1
|
Ahmad S, Mohammed M, Mekala LP, Chintalapati S, Chintalapati R. Proteomic and metabolic profiling reveals molecular phenotype associated with chemotrophic growth of Rubrivivax benzoatilyticus JA2 on L-tryptophan. Mol Omics 2025; 21:51-68. [PMID: 39607403 DOI: 10.1039/d4mo00170b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Rubrivivax benzoatilyticus strain JA2 is an anoxygenic phototrophic bacterium, able to grow under different growth modes. Particularly under chemotrophic conditions, it produces novel Trp-melanin, anthocyanin-like, and pyomelanin pigments. However, the underlying molecular adaptations of strain JA2 that lead to the formation of novel metabolites under chemotrophic conditions remain unexplored. The present study used iTRAQ-based global proteomic and metabolite profiling to unravel the biochemical processes operating under the L-tryptophan-fed chemotrophic state. Exometabolite profiling of L-tryptophan fed chemotrophic cultures revealed production of diverse indolic metabolites, many of which are hydroxyindole derivatives, along with unique pigmented metabolites. Proteomic profiling revealed a global shift in the proteome and detected 2411 proteins, corresponding to 61.8% proteins expressed. Proteins related to signalling, transcription-coupled translation, stress, membrane transport, and metabolism were highly differentially regulated. Extensive rewiring of amino acid, fatty acid, lipid, and energy metabolism was observed under L-tyrptophan fed chemotrophic conditions. Moreover, energy conservation and cell protection strategies such as efflux pumps involved in the efflux of aromatic compounds were activated. The study demonstrated a correlation between some of the detected indole derivatives and the up-regulation of proteins associated with L-tryptophan catabolism, indicating a possible role of aromatic mono/dioxygenases in the formation of hydroxyindole derivatives and pigments under chemotrophic conditions. The overall study revealed metabolic flexibility in utilizing aromatic compounds and molecular adaptations of strain JA2 under the chemotrophic state.
Collapse
Affiliation(s)
- Shabbir Ahmad
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India.
| | - Mujahid Mohammed
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India.
| | - Lakshmi Prasuna Mekala
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India.
| | - Sasikala Chintalapati
- Smart Microbiological Services (SMS), Rashtrapathi Road, Secunderabad 500 003, India
| | - Ramana Chintalapati
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India.
| |
Collapse
|
2
|
Wang Z, Li S, Ding X, Du X, Zhao A. Study on the Differences in Fecal Metabolites and Microbial Diversity of Jiangshan Black-Bone Chickens with Different Earlobe Colors. Animals (Basel) 2024; 14:3060. [PMID: 39518782 PMCID: PMC11544832 DOI: 10.3390/ani14213060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
The differences in earlobe color of Jiangshan black-bone chickens have been reported to be caused by the combined effects of melanin and collagen. In this study, we conducted LC-MS untargeted metabolomics and 16S rDNA diversity sequencing on the cecal contents of two types of earlobes: peacock green (Blue and Green group) and dark reddish-purple (Black group). The metabolomic sequencing identified a total of 747 differential metabolites (DMs), in which the metabolites were primarily enriched in tyrosine and tryptophan metabolism pathways between peacock green and dark reddish-purple earlobes. There were 15 different bacterial taxa among the three groups of earlobes at the genus level, and correlation analysis between metabolites and microbes revealed that the DMs between peacock green and dark reddish-purple earlobes were positively correlated with the different bacterial taxa. In short, there are differences in gut microbiota and metabolites between Jiangshan black-bone chickens with peacock green earlobes and those with dark reddish-purple earlobes. Our results suggest that the bacterial phyla Firmicutes and Bacteroidota may influence melanin synthesis by affecting tryptophan metabolism, induced by 5-Methoxyindoleacetate, and tyrosine metabolism, induced by maleylacetoacetic acid and maleic acid, leading to differences in earlobe color.
Collapse
Affiliation(s)
- Zhijun Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (Z.W.); (S.L.); (X.D.)
| | - Shiru Li
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (Z.W.); (S.L.); (X.D.)
| | - Xiangying Ding
- Jiangshan Agriculture and Rural Bureau, Quzhou 324100, China;
| | - Xue Du
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (Z.W.); (S.L.); (X.D.)
| | - Ayong Zhao
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (Z.W.); (S.L.); (X.D.)
| |
Collapse
|
3
|
Santos KFDN, Oliveira MS, Ferreira EPDB, Amaral ADG, Martin-Didonet CCG. Physicochemical characterization of the brown pigment produced by Azospirillum brasilense HM053 using tryptophan as precursor. Braz J Microbiol 2024; 55:2227-2237. [PMID: 38954221 PMCID: PMC11405611 DOI: 10.1007/s42770-024-01433-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 06/18/2024] [Indexed: 07/04/2024] Open
Abstract
Microorganisms are known to be a promising source of biopigments because they are easy to obtain, can be produced on a commercial scale, and are environmentally friendly. Therefore, the aim of this work was to characterize a brown pigment (BP) produced by HM053 in NFbHPN-lactate medium. The BP was extracted from the pellet (BPP) or supernatant (BPS), in the presence (BPPTrp, BPSTrp) or absence (BPPw, BPSw) of tryptophan (Trp). The UV-vis results were similar among all BP samples and compared with commercial melanin used as a standard, and the maximum absorption was observed around 200-220 nm. FTIR spectra showed that BP and commercial melanin had slight differences, with a small band between 3000-2840 cm- 1, related to C-H in the CH2 and CH3 aliphatic groups, which is not observed in the commercial melanin. Between BPP and BPS showed a different structure with bands in the region 1230-1070 cm- 1 related to groups C-O. The thermogravimetric curves for BPSw and BPSTrp showed similar behavior, with 4 stages of mass loss. The similarity between BPPw and BPPTrp with 2 stages of mass loss was also observed. Scanning electron microscopy results showed morphological differences between BPP and BPS, where BPP had a physical structure more homogeneous and a regular flat surface, while the BPS physical structure did not seem homogeneous and the surface was uneven with some spherical structures as commercial melanin.
Collapse
Affiliation(s)
- Karina Freire d'Eça Nogueira Santos
- Embrapa Arroz e Feijão, Rodovia GO-462, Km12, Fazenda Capivara, Santo Antônio de Goiás,, GO, Brazil.
- Campus Anápolis de Ciências Exatas e Tecnológicas Henrique Santillo, UEG, Anápolis, GO, Brazil.
| | - Marilene Silva Oliveira
- Campus Anápolis de Ciências Exatas e Tecnológicas Henrique Santillo, UEG, Anápolis, GO, Brazil
- Simple Agro Corporation, Rua Augusta Bastos, 866, Setor Central, Rio Verde, GO, Brazil
| | | | | | | |
Collapse
|
4
|
Rudrappa M, Kumar RS, Basavarajappa DS, Bhat MP, Nagaraja SK, Almansour AI, Perumal K, Nayaka S. Penicillium citrinum NP4 mediated production, extraction, physicochemical characterization of the melanin, and its anticancer, apoptotic, photoprotection properties. Int J Biol Macromol 2023:125547. [PMID: 37356688 DOI: 10.1016/j.ijbiomac.2023.125547] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/08/2023] [Accepted: 06/21/2023] [Indexed: 06/27/2023]
Abstract
The biopolymer melanin is reported for many biological processes to secure biological entities over unfavorable environmental factors. The present study aimed to isolate soil fungi and screen for melanin production. The potent fungus was identified as Penicillium citrinum NP4 based on morphological and molecular characterization with accession number OP070954. Using standardized tyrosine broth conditions melanin was produced by NP4 and extracted by acidification. Extracted melanin exhibited maximum UV-Visible absorption at 223 nm; FTIR peaks validate the occurrence of CO, CN, CH, and CC functional groups present in the indole/pyrrole structure. TLC analysis exhibited a prominent single band with a Retardation factor (Rf) of 0.68, Resonance peaks at 6.621, 7.061, and 7.185 ppm exhibited aromatic hydrogen in the indole/pyrole system in 1H NMR. The EDX peaks confirm the presence of carbon, oxygen, sulfur, and nitrogen elements which are the key factors in melanin structure, and TGA reports the thermal stability of the melanin. An In silico molecular docking approach on lung cancer causing proteins EGFR (3g5z), KRAS (6vc8), and TP53 (8 dc4) were conducted to determine the active binding sites of the melanin, and proteins exhibited binding affinity of -8.0 for 3g5z, -9.8 for 6vc8, and - 10.1 kcal/mol for TP53 protein with melanin. Anticancer activity of the melanin showed significant inhibition of A549 cells in dose-dependent mode with significant IC50 of 65.49 μg/mL; apoptotic examination reveals that melanin showed 46.14 % apoptosis for melanin and 46.36 % apoptosis for standard drug (cisplatin). Melanin exhibited good photoprotection capacity at 1 μg/mL. In conclusion, the extracted melanin exhibited significant results on many biological applications and it can be used in the pharmaceutical field to avoid chemical-based drugs.
Collapse
Affiliation(s)
- Muthuraj Rudrappa
- P.G. Department of Studies in Botany, Karnatak University, Dharwad 580001, Karnataka, India
| | - Raju Suresh Kumar
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | | | | | | | - Abdulrahman I Almansour
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Karthikeyan Perumal
- Department of Chemistry and Biochemistry, The Ohio State University, 151 W. Woodruff Ave, Columbus, OH 43210, USA
| | - Sreenivasa Nayaka
- P.G. Department of Studies in Botany, Karnatak University, Dharwad 580001, Karnataka, India.
| |
Collapse
|
5
|
Chen Z, Li Y, Nie S, Wu Z. TMT-Based Quantitative Proteomic and Physiological Analyses on Serums of Chinese Patients with Active Vitiligo. Clin Cosmet Investig Dermatol 2023; 16:1407-1417. [PMID: 37303983 PMCID: PMC10253017 DOI: 10.2147/ccid.s412124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 05/13/2023] [Indexed: 06/13/2023]
Abstract
Purpose Vitiligo is an acquired depigmented skin disorder. Though genetic background, autoimmune dysregulation, and oxidative stress were reported involved in the development of vitiligo, the exact pathogenesis remains largely unknown. This study aimed to investigate potential functional proteins, pathways, and serum biomarkers involved in active vitiligo. Patients and Methods Tandem Mass Tags (TMT) method was used to determine differentially expressed proteins (DEPs) in serum samples between 11 active vitiligo patients and 7 healthy controls of Chinese Han population. Results A total of 31 DEPs were identified (P < 0.05, fold change >1.2), with 21 proteins upregulated and 10 proteins downregulated in the vitiligo group. DEPs were enriched in GO terms such as "extracellular exosome" and "immunoglobulin receptor binding", as well as KEGG pathways including "cysteine and methionine metabolism" and other immune-related pathways. Furthermore, ALDH1A1 and EEF1G achieved areas under receiver-operating characteristic (ROC) curve of 0.9221 and 0.8571, respectively. The expression levels of these 2 proteins were validated in another active vitiligo patient group. Conclusion Our research provided novel insight into serum proteomic profile for vitiligo patients, detecting ALDH1A1 and EEF1G as potential biomarkers for active vitiligo and therapeutic intervention. Our work also detected several DEPs and associated pathways in the serum of active vitiligo patients, reinforcing the roles of retinoic acid and exosome processes in vitiligo pathogenesis.
Collapse
Affiliation(s)
- Zile Chen
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Yiting Li
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Shu Nie
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Zhouwei Wu
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
6
|
Beeson W, Gabriel K, Cornelison C. Fungi as a source of eumelanin: current understanding and prospects. J Ind Microbiol Biotechnol 2023; 50:kuad014. [PMID: 37336591 PMCID: PMC10569377 DOI: 10.1093/jimb/kuad014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 06/15/2023] [Indexed: 06/21/2023]
Abstract
Melanins represent a diverse collection of pigments with a variety of structures and functions. One class of melanin, eumelanin, is recognizable to most as the source of the dark black color found in cephalopod ink. Sepia officinalis is the most well-known and sought-after source of non-synthetic eumelanin, but its harvest is limited by the availability of cuttlefish, and its extraction from an animal source brings rise to ethical concerns. In recent years, these limitations have become more pressing as more applications for eumelanin are developed-particularly in medicine and electronics. This surge in interest in the applications of eumelanin has also fueled a rise in the interest of alternative, bio-catalyzed production methods. Many culinarily-utilized fungi are ideal candidates in this production scheme, as examples exist which have been shown to produce eumelanin, their growth at large scales is well understood, and they can be cultivated on recaptured waste streams. However, much of the current research on the fungal production of eumelanin focuses on pathogenic fungi and eumelanin's role in virulence. In this paper, we will review the potential for culinary fungi to produce eumelanin and provide suggestions for new research areas that would be most impactful in the search for improved fungal eumelanin producers.
Collapse
Affiliation(s)
- William Beeson
- Department of Molecular and Cellular Biology, Kennesaw State
University, 1000 Chastain Road NW, Kennesaw, GA
30144, USA
| | - Kyle Gabriel
- Department of Molecular and Cellular Biology, Kennesaw State
University, 1000 Chastain Road NW, Kennesaw, GA
30144, USA
| | - Christopher Cornelison
- Department of Molecular and Cellular Biology, Kennesaw State
University, 1000 Chastain Road NW, Kennesaw, GA
30144, USA
| |
Collapse
|
7
|
Ahmad S, Mohammed M, Mekala LP, Anusha R, Sasikala C, Ramana CV. Stable isotope-assisted metabolite profiling reveals new insights into L-tryptophan chemotrophic metabolism of Rubrivivax benzoatilyticus. World J Microbiol Biotechnol 2023; 39:98. [PMID: 36781830 DOI: 10.1007/s11274-023-03537-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 01/31/2023] [Indexed: 02/15/2023]
Abstract
Anoxygenic photosynthetic bacteria (APB) are metabolically versatile, capable of surviving with an extended range of carbon and nitrogen sources. This group of phototrophic bacteria have remarkable metabolic plasticity in utilizing an array of organic compounds as carbon source/electron donors and nitrogen sources with sophisticated growth modes. Rubrivivax benzoatilyticus JA2 is one such photosynthetic bacterium utilizes L-tryptophan as nitrogen source under phototrophic growth mode and produces an array of indolic compounds of biotechnological significance. However, chemotrophic L-tryptophan metabolism is largely unexplored and studying L-tryptophan metabolism under chemotrophic mode would provide new insights into metabolic potential of strain JA2. In the present study, we employed stable-isotopes assisted metabolite profiling to unravel the L-tryptophan catabolism in Rubrivivax benzoatilyticus strain JA2 under chemotrophic (dark aerobic) conditions. Utilization of L-tryptophan as a nitrogen source for growth and simultaneous production of indole derivatives was observed in strain JA2. Liquid chromatography mass spectrometry (LC-MS) analysis of exo-metabolite profiling of carbon labeled L-tryptophan (13C11) fed cultures of strain JA2 revealed at least seventy labeled metabolites. Of these, only fourteen metabolites were confirmed using standards, while sixteen were putative and forty metabolites remained unidentified. L-tryptophan chemotrophic catabolism revealed multiple catabolic pathways and distinct differential catabolism of L-tryptophan under chemotropic state as compared to photo-catabolism of L-tryptophan in strain JA2.
Collapse
Affiliation(s)
- Shabbir Ahmad
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India
| | - Mujahid Mohammed
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India.,Department of Botany, Bharathidasan Government College for Women, Muthialpet, Puducherry U.T., 605003, India
| | - Lakshmi Prasuna Mekala
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India.,Department of Plant Science, Avvaiyar Government College for Women, Karaikal, Puducherry- U.T., 609 602, India
| | - Rai Anusha
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India
| | | | - Chintalapati Venkata Ramana
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India.
| |
Collapse
|
8
|
Abdelmawla A, Yang C, Li X, Li M, Li CL, Liu YB, He XJ, Zeng ZJ. Feeding Asian honeybee queens with European honeybee royal jelly alters body color and expression of related coding and non-coding RNAs. Front Physiol 2023; 14:1073625. [PMID: 36776963 PMCID: PMC9908965 DOI: 10.3389/fphys.2023.1073625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/16/2023] [Indexed: 01/27/2023] Open
Abstract
Background and aims: The Asian honeybee (Apis cerana) and the European honeybee (Apis mellifera) are reproductively isolated. Previous studies reported that exchanging the larval food between the two species, known as nutritional crossbreeding, resulted in obvious changes in morphology, physiology and behavior. This study explored the molecular mechanisms underlying the honeybee nutritional crossbreeding. Methods: This study used full nutritional crossbreeding technology to rear A. cerana queens by feeding them with an A. mellifera royal jelly-based diet in an incubator. The body color and the expression of certain genes, microRNA, lncRNA, and circRNA among nutritional crossbred A. cerana queens (NQ), and control A. cerana queens (CQ) were compared. The biological functions of two target genes, TPH1 and KMO, were verified using RNA interference. Results: Our results showed that the NQ's body color turned yellow compared to the black control queens. Whole transcriptome sequencing results showed that a total of 1484, 311, 92, and 169 DEGs, DElncRNAs, DEmiRNAs, and DEcircRNAs, respectively, were identified in NQ and CQ, in which seven DEGs were enriched for three key pathways (tryptophan, tyrosine, and dopamine) involved in melanin synthesis. Interestingly, eight DElncRNAs and three DEmiRNAs were enriched into the key pathways regulating the above key DEGs. No circRNAs were enriched into these key pathways. Knocking down two key genes (KMO and TPH1) resulted in altered body color, suggesting that feeding NQ's an RNAi-based diet significantly downregulated the expression of TPH1 and KMO in 4-day-old larvae, which confirmed the function of key DEGs in the regulation of honeybee body color. Conclusion: These findings reveal that the larval diets from A. mellifera could change the body color of A. cerana, perhaps by altering the expression of non-coding RNAs and related key genes. This study serves as a model of epigenetic regulation in insect body color induced by environmental factors.
Collapse
Affiliation(s)
- Amal Abdelmawla
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, China,Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Chen Yang
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, China
| | - Xin Li
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, China
| | - Mang Li
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, China
| | - Chang Long Li
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, China
| | - Yi Bo Liu
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, China
| | - Xu Jiang He
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, China,Jiangxi Key Laboratory of Honeybee Biology and Bee Keeping, Nanchang, Jiangxi, China,*Correspondence: Xu Jiang He, ; Zhi Jiang Zeng,
| | - Zhi Jiang Zeng
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, China,Jiangxi Key Laboratory of Honeybee Biology and Bee Keeping, Nanchang, Jiangxi, China,*Correspondence: Xu Jiang He, ; Zhi Jiang Zeng,
| |
Collapse
|
9
|
Wen X, Yang M, Zhou K, Huang J, Fan X, Zhang W, Luo J. Transcriptomic and proteomic analyses reveal the common and unique pathway(s) underlying different skin colors of leopard coral grouper (Plectropomus leopardus). J Proteomics 2022; 266:104671. [PMID: 35788407 DOI: 10.1016/j.jprot.2022.104671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 05/12/2022] [Accepted: 06/20/2022] [Indexed: 11/29/2022]
Abstract
To gain a comprehensive and unbiased molecular understanding of the different skin colors of P. leopardus, we used Illumina HiSeq 2500 and TMT (Tandem Mass Tag) to compare transcription and protein levels between red and black skin of P. leopardus. We identified 797 upregulated and 314 downregulated genes (differentially expressed genes; DEGs) in red (RG) compared with black (BG) skin of P. leopardus. We also identified 377 differentially abundant proteins (DAPs), including 314 upregulated and 63 downregulated proteins. These DEGs and DAPs were significantly enriched in melanin synthesis (e.g., pyrimidine metabolism, Phenylalanine, tyrosine, and tryptophan biosynthesis, melanogenesis, phenylalanine metabolism, and tyrosine metabolism), oxidative phosphorylation (e.g., phosphonate and phosphinate metabolism, and oxidative phosphorylation), energy metabolism (e.g., HIF-1, glycolysis/gluconeogenesis, fatty acid biosynthesis, and fatty acid degradation), and signal transduction (e.g., Wnt, calcium, MAPK, and cGMP-PKG signaling pathways), etc. Further analysis of MAPKs showed that the activation levels of its main members JNK1 and ERK1/2 differed significantly between red and black skin colors. After RNAi was used to interfere with ERK1/2, it was found that the local skin of the tail of P. leopardus would turn black. Combined transcriptome and proteome analysis showed that most DEGs-DAPs in red skin were higher than in black skin (58 were upregulated, 1 was downregulated, and 4 were opposite). These DEGs-DAPs showed that the differences between red and black skin tissues of P. leopardus were related primarily to energy metabolism, signal transduction and cytoskeleton. These findings are not only conducive to understand the skin color regulation mechanism of P. leopardus and other coral reef fish, but also provide an important descriptive to the breeding of color strains. SIGNIFICANCE OF THE STUDY: The skin color of P. leopardus gradually darkens or blackens due to environmental factors such as changes in light intensity and human activities, and this directly affects its ornamental and economic value. In this study, RNAseq and TMT were used to conduct comparative quantitative transcriptomics and proteomics and analyze differences between red and black P. leopardus skin. The results showed that energy metabolism, signal transduction and cytoskeleton were the main metabolic pathways causing their skin color differences. These findings contribute to existing data describing fish skin color, and provide information about protein levels, which are of great significance to a deeper understanding of the skin color regulation mechanism in P. leopardus and other coral reef fishes.
Collapse
Affiliation(s)
- Xin Wen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou 570228, China.
| | - Min Yang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou 570228, China
| | - Kexin Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou 570228, China
| | - Jie Huang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou 570228, China
| | - Xin Fan
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou 570228, China
| | - Weiwei Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou 570228, China
| | - Jian Luo
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou 570228, China.
| |
Collapse
|
10
|
Wang Q, Zhang YS, Peng QL, Wen B, Gao JZ, Chen ZZ. Distinct skin morphological and transcriptomic profiles between wild and albino Oscar Astronotus ocellatus. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 41:100944. [PMID: 34864613 DOI: 10.1016/j.cbd.2021.100944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
Oscar Astronotus ocellatus is an important ornamental fish, including albino and wild varieties. Albino individuals attract aquarium hobbyists due to their unique body color, but studies on the species' albinism mechanism are currently scarce. Here, we investigated the morphological and transcriptomic profiles of the skin of albino and wild Oscar. The results showed that the albino type had fewer oval-shaped melanophores and immature melanosomes but that the wild type contained more stellate-shaped melanophores and mature melanosomes. Albino Oscar had a degenerative pigment layer without obvious melanin deposition and content, while the wild type contained more concentrated melanin within the pigment layer. A total of 272,392 unigenes were detected, 109 of which were identified as differentially expressed genes (DEGs) between albino and wild Oscar. Pathways of DEGs, including those involved in complement and coagulation cascades, novobiocin biosynthesis, Th1 and Th2 cell differentiation, and tropane, piperidine and pyridine alkaloid biosynthesis, were significantly enriched. DEGs, including upregulated Sfrp5 and Tat, and downregulated Wnt-10a, Ppp3c, Notch1 and Trim27 involved in the Wnt signaling pathway, Notch signaling pathway, tyrosine metabolism, MAPK signaling pathway and melanogenesis, might be associated with the albinism of Oscar. This study characterized the difference in melanophore morphology between wild and albino Oscar and identified some albinism-related candidate genes and signaling pathways, helping to understand the genetic mechanism of fish albinism.
Collapse
Affiliation(s)
- Qin Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Yan-Shen Zhang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Qi-Lin Peng
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Bin Wen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China.
| | - Jian-Zhong Gao
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Zai-Zhong Chen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
11
|
Dossou SSK, Luo Z, Wang Z, Zhou W, Zhou R, Zhang Y, Li D, Liu A, Dossa K, You J, Wang L. The Dark Pigment in the Sesame (Sesamum indicum L.) Seed Coat: Isolation, Characterization, and Its Potential Precursors. Front Nutr 2022; 9:858673. [PMID: 35295915 PMCID: PMC8919073 DOI: 10.3389/fnut.2022.858673] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/03/2022] [Indexed: 12/16/2022] Open
Abstract
Sesame is a worldwide oilseed crop used in the food pharmacy. Its seed phenotypes determine the seed quality values. However, a thorough assessment of seed coat metabolites is lacking, and the dark pigment in the seed coat is not well-characterized. Herein, we report the isolation of melanin by the alkali method from the black and brown sesame seeds. Physicochemical methods, including scanning electron microscopy (SEM), solubility, precipitation, UV-Vis spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, and thermogravimetric-differential scanning calorimetry (TG-DSC), were used to characterize the sesame melanins. The results clearly showed that the isolated pigments were similar to melanin from other sources. Both melanins were heat-stable and exhibited numerous characteristic absorption peaks. Through a comprehensible LC-MS/MS-based metabolome profiles analysis of NaOH and methanol extracts of black and white sesame seeds, caffeic, protocatechuic, indole-carboxylic, homogentisic, ferulic, vanillic, and benzoic acids were identified as the potential precursors of the sesame melanin. Our findings widen our understanding of dark seeds pigmentation in sesame. Furthermore, they show that black sesame seeds are promising sources of edible melanin for food and biotechnological applications.
Collapse
Affiliation(s)
- Senouwa Segla Koffi Dossou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
- Laboratoire de Physiologie et de Biotechnologie Végétales, Faculté Des Sciences, Université de Lomé, Lomé, Togo
| | - Zishu Luo
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Zhijian Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Wangyi Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Rong Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yanxin Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Donghua Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Aili Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Komivi Dossa
- CIRAD, UMR AGAP Institut, Montpellier, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Jun You
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
- *Correspondence: Jun You
| | - Linhai Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
- Linhai Wang
| |
Collapse
|
12
|
Song W, Xing R, Yang H, Liu S, Li P. Optimization of extractions of eumelanin from cuttlefish ink and the hypoglycemic effects: In vitro enzyme inhibitory activity and glucose consumption in HepG2 cells. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Wen Song
- AS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega‐Science, Institute of Oceanology Chinese Academy of Sciences Qingdao China
- Laboratory for Marine Drugs and Bioproducts Pilot National Laboratory for Marine Science and Technology (Qingdao) Qingdao China
- School of Earth and Planetary University of Chinese Academy of Sciences Beijing China
| | - Rong‐e Xing
- AS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega‐Science, Institute of Oceanology Chinese Academy of Sciences Qingdao China
- Laboratory for Marine Drugs and Bioproducts Pilot National Laboratory for Marine Science and Technology (Qingdao) Qingdao China
| | - Haoyue Yang
- AS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega‐Science, Institute of Oceanology Chinese Academy of Sciences Qingdao China
- Laboratory for Marine Drugs and Bioproducts Pilot National Laboratory for Marine Science and Technology (Qingdao) Qingdao China
| | - Song Liu
- AS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega‐Science, Institute of Oceanology Chinese Academy of Sciences Qingdao China
- Laboratory for Marine Drugs and Bioproducts Pilot National Laboratory for Marine Science and Technology (Qingdao) Qingdao China
| | - Pengcheng Li
- AS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega‐Science, Institute of Oceanology Chinese Academy of Sciences Qingdao China
- Laboratory for Marine Drugs and Bioproducts Pilot National Laboratory for Marine Science and Technology (Qingdao) Qingdao China
| |
Collapse
|