1
|
David EE, Igwenyi IO, Iroha IR, Martins LF, Uceda-Campos G, da Silva AM. First-Genome Sequence Data of an Alcaligenes nematophilus Strain EBU-23 Encoding bla Gene Implicated in Acute Childhood Gastroenteritis. Curr Microbiol 2024; 81:436. [PMID: 39480522 DOI: 10.1007/s00284-024-03966-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 10/19/2024] [Indexed: 11/02/2024]
Abstract
Although an environmental contaminant, Alcaligenes sp. are now increasingly reported in clinical infections. Here, we present a whole-genome sequence of an extended spectrum beta-lactamase (ESBL) Alcaligenes nematophilus strain EBU-23 encoding beta-lactamase, bla gene, isolated from the stool of a hospitalized infant with acute gastroenteritis in a tertiary hospital in Nigeria. Antibiotics susceptibility test revealed that the isolate was resistant to the β-lactams, cephalosporins, and penicillin, β-lactam combination, and the fluoroquinolones. Genomic analysis exposed the presence of a class A beta-lactam hydrolase gene and multiple multidrug efflux permease which may be responsible for the beta-lactamase and multidrug resistance observed with the isolate. To the best our knowledge, we describe the first whole-genome sequence of a multidrug-resistant A. nematophilus implicated in acute childhood gastroenteritis in Nigeria.
Collapse
Affiliation(s)
- Ebuka Elijah David
- Department of Biochemistry, Alex Ekwueme Federal University, Ndufu-Alike, Ikwo, Nigeria.
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo, Brazil.
| | | | | | - Layla Farage Martins
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo, Brazil
| | - Guillermo Uceda-Campos
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo, Brazil
| | - Aline Maria da Silva
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
2
|
Beer M, Oliveira ASF, Tooke CL, Hinchliffe P, Tsz Yan Li A, Balega B, Spencer J, Mulholland AJ. Dynamical responses predict a distal site that modulates activity in an antibiotic resistance enzyme. Chem Sci 2024; 15:d4sc03295k. [PMID: 39364073 PMCID: PMC11443494 DOI: 10.1039/d4sc03295k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/18/2024] [Indexed: 10/05/2024] Open
Abstract
β-Lactamases, which hydrolyse β-lactam antibiotics, are key determinants of antibiotic resistance. Predicting the sites and effects of distal mutations in enzymes is challenging. For β-lactamases, the ability to make such predictions would contribute to understanding activity against, and development of, antibiotics and inhibitors to combat resistance. Here, using dynamical non-equilibrium molecular dynamics (D-NEMD) simulations combined with experiments, we demonstrate that intramolecular communication networks differ in three class A SulpHydryl Variant (SHV)-type β-lactamases. Differences in network architecture and correlated motions link to catalytic efficiency and β-lactam substrate spectrum. Further, the simulations identify a distal residue at position 89 in the clinically important Klebsiella pneumoniae carbapenemase 2 (KPC-2), as a participant in similar networks, suggesting that mutation at this position would modulate enzyme activity. Experimental kinetic, biophysical and structural characterisation of the naturally occurring, but previously biochemically uncharacterised, KPC-2G89D mutant with several antibiotics and inhibitors reveals significant changes in hydrolytic spectrum, specifically reducing activity towards carbapenems without effecting major structural or stability changes. These results show that D-NEMD simulations can predict distal sites where mutation affects enzyme activity. This approach could have broad application in understanding enzyme evolution, and in engineering of natural and de novo enzymes.
Collapse
Affiliation(s)
- Michael Beer
- School of Cellular and Molecular Medicine, University of Bristol Bristol BS8 1TD UK
- Centre for Computational Chemistry, School of Chemistry, University of Bristol BS8 1TS UK
| | - Ana Sofia F Oliveira
- Centre for Computational Chemistry, School of Chemistry, University of Bristol BS8 1TS UK
| | - Catherine L Tooke
- School of Cellular and Molecular Medicine, University of Bristol Bristol BS8 1TD UK
| | - Philip Hinchliffe
- School of Cellular and Molecular Medicine, University of Bristol Bristol BS8 1TD UK
| | - Angie Tsz Yan Li
- School of Cellular and Molecular Medicine, University of Bristol Bristol BS8 1TD UK
| | - Balazs Balega
- Centre for Computational Chemistry, School of Chemistry, University of Bristol BS8 1TS UK
| | - James Spencer
- School of Cellular and Molecular Medicine, University of Bristol Bristol BS8 1TD UK
| | - Adrian J Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol BS8 1TS UK
| |
Collapse
|
3
|
Jeong BG, Kim MY, Jeong CS, Do H, Hwang J, Lee JH, Cha SS. Characterization of the extended substrate spectrum of the class A β-lactamase CESS-1 from Stenotrophomonas sp. and structure-based investigation into its substrate preference. Int J Antimicrob Agents 2024; 63:107171. [PMID: 38588869 DOI: 10.1016/j.ijantimicag.2024.107171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 03/10/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024]
Abstract
OBJECTIVES Stenotrophomonas spp. intrinsically resistant to many β-lactam antibiotics are found throughout the environment. CESS-1 identified in Stenotrophomonas sp. KCTC 12332 is an uncharacterized class A β-lactamase. The goal of this study was to reveal biochemical and structural characteristics of CESS-1. METHODS The hydrolytic activities of CESS-1 towards penicillins (penicillin G and ampicillin), cephalosporins (cephalexin, cefaclor, and cefotaxime), and carbapenems (imipenem and meropenem) was spectrophotometrically monitored. Structural information on E166Q mutants of CESS-1 acylated by cefaclor, cephalexin, or ampicillin were determined by X-ray crystallography. RESULTS CESS-1 displayed hydrolytic activities toward penicillins and cephalosporins, with negligible activity toward carbapenems. Although cefaclor, cephalexin, and ampicillin have similar structures with identical R1 side chains, the catalytic parameters of CESS-1 toward them were distinct. The kcat values for cefaclor, cephalexin, and ampicillin were 1249.6 s-1, 204.3 s-1, and 69.8 s-1, respectively, with the accompanying KM values of 287.6 μM, 236.7 μM, and 28.8 μM, respectively. CONCLUSIONS CESS-1 was able to discriminate between cefaclor and cephalexin with a single structural difference at C3 position: -Cl (cefaclor) and -CH3 (cephalexin). Structural comparisons among three E166Q mutants of CESS-1 acylated by cefaclor, cephalexin, or ampicillin, revealed that cooperative positional changes in the R1 side chain of substrates and their interaction with the β5-β6 loop affect the distance between Asn170 and the deacylating water at the acyl-enzyme intermediate state. This is directly associated with the differential hydrolytic activities of CESS-1 toward the three structurally similar β-lactam antibiotics.
Collapse
Affiliation(s)
- Bo-Gyeong Jeong
- Department of Chemistry & Nanoscience, Ewha Womans University, Seoul, Republic of Korea
| | - Myeong-Yeon Kim
- Department of Chemistry & Nanoscience, Ewha Womans University, Seoul, Republic of Korea
| | - Chang-Sook Jeong
- Division of Life Sciences, Korea Polar Research Institute, Incheon, Republic of Korea; Department of Polar Sciences, University of Science and Technology, Incheon, Republic of Korea
| | - Hackwon Do
- Division of Life Sciences, Korea Polar Research Institute, Incheon, Republic of Korea; Department of Polar Sciences, University of Science and Technology, Incheon, Republic of Korea
| | - Jisub Hwang
- Division of Life Sciences, Korea Polar Research Institute, Incheon, Republic of Korea; Department of Polar Sciences, University of Science and Technology, Incheon, Republic of Korea
| | - Jun Hyuck Lee
- Division of Life Sciences, Korea Polar Research Institute, Incheon, Republic of Korea; Department of Polar Sciences, University of Science and Technology, Incheon, Republic of Korea.
| | - Sun-Shin Cha
- Department of Chemistry & Nanoscience, Ewha Womans University, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Judge A, Sankaran B, Hu L, Palaniappan M, Birgy A, Prasad BVV, Palzkill T. Network of epistatic interactions in an enzyme active site revealed by large-scale deep mutational scanning. Proc Natl Acad Sci U S A 2024; 121:e2313513121. [PMID: 38483989 PMCID: PMC10962969 DOI: 10.1073/pnas.2313513121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 02/14/2024] [Indexed: 03/19/2024] Open
Abstract
Cooperative interactions between amino acids are critical for protein function. A genetic reflection of cooperativity is epistasis, which is when a change in the amino acid at one position changes the sequence requirements at another position. To assess epistasis within an enzyme active site, we utilized CTX-M β-lactamase as a model system. CTX-M hydrolyzes β-lactam antibiotics to provide antibiotic resistance, allowing a simple functional selection for rapid sorting of modified enzymes. We created all pairwise mutations across 17 active site positions in the β-lactamase enzyme and quantitated the function of variants against two β-lactam antibiotics using next-generation sequencing. Context-dependent sequence requirements were determined by comparing the antibiotic resistance function of double mutations across the CTX-M active site to their predicted function based on the constituent single mutations, revealing both positive epistasis (synergistic interactions) and negative epistasis (antagonistic interactions) between amino acid substitutions. The resulting trends demonstrate that positive epistasis is present throughout the active site, that epistasis between residues is mediated through substrate interactions, and that residues more tolerant to substitutions serve as generic compensators which are responsible for many cases of positive epistasis. Additionally, we show that a key catalytic residue (Glu166) is amenable to compensatory mutations, and we characterize one such double mutant (E166Y/N170G) that acts by an altered catalytic mechanism. These findings shed light on the unique biochemical factors that drive epistasis within an enzyme active site and will inform enzyme engineering efforts by bridging the gap between amino acid sequence and catalytic function.
Collapse
Affiliation(s)
- Allison Judge
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX77030
| | - Banumathi Sankaran
- Department of Molecular Biophysics and Integrated Bioimaging, Berkeley Center for Structural Biology Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | - Liya Hu
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX77030
| | - Murugesan Palaniappan
- Department of Pathology and Immunology, Center for Drug Discovery, Baylor College of Medicine, Houston, TX77030
| | - André Birgy
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX77030
- Infections, Antimicrobials, Modelling, Evolution, UMR 1137, French Insitute for Medical Research (INSERM), Faculty of Health, Université Paris Cité, Paris75006, France
| | - B. V. Venkataram Prasad
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX77030
| | - Timothy Palzkill
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX77030
| |
Collapse
|
5
|
Bertonha AF, Silva CCL, Shirakawa KT, Trindade DM, Dessen A. Penicillin-binding protein (PBP) inhibitor development: A 10-year chemical perspective. Exp Biol Med (Maywood) 2023; 248:1657-1670. [PMID: 38030964 PMCID: PMC10723023 DOI: 10.1177/15353702231208407] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023] Open
Abstract
Bacterial cell wall formation is essential for cellular survival and morphogenesis. The peptidoglycan (PG), a heteropolymer that surrounds the bacterial membrane, is a key component of the cell wall, and its multistep biosynthetic process is an attractive antibacterial development target. Penicillin-binding proteins (PBPs) are responsible for cross-linking PG stem peptides, and their central role in bacterial cell wall synthesis has made them the target of successful antibiotics, including β-lactams, that have been used worldwide for decades. Following the discovery of penicillin, several other compounds with antibiotic activity have been discovered and, since then, have saved millions of lives. However, since pathogens inevitably become resistant to antibiotics, the search for new active compounds is continuous. The present review highlights the ongoing development of inhibitors acting mainly in the transpeptidase domain of PBPs with potential therapeutic applications for the development of new antibiotic agents. Both the critical aspects of the strategy, design, and structure-activity relationships (SAR) are discussed, covering the main published articles over the last 10 years. Some of the molecules described display activities against main bacterial pathogens and could open avenues toward the development of new, efficient antibacterial drugs.
Collapse
Affiliation(s)
- Ariane F Bertonha
- Brazilian Biosciences National Laboratory (LNBio), CNPEM, Campinas 13084-971, Brazil
| | - Caio C L Silva
- Brazilian Biosciences National Laboratory (LNBio), CNPEM, Campinas 13084-971, Brazil
| | - Karina T Shirakawa
- Brazilian Biosciences National Laboratory (LNBio), CNPEM, Campinas 13084-971, Brazil
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-862, Brazil
| | - Daniel M Trindade
- Brazilian Biosciences National Laboratory (LNBio), CNPEM, Campinas 13084-971, Brazil
| | - Andréa Dessen
- Brazilian Biosciences National Laboratory (LNBio), CNPEM, Campinas 13084-971, Brazil
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), F-38044 Grenoble, France
| |
Collapse
|
6
|
Karvouniaris M, Almyroudi MP, Abdul-Aziz MH, Blot S, Paramythiotou E, Tsigou E, Koulenti D. Novel Antimicrobial Agents for Gram-Negative Pathogens. Antibiotics (Basel) 2023; 12:761. [PMID: 37107124 PMCID: PMC10135111 DOI: 10.3390/antibiotics12040761] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/08/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Gram-negative bacterial resistance to antimicrobials has had an exponential increase at a global level during the last decades and represent an everyday challenge, especially for the hospital practice of our era. Concerted efforts from the researchers and the industry have recently provided several novel promising antimicrobials, resilient to various bacterial resistance mechanisms. There are new antimicrobials that became commercially available during the last five years, namely, cefiderocol, imipenem-cilastatin-relebactam, eravacycline, omadacycline, and plazomicin. Furthermore, other agents are in advanced development, having reached phase 3 clinical trials, namely, aztreonam-avibactam, cefepime-enmetazobactam, cefepime-taniborbactam, cefepime-zidebactam, sulopenem, tebipenem, and benapenem. In this present review, we critically discuss the characteristics of the above-mentioned antimicrobials, their pharmacokinetic/pharmacodynamic properties and the current clinical data.
Collapse
Affiliation(s)
- Marios Karvouniaris
- Intensive Care Unit, AHEPA University Hospital, 546 36 Thessaloniki, Greece;
| | | | - Mohd Hafiz Abdul-Aziz
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QL 4029, Australia; (M.H.A.-A.); (S.B.)
| | - Stijn Blot
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QL 4029, Australia; (M.H.A.-A.); (S.B.)
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
| | | | - Evdoxia Tsigou
- Intensive Care Department, ‘Aghioi Anargyroi’ Hospital of Kifissia, 145 64 Athens, Greece;
| | - Despoina Koulenti
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QL 4029, Australia; (M.H.A.-A.); (S.B.)
- Second Critical Care Department, Attikon University Hospital, 124 62 Athens, Greece;
| |
Collapse
|
7
|
Judge A, Hu L, Sankaran B, Van Riper J, Venkataram Prasad BV, Palzkill T. Mapping the determinants of catalysis and substrate specificity of the antibiotic resistance enzyme CTX-M β-lactamase. Commun Biol 2023; 6:35. [PMID: 36635385 PMCID: PMC9837174 DOI: 10.1038/s42003-023-04422-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 01/04/2023] [Indexed: 01/14/2023] Open
Abstract
CTX-M β-lactamases are prevalent antibiotic resistance enzymes and are notable for their ability to rapidly hydrolyze the extended-spectrum cephalosporin, cefotaxime. We hypothesized that the active site sequence requirements of CTX-M-mediated hydrolysis differ between classes of β-lactam antibiotics. Accordingly, we use codon randomization, antibiotic selection, and deep sequencing to determine the CTX-M active-site residues required for hydrolysis of cefotaxime and the penicillin, ampicillin. The study reveals positions required for hydrolysis of all β-lactams, as well as residues controlling substrate specificity. Further, CTX-M enzymes poorly hydrolyze the extended-spectrum cephalosporin, ceftazidime. We further show that the sequence requirements for ceftazidime hydrolysis follow those of cefotaxime, with the exception that key active-site omega loop residues are not required, and may be detrimental, for ceftazidime hydrolysis. These results provide insights into cephalosporin hydrolysis and demonstrate that changes to the active-site omega loop are likely required for the evolution of CTX-M-mediated ceftazidime resistance.
Collapse
Affiliation(s)
- Allison Judge
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Liya Hu
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Banumathi Sankaran
- Department of Molecular Biophysics and Integrated Bioimaging, Berkeley Center for Structural Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Justin Van Riper
- Graduate Program in Chemical, Physical, and Structural Biology, Baylor College of Medicine, Houston, TX, USA
| | - B V Venkataram Prasad
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Timothy Palzkill
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA.
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
8
|
Repac Antić D, Parčina M, Gobin I, Petković Didović M. Chelation in Antibacterial Drugs: From Nitroxoline to Cefiderocol and Beyond. Antibiotics (Basel) 2022; 11:1105. [PMID: 36009974 PMCID: PMC9405089 DOI: 10.3390/antibiotics11081105] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
In the era of escalating antimicrobial resistance, the need for antibacterial drugs with novel or improved modes of action (MOAs) is a health concern of utmost importance. Adding or improving the chelating abilities of existing drugs or finding new, nature-inspired chelating agents seems to be one of the major ways to ensure progress. This review article provides insight into the modes of action of antibacterial agents, class by class, through the perspective of chelation. We covered a wide scope of antibacterials, from a century-old quintessential chelating agent nitroxoline, currently unearthed due to its newly discovered anticancer and antibiofilm activities, over the commonly used antibacterial classes, to new cephalosporin cefiderocol and a potential future class of tetramates. We show the impressive spectrum of roles that chelation plays in antibacterial MOAs. This, by itself, demonstrates the importance of understanding the fundamental chemistry behind such complex processes.
Collapse
Affiliation(s)
- Davorka Repac Antić
- Department of Microbiology and Parasitology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
- Department of Clinical Microbiology, Clinical Hospital Center Rijeka, 51000 Rijeka, Croatia
| | - Marijo Parčina
- Institute of Medical Microbiology, Immunology and Parasitology, Bonn University Hospital, 53127 Bonn, Germany
| | - Ivana Gobin
- Department of Microbiology and Parasitology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Mirna Petković Didović
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| |
Collapse
|
9
|
Chudyk EI, Beer M, Limb MAL, Jones CA, Spencer J, van der Kamp MW, Mulholland AJ. QM/MM Simulations Reveal the Determinants of Carbapenemase Activity in Class A β-Lactamases. ACS Infect Dis 2022; 8:1521-1532. [PMID: 35877936 PMCID: PMC9379904 DOI: 10.1021/acsinfecdis.2c00152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Indexed: 11/28/2022]
Abstract
β-lactam antibiotic resistance in Gram-negative bacteria, primarily caused by β-lactamase enzymes that hydrolyze the β-lactam ring, has become a serious clinical problem. Carbapenems were formerly considered "last resort" antibiotics because they escaped breakdown by most β-lactamases, due to slow deacylation of the acyl-enzyme intermediate. However, an increasing number of Gram-negative bacteria now produce β-lactamases with carbapenemase activity: these efficiently hydrolyze the carbapenem β-lactam ring, severely limiting the treatment of some bacterial infections. Here, we use quantum mechanics/molecular mechanics (QM/MM) simulations of the deacylation reactions of acyl-enzyme complexes of eight β-lactamases of class A (the most widely distributed β-lactamase group) with the carbapenem meropenem to investigate differences between those inhibited by carbapenems (TEM-1, SHV-1, BlaC, and CTX-M-16) and those that hydrolyze them (SFC-1, KPC-2, NMC-A, and SME-1). QM/MM molecular dynamics simulations confirm the two enzyme groups to differ in the preferred acyl-enzyme orientation: carbapenem-inhibited enzymes favor hydrogen bonding of the carbapenem hydroxyethyl group to deacylating water (DW). QM/MM simulations of deacylation give activation free energies in good agreement with experimental hydrolysis rates, correctly distinguishing carbapenemases. For the carbapenem-inhibited enzymes, free energies for deacylation are significantly higher than for the carbapenemases, even when the hydroxyethyl group was restrained to prevent interaction with the DW. Analysis of these simulations, and additional simulations of mutant enzymes, shows how factors including the hydroxyethyl orientation, the active site volume, and architecture (conformations of Asn170 and Asn132; organization of the oxyanion hole; and the Cys69-Cys238 disulfide bond) collectively determine catalytic efficiency toward carbapenems.
Collapse
Affiliation(s)
- Ewa I. Chudyk
- Centre
for Computational Chemistry, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom
| | - Michael Beer
- Centre
for Computational Chemistry, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom
- School
of Cellular and Molecular Medicine, University
of Bristol Medical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom
| | - Michael A. L. Limb
- Centre
for Computational Chemistry, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom
| | - Charlotte A. Jones
- Centre
for Computational Chemistry, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom
| | - James Spencer
- School
of Cellular and Molecular Medicine, University
of Bristol Medical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom
| | - Marc W. van der Kamp
- Centre
for Computational Chemistry, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom
- School
of Biochemistry, University of Bristol Medical
Sciences Building, University Walk, Bristol BS8 1TD, United
Kingdom
| | - Adrian J. Mulholland
- Centre
for Computational Chemistry, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
10
|
Kaderabkova N, Bharathwaj M, Furniss RCD, Gonzalez D, Palmer T, Mavridou DA. The biogenesis of β-lactamase enzymes. MICROBIOLOGY (READING, ENGLAND) 2022; 168:001217. [PMID: 35943884 PMCID: PMC10235803 DOI: 10.1099/mic.0.001217] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 06/10/2022] [Indexed: 11/18/2022]
Abstract
The discovery of penicillin by Alexander Fleming marked a new era for modern medicine, allowing not only the treatment of infectious diseases, but also the safe performance of life-saving interventions, like surgery and chemotherapy. Unfortunately, resistance against penicillin, as well as more complex β-lactam antibiotics, has rapidly emerged since the introduction of these drugs in the clinic, and is largely driven by a single type of extra-cytoplasmic proteins, hydrolytic enzymes called β-lactamases. While the structures, biochemistry and epidemiology of these resistance determinants have been extensively characterized, their biogenesis, a complex process including multiple steps and involving several fundamental biochemical pathways, is rarely discussed. In this review, we provide a comprehensive overview of the journey of β-lactamases, from the moment they exit the ribosomal channel until they reach their final cellular destination as folded and active enzymes.
Collapse
Affiliation(s)
- Nikol Kaderabkova
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Manasa Bharathwaj
- Centre to Impact AMR, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| | - R. Christopher D. Furniss
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Diego Gonzalez
- Laboratoire de Microbiologie, Institut de Biologie, Université de Neuchâtel, Neuchâtel, 2000, Switzerland
| | - Tracy Palmer
- Microbes in Health and Disease, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Despoina A.I. Mavridou
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
- John Ring LaMontagne Center for Infectious Diseases, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
11
|
Three new inhibitors of class A β-lactamases evaluated by molecular docking and dynamics simulations methods: relebactam, enmetazobactam, and QPX7728. J Mol Model 2022; 28:76. [PMID: 35243556 DOI: 10.1007/s00894-022-05073-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 02/26/2022] [Indexed: 10/18/2022]
Abstract
Antibiotic-resistant Acinetobacter baumannii, Pseudomonas aeruginosa, Mycobacterium tuberculosis, Staphylococcus aureus, and Enterobacterales infections are serious global health problems, and class A β-lactamases are one mechanism that leads to antibiotic resistance. QPX7728, relebactam, and enmetazobactam are new β-lactamase inhibitors to combat β-lactam resistance. in silico approach was used in the current study to find which of the three inhibitors would be more effective for all class A β-lactamases and to reveal molecular insights into the differences between their binding energies. The mutations in conserved residues of the active sites of β-lactamases were defined using BLDB and Clustal Omega. FastME and MMseq2 were used for cluster and phylogeny analysis. 3D protein structure models for β-lactamases were built using SWISS-MODEL. ERRAT and Galaxy Web Server were used to verify 42 β-lactamase protein structures. QPX7728, relebactam, and enmetazobactam were docked to β-lactamases by using AutoDock 4.2. The TEM76-relebactam, CTX-M-81-relebactam, TEM-76-enmetazobactam, and CTX-M-200-enmetazobactam complexes were simulated by molecular dynamics method for 500 ns. Based on molecular docking results, relebactam and QPX7728 were more favorable inhibitors for serine A β-lactamases. A 2D representation of the interactions between ligands and β-lactamases showed that S235, hydrogen bonded with TEM-76, might play a role in inhibitor design. A 500-ns MD analysis of complexes indicated that distance from S70, stability in the enzyme active cavity, and high atomic displacement would account for a significant difference in inhibitor binding affinity.
Collapse
|
12
|
Stewart NK, Toth M, Stasyuk A, Vakulenko SB, Smith CA. In Crystallo Time-Resolved Interaction of the Clostridioides difficile CDD-1 enzyme with Avibactam Provides New Insights into the Catalytic Mechanism of Class D β-lactamases. ACS Infect Dis 2021; 7:1765-1776. [PMID: 33908775 PMCID: PMC8808381 DOI: 10.1021/acsinfecdis.1c00094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Class D β-lactamases have risen to notoriety due to their wide spread in bacterial pathogens, propensity to inactivate clinically important β-lactam antibiotics, and ability to withstand inhibition by the majority of classical β-lactamase inhibitors. Understanding the catalytic mechanism of these enzymes is thus vitally important for the development of novel antibiotics and inhibitors active against infections caused by antibiotic-resistant bacteria. Here we report an in crystallo time-resolved study of the interaction of the class D β-lactamase CDD-1 from Clostridioides difficile with the diazobicyclooctane inhibitor, avibactam. We show that the catalytic carboxylated lysine, a residue that is essential for both acylation and deacylation of β-lactams, is sequestered within an internal sealed pocket of the enzyme. Time-resolved snapshots generated in this study allowed us to observe decarboxylation of the lysine and movement of CO2 and water molecules through a transient channel formed between the lysine pocket and the substrate binding site facilitated by rotation of the side chain of a conserved leucine residue. These studies provide novel insights on avibactam binding to CDD-1 and into the catalytic mechanism of class D β-lactamases in general.
Collapse
Affiliation(s)
- Nichole K Stewart
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Marta Toth
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Anastasiya Stasyuk
- Stanford Synchrotron Radiation Lightsource, Stanford University, Menlo Park, California 94025, United States
| | - Sergei B Vakulenko
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Clyde A Smith
- Stanford Synchrotron Radiation Lightsource, Stanford University, Menlo Park, California 94025, United States
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
13
|
An in vivo selection system with tightly regulated gene expression enables directed evolution of highly efficient enzymes. Sci Rep 2021; 11:11669. [PMID: 34083677 PMCID: PMC8175713 DOI: 10.1038/s41598-021-91204-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 05/24/2021] [Indexed: 02/04/2023] Open
Abstract
In vivo selection systems are powerful tools for directed evolution of enzymes. The selection pressure of the systems can be tuned by regulating the expression levels of the catalysts. In this work, we engineered a selection system for laboratory evolution of highly active enzymes by incorporating a translationally suppressing cis repressor as well as an inducible promoter to impart stringent and tunable selection pressure. We demonstrated the utility of our selection system by performing directed evolution experiments using TEM β-lactamase as the model enzyme. Five evolutionary rounds afforded a highly active variant exhibiting 440-fold improvement in catalytic efficiency. We also showed that, without the cis repressor, the selection system cannot provide sufficient selection pressure required for evolving highly efficient TEM β-lactamase. The selection system should be applicable for the exploration of catalytic perfection of a wide range of enzymes.
Collapse
|
14
|
Stewart NK, Toth M, Stasyuk A, Lee M, Smith CA, Vakulenko SB. Inhibition of the Clostridioides difficile Class D β-Lactamase CDD-1 by Avibactam. ACS Infect Dis 2021; 7:1164-1176. [PMID: 33390002 PMCID: PMC8826747 DOI: 10.1021/acsinfecdis.0c00714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Avibactam is a potent diazobicyclooctane inhibitor of class A and C β-lactamases. The inhibitor also exhibits variable activity against some class D enzymes from Gram-negative bacteria; however, its interaction with recently discovered class D β-lactamases from Gram-positive bacteria has not been studied. Here, we describe microbiological, kinetic, and mass spectrometry studies of the interaction of avibactam with CDD-1, a class D β-lactamase from the clinically important pathogen Clostridioides difficile, and show that avibactam is a potent irreversible mechanism-based inhibitor of the enzyme. X-ray crystallographic studies at three time-points demonstrate the rapid formation of a stable CDD-1-avibactam acyl-enzyme complex and highlight differences in the anchoring of the inhibitor by class D enzymes from Gram-positive and Gram-negative bacteria.
Collapse
Affiliation(s)
- Nichole K Stewart
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Marta Toth
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Anastasiya Stasyuk
- Stanford Synchrotron Radiation Lightsource, Stanford University, Menlo Park, California 94025, United States
| | - Mijoon Lee
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Clyde A Smith
- Stanford Synchrotron Radiation Lightsource, Stanford University, Menlo Park, California 94025, United States
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Sergei B Vakulenko
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
15
|
Wang L, Yang L, Feng YL, Zhang H. Evolutionary insights into the active-site structures of the metallo-β-lactamase superfamily from a classification study with support vector machine. J Biol Inorg Chem 2020; 25:1023-1034. [PMID: 32945939 DOI: 10.1007/s00775-020-01822-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/05/2020] [Indexed: 12/01/2022]
Abstract
The metallo-β-lactamase (MβL) superfamily, which is intriguing due to its enzyme promiscuity, is a good model enzyme superfamily for studies of catalytic function evolution. Our previous study traced the evolution of the phosphotriesterase activity of the MβL superfamily and found that MβLs go through three typical active-site structures in the development of phosphotriesterase activity. In the present study, taking the three typical active-site structures as class labels, the classification and prediction models, which were established by support vector machine and amino acid composition, classified the MβL members into three classes. The indispensable amino acid compositions showed a surprising performance that was remarkably better than the performance of the dispensable amino acid compositions and even equal to the performance of the 20 native amino acids. We further traced the origin of the classification error and found that there was one subclass adopting a type of active-site structure that was the evolutionary transition between these classes. After that, our classification and prediction models were successfully used to predict several MβL active-site structures that lost the dinuclear structures during crystallization. In summary, our studies established a classification and prediction system for active-site structures that well compensated for experimental methods that recognize protein structure details and suggest that the indispensable amino acids contain much more protein structure information than the dispensable amino acids.
Collapse
Affiliation(s)
- Lili Wang
- College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou, 730070, People's Republic of China
| | - Ling Yang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Institute of Theoretical and Simulation Chemistry, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150080, People's Republic of China
| | - Yu-Lan Feng
- Biomedical Research Center, College of Life Science and Engineering, Northwest Minzu University, Lanzhou, 730030, People's Republic of China
| | - Hao Zhang
- Biomedical Research Center, College of Life Science and Engineering, Northwest Minzu University, Lanzhou, 730030, People's Republic of China.
| |
Collapse
|