1
|
Han Y, Zhou J, Zhang R, Liang Y, Lai L, Li Z. Genome-edited rabbits: Unleashing the potential of a promising experimental animal model across diverse diseases. Zool Res 2024; 45:253-262. [PMID: 38287906 PMCID: PMC11017087 DOI: 10.24272/j.issn.2095-8137.2023.201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/05/2023] [Indexed: 01/31/2024] Open
Abstract
Animal models are extensively used in all aspects of biomedical research, with substantial contributions to our understanding of diseases, the development of pharmaceuticals, and the exploration of gene functions. The field of genome modification in rabbits has progressed slowly. However, recent advancements, particularly in CRISPR/Cas9-related technologies, have catalyzed the successful development of various genome-edited rabbit models to mimic diverse diseases, including cardiovascular disorders, immunodeficiencies, aging-related ailments, neurological diseases, and ophthalmic pathologies. These models hold great promise in advancing biomedical research due to their closer physiological and biochemical resemblance to humans compared to mice. This review aims to summarize the novel gene-editing approaches currently available for rabbits and present the applications and prospects of such models in biomedicine, underscoring their impact and future potential in translational medicine.
Collapse
Affiliation(s)
- Yang Han
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun, Jilin 130062, China
| | - Jiale Zhou
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun, Jilin 130062, China
| | - Renquan Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun, Jilin 130062, China
| | - Yuru Liang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun, Jilin 130062, China
| | - Liangxue Lai
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun, Jilin 130062, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
- Guangzhou Regenerative Medicine and Health Guang Dong Laboratory (GRMH-GDL), Guangzhou, Guangdong 510005, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China. E-mail:
| | - Zhanjun Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun, Jilin 130062, China. E-mail:
| |
Collapse
|
2
|
Hayashi Y, Ohnishi H, Kitano M, Kishimoto Y, Takezawa T, Okuyama H, Yoshimatsu M, Kuwata F, Tada T, Mizuno K, Omori K. Comparative Study of Immunodeficient Rat Strains in Engraftment of Human-Induced Pluripotent Stem Cell-Derived Airway Epithelia. Tissue Eng Part A 2024; 30:144-153. [PMID: 37950719 DOI: 10.1089/ten.tea.2023.0214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2023] Open
Abstract
The airway epithelia (AE) play a role in the clearance of foreign substances through ciliary motility and mucus secreted. We developed an artificial trachea that is made of collagen sponges and polypropylene mesh for the regeneration of the tracheal defect, and it was used for a clinical study. Then, a model in which the luminal surface of an artificial trachea was covered with a human-induced pluripotent stem cell-derived AE (hiPSC-AE) was transplanted into the tracheal defect of nude rats to promote epithelialization. In the future, this model was expected to be applied to research on infectious diseases and drug discovery as a trachea-humanized rat model. However, at present, sufficient engraftment has not been achieved to evaluate functional recovery in transplanted cells. Therefore, this study focused on immunosuppression in recipient rats. Nude rats lack T cell function and are widely used for transplantation experiments; however, more severe immunosuppressed recipients are preferred for xenotransplantation. Several strains of immunodeficient rats were created as rats that exhibit more severe immunodeficiency until now. In this study, to establish a trachea-humanized rat model in which human AE function can be analyzed to improve engraftment efficiency, engraftment efficiency in nude rats and X-linked severe combined immunodeficiency (X-SCID) rats following hiPSC-AE transplantation was compared. In the analysis of the proportion of engrafted cells in total cells at the graft site, the engraftment efficiency of epithelial cells tended to be high in X-SCID rats, although no statistical difference was found between the two groups, whereas the engraftment efficiency of mesenchymal cells was higher in X-SCID rats. Furthermore, the number of immune cells that accumulated in the grafts showed that a pan T cell marker, that is, CD3-positive cells, did not differ between the two strains; however, CD45-positive cells and major histocompatibility complex (MHC) class II-positive cells significantly decreased in X-SCID rats. These results indicate that X-SCID rats are more useful for the transplantation of hiPSC-AE into the tracheae to generate trachea-humanized rat models.
Collapse
Affiliation(s)
- Yasuyuki Hayashi
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of medicine, Kyoto University, Kyoto, Japan
| | - Hiroe Ohnishi
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of medicine, Kyoto University, Kyoto, Japan
| | - Masayuki Kitano
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of medicine, Kyoto University, Kyoto, Japan
| | - Yo Kishimoto
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of medicine, Kyoto University, Kyoto, Japan
| | - Toshiaki Takezawa
- Faculty of Pharmacy, Chiba Institute of Science, Chiba, Japan
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Ibaraki, Japan
| | - Hideaki Okuyama
- Faculty of Medicine and Health Sciences, School of Communication Sciences and Disorders, McGill University, Montreal, Canada
| | - Masayoshi Yoshimatsu
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of medicine, Kyoto University, Kyoto, Japan
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Fumihiko Kuwata
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of medicine, Kyoto University, Kyoto, Japan
| | - Takeshi Tada
- Center for Inflammation, Immunity and Infection Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA
| | - Keisuke Mizuno
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of medicine, Kyoto University, Kyoto, Japan
| | - Koichi Omori
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
3
|
Hu D, Li X, Li J, Tong P, Li Z, Lin G, Sun Y, Wang J. The preclinical and clinical progress of cell sheet engineering in regenerative medicine. Stem Cell Res Ther 2023; 14:112. [PMID: 37106373 PMCID: PMC10136407 DOI: 10.1186/s13287-023-03340-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Cell therapy is an accessible method for curing damaged organs or tissues. Yet, this approach is limited by the delivery efficiency of cell suspension injection. Over recent years, biological scaffolds have emerged as carriers of delivering therapeutic cells to the target sites. Although they can be regarded as revolutionary research output and promote the development of tissue engineering, the defect of biological scaffolds in repairing cell-dense tissues is apparent. Cell sheet engineering (CSE) is a novel technique that supports enzyme-free cell detachment in the shape of a sheet-like structure. Compared with the traditional method of enzymatic digestion, products harvested by this technique retain extracellular matrix (ECM) secreted by cells as well as cell-matrix and intercellular junctions established during in vitro culture. Herein, we discussed the current status and recent progress of CSE in basic research and clinical application by reviewing relevant articles that have been published, hoping to provide a reference for the development of CSE in the field of stem cells and regenerative medicine.
Collapse
Affiliation(s)
- Danping Hu
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
- HANGZHOU CHEXMED TECHNOLOGY CO., LTD, Hangzhou, 310000, China
| | - Xinyu Li
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
| | - Jie Li
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
| | - Pei Tong
- Hospital of Hunan Guangxiu, Medical College of Hunan Normal University, Hunan Normal University, Changsha, 410008, China
| | - Zhe Li
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
| | - Ge Lin
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
- National Engineering and Research Center of Human Stem Cells, Changsha, 410008, China
- Key Laboratory of Stem Cells and Reproductive Engineering, Ministry of Health, Changsha, 410008, China
| | - Yi Sun
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China.
- National Engineering and Research Center of Human Stem Cells, Changsha, 410008, China.
- Key Laboratory of Stem Cells and Reproductive Engineering, Ministry of Health, Changsha, 410008, China.
| | - Juan Wang
- Shanghai Biomass Pharmaceutical Product Evaluation Professional Public Service Platform, Center for Pharmacological Evaluation and Research, China State Institute of Pharmaceutical Industry, Shanghai, 200437, China.
| |
Collapse
|
4
|
Yamashita MS, Melo EO. Animal Transgenesis and Cloning: Combined Development and Future Perspectives. Methods Mol Biol 2023; 2647:121-149. [PMID: 37041332 DOI: 10.1007/978-1-0716-3064-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
The revolution in animal transgenesis began in 1981 and continues to become more efficient, cheaper, and faster to perform. New genome editing technologies, especially CRISPR-Cas9, are leading to a new era of genetically modified or edited organisms. Some researchers advocate this new era as the time of synthetic biology or re-engineering. Nonetheless, we are witnessing advances in high-throughput sequencing, artificial DNA synthesis, and design of artificial genomes at a fast pace. These advances in symbiosis with animal cloning by somatic cell nuclear transfer (SCNT) allow the development of improved livestock, animal models of human disease, and heterologous production of bioproducts for medical applications. In the context of genetic engineering, SCNT remains a useful technology to generate animals from genetically modified cells. This chapter addresses these fast-developing technologies driving this biotechnological revolution and their association with animal cloning technology.
Collapse
Affiliation(s)
- Melissa S Yamashita
- Embrapa Genetic Resources and Biotechnology, Brasília, Distrito Federal, Brazil
- Graduation Program in Animal Biology, University of Brasília, Brasília, Distrito Federal, Brazil
| | - Eduardo O Melo
- Embrapa Genetic Resources and Biotechnology, Brasília, Distrito Federal, Brazil.
- Graduation Program in Biotechnology, University of Tocantins, Gurupi, Tocantins, Brazil.
| |
Collapse
|
5
|
CRISPR-Cas9 Technology for the Creation of Biological Avatars Capable of Modeling and Treating Pathologies: From Discovery to the Latest Improvements. Cells 2022; 11:cells11223615. [PMID: 36429042 PMCID: PMC9688409 DOI: 10.3390/cells11223615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/10/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022] Open
Abstract
This is a spectacular moment for genetics to evolve in genome editing, which encompasses the precise alteration of the cellular DNA sequences within various species. One of the most fascinating genome-editing technologies currently available is Clustered Regularly Interspaced Palindromic Repeats (CRISPR) and its associated protein 9 (CRISPR-Cas9), which have integrated deeply into the research field within a short period due to its effectiveness. It became a standard tool utilized in a broad spectrum of biological and therapeutic applications. Furthermore, reliable disease models are required to improve the quality of healthcare. CRISPR-Cas9 has the potential to diversify our knowledge in genetics by generating cellular models, which can mimic various human diseases to better understand the disease consequences and develop new treatments. Precision in genome editing offered by CRISPR-Cas9 is now paving the way for gene therapy to expand in clinical trials to treat several genetic diseases in a wide range of species. This review article will discuss genome-editing tools: CRISPR-Cas9, Zinc Finger Nucleases (ZFNs), and Transcription Activator-Like Effector Nucleases (TALENs). It will also encompass the importance of CRISPR-Cas9 technology in generating cellular disease models for novel therapeutics, its applications in gene therapy, and challenges with novel strategies to enhance its specificity.
Collapse
|
6
|
Tada T, Ohnishi H, Yamamoto N, Kuwata F, Hayashi Y, Okuyama H, Morino T, Kasai Y, Kojima H, Omori K. Transplantation of a human induced pluripotent stem cell-derived airway epithelial cell sheet into the middle ear of rats. Regen Ther 2022; 19:77-87. [PMID: 35097166 PMCID: PMC8762358 DOI: 10.1016/j.reth.2022.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/26/2021] [Accepted: 01/02/2022] [Indexed: 02/07/2023] Open
Abstract
Introduction Early postoperative regeneration of the middle ear mucosa is essential for the prevention of postoperative refractory otitis media and recurrent cholesteatoma. As a means for intractable otitis media management, we focused on human induced pluripotent stem cell (hiPSC)-derived airway epithelial cells (AECs), which have been used in upper airway mucosal regeneration and transplantation therapy. In this study, we transplanted hiPSC-derived AECs into the middle ear of immunodeficient rats. Methods Following the preparation of AEC sheets from hiPSCs, the bilateral middle ear mucosa of X-linked severe combined immunodeficient rats was scraped, and the AEC sheets were transplanted in the ears unilaterally. Results Human nuclear antigen (HNA)-positive ciliated cells were observed on the transplanted side of the middle ear cavity surface in three of six rats in the 1-week postoperative group and in three of eight rats in the 2-week postoperative group. No HNA-positive cells were found on the control side. The percentage of HNA-positive ciliated cells in the transplanted areas increased in the 2-week postoperative group compared with the 1-week group, suggesting survival of hiPSC-derived AECs. Additionally, HNA-positive ciliated cells were mainly located at sites where the original ciliated cells were localized. Immunohistochemical analysis showed that the transplanted AECs contained cytokeratin 5- and mucin 5AC-positive cells, indicating that both basal cells and goblet cells had regenerated within the middle ear cavity. Conclusions The results of this study are an important first step in the establishment of a novel transplantation therapy for chronic otitis media. hiPSC-derived airway epithelial cells were transplanted into the middle ear of rats. Engrafted cells mainly survived in the ciliated region of the middle ear. Ciliated, goblet, and basal cells were confirmed in the engrafted cells.
Collapse
|
7
|
Sertori R, Jones R, Basheer F, Rivera L, Dawson S, Loke S, Heidary S, Dhillon A, Liongue C, Ward AC. Generation and Characterization of a Zebrafish IL-2Rγc SCID Model. Int J Mol Sci 2022; 23:ijms23042385. [PMID: 35216498 PMCID: PMC8875600 DOI: 10.3390/ijms23042385] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 12/14/2022] Open
Abstract
The IL-2 family of cytokines act via receptor complexes that share the interleukin-2 receptor gamma common (IL-2Rγc) chain to play key roles in lymphopoiesis. Inactivating IL-2Rγc mutations results in severe combined immunodeficiency (SCID) in humans and other species. This study sought to generate an equivalent zebrafish SCID model. The zebrafish il2rga gene was targeted for genome editing using TALENs and presumed loss-of-function alleles analyzed with respect to immune cell development and impacts on intestinal microbiota and tumor immunity. Knockout of zebrafish Il-2rγc.a resulted in a SCID phenotype, including a significant reduction in T cells, with NK cells also impacted. This resulted in dysregulated intestinal microbiota and defective immunity to tumor xenotransplants. Collectively, this establishes a useful zebrafish SCID model.
Collapse
Affiliation(s)
- Robert Sertori
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia; (R.S.); (R.J.); (F.B.); (L.R.); (S.D.); (S.H.); (A.D.); (C.L.)
| | - Realla Jones
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia; (R.S.); (R.J.); (F.B.); (L.R.); (S.D.); (S.H.); (A.D.); (C.L.)
| | - Faiza Basheer
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia; (R.S.); (R.J.); (F.B.); (L.R.); (S.D.); (S.H.); (A.D.); (C.L.)
- Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC 3216, Australia
| | - Leni Rivera
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia; (R.S.); (R.J.); (F.B.); (L.R.); (S.D.); (S.H.); (A.D.); (C.L.)
- Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC 3216, Australia
| | - Samantha Dawson
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia; (R.S.); (R.J.); (F.B.); (L.R.); (S.D.); (S.H.); (A.D.); (C.L.)
- Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC 3216, Australia
| | - Stella Loke
- School of Life and Environmental Science, Deakin University, Burwood, VIC 3125, Australia;
| | - Somayyeh Heidary
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia; (R.S.); (R.J.); (F.B.); (L.R.); (S.D.); (S.H.); (A.D.); (C.L.)
- Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC 3216, Australia
| | - Amardeep Dhillon
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia; (R.S.); (R.J.); (F.B.); (L.R.); (S.D.); (S.H.); (A.D.); (C.L.)
- Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC 3216, Australia
| | - Clifford Liongue
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia; (R.S.); (R.J.); (F.B.); (L.R.); (S.D.); (S.H.); (A.D.); (C.L.)
- Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC 3216, Australia
| | - Alister C. Ward
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia; (R.S.); (R.J.); (F.B.); (L.R.); (S.D.); (S.H.); (A.D.); (C.L.)
- Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC 3216, Australia
- Correspondence:
| |
Collapse
|
8
|
Lu S, Zhu K, Guo Y, Wang E, Huang J. Evaluation of animal models of Crohn's disease with anal fistula (Review). Exp Ther Med 2021; 22:974. [PMID: 34335916 PMCID: PMC8290422 DOI: 10.3892/etm.2021.10406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/09/2021] [Indexed: 12/28/2022] Open
Abstract
Anal fistula is a common and serious complication of Crohn's disease (CD). A sufficiently suitable animal model that may be used to simulate this disease is yet to be established. The aim of the present review was to summarize the different characteristics and experimental methods of commonly used animal models of CD with anal fistula. Electronic databases were searched for studies reporting on the use of this type of animal model. A total of 234 related articles were retrieved, of which six articles met the inclusion criteria; these were used as references for the present review article. The characteristics of the animal models, the advantages and disadvantages of the modeling methods and the similarities with patients with CD and anal fistula were summarized and analyzed. The evidence suggests that a sufficiently suitable animal preclinical model requires to be established.
Collapse
Affiliation(s)
- Shuangshuang Lu
- Department of Internal Medicine, School of Medicine, Dalian Medical University, Dalian, Liaoning 116044, P.R. China.,Gastrointestinal Center, Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| | - Keyuan Zhu
- Department of Internal Medicine, School of Medicine, Dalian Medical University, Dalian, Liaoning 116044, P.R. China.,Gastrointestinal Center, Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| | - Yongxin Guo
- Department of Internal Medicine, School of Medicine, Dalian Medical University, Dalian, Liaoning 116044, P.R. China.,Gastrointestinal Center, Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| | - Enjing Wang
- Gastrointestinal Center, Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China.,Department of Internal Medicine, School of Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Jin Huang
- Department of Internal Medicine, School of Medicine, Dalian Medical University, Dalian, Liaoning 116044, P.R. China.,Gastrointestinal Center, Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| |
Collapse
|
9
|
Xu J, Zhang J, Yang D, Song J, Pallas B, Zhang C, Hu J, Peng X, Christensen ND, Han R, Chen YE. Gene Editing in Rabbits: Unique Opportunities for Translational Biomedical Research. Front Genet 2021; 12:642444. [PMID: 33584832 PMCID: PMC7876448 DOI: 10.3389/fgene.2021.642444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 01/04/2021] [Indexed: 11/13/2022] Open
Abstract
The rabbit is a classic animal model for biomedical research, but the production of gene targeted transgenic rabbits had been extremely challenging until the recent advent of gene editing tools. More than fifty gene knockout or knock-in rabbit models have been reported in the past decade. Gene edited (GE) rabbit models, compared to their counterpart mouse models, may offer unique opportunities in translational biomedical research attributed primarily to their relatively large size and long lifespan. More importantly, GE rabbit models have been found to mimic several disease pathologies better than their mouse counterparts particularly in fields focused on genetically inherited diseases, cardiovascular diseases, ocular diseases, and others. In this review we present selected examples of research areas where GE rabbit models are expected to make immediate contributions to the understanding of the pathophysiology of human disease, and support the development of novel therapeutics.
Collapse
Affiliation(s)
- Jie Xu
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Jifeng Zhang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Dongshan Yang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Jun Song
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Brooke Pallas
- Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Chen Zhang
- Biomedical Sciences and Biophysics Graduate Program, Division of Cardiac Surgery, Department of Surgery, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Jiafen Hu
- Department of Pathology and Laboratory Medicine, Penn State Cancer Institute, Hershey, PA, United States
| | - Xuwen Peng
- Department of Comparative Medicine, Penn State University College of Medicine, Hershey, PA, United States
| | - Neil D Christensen
- Department of Pathology and Laboratory Medicine, Penn State Cancer Institute, Hershey, PA, United States.,Department of Microbiology and Immunology, Penn State University College of Medicine, Hershey, PA, United States
| | - Renzhi Han
- Biomedical Sciences and Biophysics Graduate Program, Division of Cardiac Surgery, Department of Surgery, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Y Eugene Chen
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
10
|
Kim YY, Kim JS, Che JH, Ku SY, Kang BC, Yun JW. Comparison of Genetically Engineered Immunodeficient Animal Models for Nonclinical Testing of Stem Cell Therapies. Pharmaceutics 2021; 13:130. [PMID: 33498509 PMCID: PMC7909568 DOI: 10.3390/pharmaceutics13020130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 12/23/2022] Open
Abstract
For the recovery or replacement of dysfunctional cells and tissue-the goal of stem cell research-successful engraftment of transplanted cells and tissues are essential events. The event is largely dependent on the immune rejection of the recipient; therefore, the immunogenic evaluation of candidate cells or tissues in immunodeficient animals is important. Understanding the immunodeficient system can provide insights into the generation and use of immunodeficient animal models, presenting a unique system to explore the capabilities of the innate immune system. In this review, we summarize various immunodeficient animal model systems with different target genes as valuable tools for biomedical research. There have been numerous immunodeficient models developed by different gene defects, resulting in many different features in phenotype. More important, mice, rats, and other large animals exhibit very different immunological and physiological features in tissue and organs, including genetic background and a representation of human disease conditions. Therefore, the findings from this review may guide researchers to select the most appropriate immunodeficient strain, target gene, and animal species based on the research type, mutant gene effects, and similarity to human immunological features for stem cell research.
Collapse
Affiliation(s)
- Yoon-Young Kim
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul 03080, Korea; (Y.-Y.K.); (S.-Y.K.)
| | - Jin-Soo Kim
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon 14662, Korea;
| | - Jeong-Hwan Che
- Biomedical Center for Animal Resource and Development, Seoul National University College of Medicine, Seoul 03080, Korea;
| | - Seung-Yup Ku
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul 03080, Korea; (Y.-Y.K.); (S.-Y.K.)
| | - Byeong-Cheol Kang
- Graduate School of Translational Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Jun-Won Yun
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon 14662, Korea;
| |
Collapse
|
11
|
Zhou J, Yan Q, Tang C, Liao Y, Zhang Q, Wang X, Zhou X, Lai L, Zou Q. Development of a rabbit model of Wiskott-Aldrich syndrome. FASEB J 2020; 35:e21226. [PMID: 33236397 DOI: 10.1096/fj.202002118rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 11/11/2022]
Abstract
The Wiskott-Aldrich syndrome (WAS) is a severe recessive X-linked immunodeficiency resulting from loss-of-function mutations in the WAS gene. Mouse is the only mammalian model used for investigation of WAS pathogenesis. However, the mouse model does not accurately recapitulate WAS clinical phenotypes, thus, limiting its application in WAS clinical research. Herein, we report the generation of WAS knockout (KO) rabbits via embryo co-injection of Cas9 mRNA and a pair of sgRNAs targeting exons 2 and 7. WAS KO rabbits exhibited many symptoms similar to those of WAS patients, including thrombocytopenia, bleeding tendency, infections, and reduced numbers of T cell in the spleen and peripheral blood. The WAS KO rabbit model provides a new valuable tool for preclinical trials of WAS treatment.
Collapse
Affiliation(s)
- Juanjuan Zhou
- School of Life Sciences, University of Science and Technology of China, Hefei, China.,CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Quanmei Yan
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Chengcheng Tang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Yuan Liao
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Quanjun Zhang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, China
| | - Xiaomin Wang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xiaoqing Zhou
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Liangxue Lai
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, China
| | - Qingjian Zou
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| |
Collapse
|