Masahito Yamamoto
- Department of Anatomy, Tokyo Dental College, Chiyoda-ku, Tokyo, Japan
| | - Hiroaki Abe
- Department of Anatomy, Tokyo Dental College, Chiyoda-ku, Tokyo, Japan
| | - Hidetomo Hirouchi
- Department of Anatomy, Tokyo Dental College, Chiyoda-ku, Tokyo, Japan
| | - Masaki Sato
- Department of Biology, Tokyo Dental College, Chiyoda-ku, Tokyo, Japan
| | - Gen Murakami
- Department of Anatomy, Tokyo Dental College, Chiyoda-ku, Tokyo, Japan
- Division of Internal Medicine, Jikou-kai Clinic of Home Visits, Sapporo, Japan
| | | | - Shinichi Abe
- Department of Anatomy, Tokyo Dental College, Chiyoda-ku, Tokyo, Japan
| |
Collapse
|
25
|
Abe S, Yamamoto M. Factors Involved in Morphogenesis in the Muscle-Tendon-Bone Complex. Int J Mol Sci 2021; 22:6365. [PMID: 34198655 PMCID: PMC8232103 DOI: 10.3390/ijms22126365] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/12/2021] [Accepted: 06/12/2021] [Indexed: 12/13/2022] Open
Abstract
A decline in the body's motor functions has been linked to decreased muscle mass and function in the oral cavity and throat; however, aging of the junctions of the muscles and bones has also been identified as an associated factor. Basic and clinical studies on the muscles, tendons and bones, each considered independently, have been published. In recent years, however, research has focused on muscle attachment as the muscle-tendon-bone complex from various perspectives, and there is a growing body of knowledge on SRY-box9 (Sox9) and Mohawk(Mkx), which has been identified as a common controlling factor and a key element. Myostatin, a factor that inhibits muscle growth, has been identified as a potential key element in the mechanisms of lifetime structural maintenance of the muscle-tendon-bone complex. Findings in recent studies have also uncovered aspects of the mechanisms of motor organ complex morphostasis in the superaged society of today and will lay the groundwork for treatments to prevent motor function decline in older adults.
Collapse
Affiliation(s)
- Shinichi Abe
- Department of Anatomy, Tokyo Dental College, 2-9-18 Kanda-misakicho, Chiyoda-ku, Tokyo 101-0061, Japan;
| | | |
Collapse
|
26
|
Localization of T-cell factor 4 positive fibroblasts and CD206-positive macrophages during skeletal muscle regeneration in mice. Ann Anat 2021; 235:151694. [DOI: 10.1016/j.aanat.2021.151694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 12/17/2020] [Accepted: 01/21/2021] [Indexed: 12/24/2022]
|
27
|
Agrawal P, Rao S. Super-Enhancers and CTCF in Early Embryonic Cell Fate Decisions. Front Cell Dev Biol 2021; 9:653669. [PMID: 33842482 PMCID: PMC8027350 DOI: 10.3389/fcell.2021.653669] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 02/18/2021] [Indexed: 12/04/2022] Open
Abstract
Cell fate decisions are the backbone of many developmental and disease processes. In early mammalian development, precise gene expression changes underly the rapid division of a single cell that leads to the embryo and are critically dependent on autonomous cell changes in gene expression. To understand how these lineage specifications events are mediated, scientists have had to look past protein coding genes to the cis regulatory elements (CREs), including enhancers and insulators, that modulate gene expression. One class of enhancers, termed super-enhancers, is highly active and cell-type specific, implying their critical role in modulating cell-type specific gene expression. Deletion or mutations within these CREs adversely affect gene expression and development and can cause disease. In this mini-review we discuss recent studies describing the potential roles of two CREs, enhancers and binding sites for CTCF, in early mammalian development.
Collapse
Affiliation(s)
- Puja Agrawal
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
- Versiti Blood Research Institute, Milwaukee, WI, United States
| | - Sridhar Rao
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
- Versiti Blood Research Institute, Milwaukee, WI, United States
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
28
|
Cho KH, Morimoto I, Yamamoto M, Hanada S, Murakami G, Rodríguez-Vázquez JF, Abe S. Fetal development of the human trapezius and sternocleidomastoid muscles. Anat Cell Biol 2020; 53:405-410. [PMID: 33361543 PMCID: PMC7769109 DOI: 10.5115/acb.20.202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/11/2020] [Accepted: 10/29/2020] [Indexed: 11/27/2022] Open
Abstract
At present, there is no photographic evidence of splitting of the trapezius and sternocleidomastoid muscles (SCMs), which share a common anlage that extends caudally toward the limb bud in the embryo at a length of 9 mm. Therefore, the aim of the present study was to identify which structures divide the caudal end of the common anlage at the first sign of splitting into two muscles. In 11 mm-long specimens, the SCM and trapezius muscles were identified as a single mesenchymal condensation. In 15 and 18 mm-long specimens, the SCM and trapezius muscles were separated and extended posteriorly and lymphatic tissues appeared in a primitive lateral cervical space surrounded by the SCM (anterior). In 21 mm-long specimens, the lymphatic vessels were dilated and the accompanying afferents were forming connections with the subcutaneous tissue through a space between the SCM and trapezius muscles. In 27 mm-long specimens, cutaneous lymphatic vessels were evident and had entered the deep tissue between the SCM and trapezius muscles. Vascular dilation may be viewed as a result of less mechanical stress or pressure after muscle splitting.
Collapse
Affiliation(s)
- Kwang Ho Cho
- Department of Neurology, Wonkwang University School of Medicine and Hospital, Institute of Wonkwang Medical Science, Iksan, Korea
| | | | | | - Shinya Hanada
- Department of Anatomy, Tokyo Dental College, Tokyo, Japan
| | - Gen Murakami
- Division of Internal Medicine, Jikou-kai Clinic of Home Visits, Sapporo, Japan
| | | | - Shinichi Abe
- Department of Anatomy, Tokyo Dental College, Tokyo, Japan
| |
Collapse
|