1
|
Stirle JL, Matias JEF, Mendes GR, Moscardini VF, Maia JB, Michaud JP, Gontijo PC. Differential susceptibility of Spodoptera frugiperda (Lepidoptera: Noctuidae) to single versus pyramided Bt traits in Brazilian soybean: what doesn't kill you makes you stronger? PEST MANAGEMENT SCIENCE 2024; 80:6535-6544. [PMID: 39189544 DOI: 10.1002/ps.8391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/18/2024] [Accepted: 08/12/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND Lepidopteran pest control in agriculture has become heavily dependent on cultivars that express Bacillus thuringiensis (Bt) toxins as 'plant-incorporated protectants'. However, populations of Spodoptera frugiperda (Smith) in Brazil appear resistant to the Bt traits currently available in commercial soybean cultivars. RESULTS This study evaluated S. frugiperda life history when feeding on three different Bt soybean cultivars. Cultivars expressing Cry1Ac + Cry1F and Cry1A.105 + Cry2Ab2 + Cry1Ac Bt toxins caused 100% larval mortality in S. frugiperda. Both non-Bt and Cry1Ac-expressing soybean induced transgenerational effects that increased the survival of subsequent generations. A Cry1Ac soybean diet reduced the generation time (T) of S. frugiperda relative to non-Bt soybean, resulting in shorter generation time and more rapid population growth. CONCLUSION The implications of these results revealed how diet can alter aspects of insect life history and biology, and have important implications for sustainable management of S. frugiperda on soybean. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | | | | | - Jader Braga Maia
- Departamento de Agronomia, Universidade Federal do Triângulo Mineiro, Iturama, Brazil
| | - J P Michaud
- Department of Entomology, Kansas State University, Agricultural Research Center-Hays, Hays, KS, USA
| | | |
Collapse
|
2
|
Freitas LM, Souza BHS, Ferreira FS, Antunes APA, Bruzi AT. Resistance of Bt and Non-Bt Soybean Cultivars Adapted to Novel Growing Regions of Brazil to Chrysodeixis includens and Spodoptera frugiperda. NEOTROPICAL ENTOMOLOGY 2024; 53:1332-1342. [PMID: 39320422 DOI: 10.1007/s13744-024-01208-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 09/09/2024] [Indexed: 09/26/2024]
Abstract
Soybean is a highly valuable commodity crop for Brazil's economy. However, it faces significant threats from the attack of a complex of lepidopteran pests, particularly Chrysodeixis includens (Walker) and Spodoptera frugiperda (J. E. Smith). These pests have been managed primarily using transgenic Bt soybeans, but limited knowledge exists about the resistance levels of Bt and non-Bt cultivars adapted to novel soybean-growing areas in Brazil, such as the Minas Gerais state. This study evaluated the resistance levels of Bt and non-Bt soybean cultivars to C. includens and S. frugiperda, and whether the Bt cultivars can differentially affect these pests across larval stages. No-choice bioassays were conducted using Bt (NS6010 IPRO and P97R50 IPRO) and non-Bt soybeans (UFLA 6301 RR, P96R90 RR, and ANsc 80111 RR) at V4-stage in the laboratory with neonate (24 h) and third-instar larvae. Larvae were fed leaf discs in Petri dishes, recording the mortality, leaf consumption, and weight gain after 7 days. There was high mortality of C. includens neonates on the Bt cultivars, but this trend was not observed for older larvae. For S. frugiperda neonates, there was high mortality on the Bt cultivar NS 6010 IPRO and non-Bt cultivar UFLA 6301 RR, but only the former was effective for older larvae. Although the Bt cultivars did not kill the third instars, antinutritional effects were found, such that leaf tissue consumed was not converted to larval weight gain. These findings are important for defining regional strategies of integrated and resistance management of C. includens and S. frugiperda in expanding regions of soybean cultivation in Brazil.
Collapse
Affiliation(s)
- Larah M Freitas
- Dept of Entomology, Federal Univ of Lavras (UFLA), Lavras, MG, Brazil
| | - Bruno H S Souza
- Dept of Entomology, Federal Univ of Lavras (UFLA), Lavras, MG, Brazil.
| | | | - Ana P A Antunes
- Dept of Entomology, Federal Univ of Lavras (UFLA), Lavras, MG, Brazil
| | | |
Collapse
|
3
|
Bueno ADF, Sutil WP, Cingolani MF, Colmenarez YC. Using Egg Parasitoids to Manage Caterpillars in Soybean and Maize: Benefits, Challenges, and Major Recommendations. INSECTS 2024; 15:869. [PMID: 39590468 PMCID: PMC11594568 DOI: 10.3390/insects15110869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/24/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024]
Abstract
The use of egg parasitoids in Augmentative Biological Control (ABC) is a highly effective strategy within the integrated pest management (IPM) of lepidopteran defoliators. Safer than chemical insecticides, these natural antagonists have demonstrated significant efficacy. Trichogramma pretiosum and Telenomus remus, known for their high parasitism rates, are the most extensively used and studied parasitoids for controlling economically important lepidopterous in crops such as soybean and maize. Brazil, a leading adopter of crops expressing Bacillus thuringiensis (Bt) proteins, faces growing field-evolved resistance to Cry proteins in soybean and maize. This resistance, particularly of Rachiplusia nu in soybean and Spodoptera frugiperda in maize, has become more prominent in recent years, increasing insecticide use. Therefore, this article reviews the current status of egg parasitoids adoption in ABC against lepidopteran pests, emphasizing the role of Tr. pretiosum and the potential of Te. remus as sustainable alternatives to chemical insecticides to manage pests in both non-Bt and Bt crops. Additionally, we provide recommendations for using these parasitoids in ABC programs and discuss the challenges that must be addressed to optimize the adoption of biocontrol agents in ABC programs for maximum benefit.
Collapse
Affiliation(s)
- Adeney de F. Bueno
- Empresa Brasileira de Pesquisa Agropecuária—Embrapa Soja, Londrina 86085-981, PR, Brazil
| | - Weidson P. Sutil
- Programa de Pós-Graduação em Entomologia, Universidade Federal do Paraná (UFPR), Curitiba 91531-980, PR, Brazil;
| | - M. Fernanda Cingolani
- Centro de Estudios Parasitológicos y de Vectores (CEPAVE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Universidad Nacional de La Plata (UNLP), Boulevard 120 s/n, Av. 60 and Calle 64, La Plata 1900, Buenos Aires, Argentina;
| | - Yelitza C. Colmenarez
- Centre for Agriculture and Bioscience International (CABI) Latin America and Fundação de Estudos e Pesquisas Agrícolas e Florestais (FEPAF)—Avenida Universitária, 3780, Botucatu 18610-034, SP, Brazil;
| |
Collapse
|
4
|
Wyckhuys KAG, Gu B, Ben Fekih I, Finger R, Kenis M, Lu Y, Subramanian S, Tang FHM, Weber DC, Zhang W, Hadi BAR. Restoring functional integrity of the global production ecosystem through biological control. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122446. [PMID: 39270336 DOI: 10.1016/j.jenvman.2024.122446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024]
Abstract
Human society is anchored in the global agroecosystem. For millennia, this system has provided humans with copious supplies of nutrient-rich food. Yet, through chemical intensification and simplification, vast shares of present-day farmland derive insufficient benefits from biodiversity and prove highly vulnerable to biotic stressors. Here, we argue that on-farm action centered on biological control can effectively defuse pest risk by bolstering foundational ecosystem services. By harnessing plant, animal and microbial biodiversity, biological control offers safe, efficacious and economically-sound plant health solutions and coevolved options for invasive species mitigation. In recent years, its scientific foundation has been fortified and solutions have been refined for myriad ecologically brittle systems. Yet, for biological control to be mainstreamed, it needs to be rebooted, intertwined with (on- and off-farm) agroecological tactics and refurbished - from research, policy and regulation, public-private partnerships up to modes of implementation. Misaligned incentives (for chemical pesticides) and adoption barriers further need to be removed, while its scientific underpinnings should become more interdisciplinary, policy-relevant, solution-oriented and linked with market demand. Thus, biological control could ensure human wellbeing in a nature-friendly manner and retain farmland ecological functioning under global change.
Collapse
Affiliation(s)
- Kris A G Wyckhuys
- Chrysalis Consulting, Danang, Viet Nam; Institute for Plant Protection, China Academy of Agricultural Sciences (CAAS), Beijing, China; School of Biological Sciences, University of Queensland, Saint Lucia, Australia; Food and Agriculture Organization (FAO), Rome, Italy.
| | - Baogen Gu
- Food and Agriculture Organization (FAO), Rome, Italy
| | | | | | | | - Yanhui Lu
- Institute for Plant Protection, China Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Sevgan Subramanian
- International Center for Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | | | - Donald C Weber
- USDA-ARS Invasive Insect Biocontrol & Behavior Laboratory, Beltsville, MD, USA
| | - Wei Zhang
- International Food Policy Research Institute (IFPRI-CGIAR), Washington DC, USA
| | - Buyung A R Hadi
- Food and Agriculture Organization (FAO), Rome, Italy; International Fund for Agricultural Development (IFAD), Rome, Italy
| |
Collapse
|
5
|
Changkeb V, Nobsathian S, Le Goff G, Coustau C, Bullangpoti V. Insecticidal efficacy and possibility of Combretum trifoliatum Vent. (Myrtales: Combretaceae) extracts in controlling Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae). PEST MANAGEMENT SCIENCE 2023; 79:4868-4878. [PMID: 37506299 DOI: 10.1002/ps.7688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 07/10/2023] [Accepted: 07/29/2023] [Indexed: 07/30/2023]
Abstract
BACKGROUND The fall armyworm Spodoptera frugiperda (J.E. Smith), is an important pest of agronomical crops. It is interesting to discover secondary metabolites in plants that are environmentally safer than synthetic pesticides. For this purpose, Combretum trifoliatum crude extract and its isolated compounds were investigated for their insecticidal activities against S. frugiperda. RESULTS The median lethal dose (LD50 ) was evaluated in the second-instar larvae using the topical application method. The isolated compounds, apigenin and camphor, demonstrated a highly toxic effect on larvae at a lower LD50 dose than crude extract. Moreover, when the larvae were exposed to crude extract concentrations, the development to pupa and adult stages was reduced by more than 50%. The ovicidal toxicity was examined using a hand sprayer. The extract concentration 5, 10, and 20 μg/egg significantly decreased the egg hatchability. In addition, crude extract showed a significant difference in inhibiting acetylcholinesterase (AChE) activity while crude extract and camphor showed significant inhibitory effects on carboxylesterase (CE) and glutathione-S-transferase (GST) activities. CONCLUSION The crude ethanol extract of Combretum trifoliatum was toxic to S. frugiperda in terms of larval mortality, negatively affecting biological parameters, and decreasing egg hatchability. Additionally, the activities of cholinergic and detoxifying enzymes were affected by crude extract and its isolated compounds. These results highlight that Combretum trifoliatum might be efficient as a bioinsecticide to control S. frugiperda. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Veeravat Changkeb
- Animal Toxicology and Physiology Specialty Research Unit, Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | | | - Gaelle Le Goff
- Université Côte d'Azur, INRAE, CNRS, ISA, F-06903 Sophia Antipolis, France
| | - Christine Coustau
- Université Côte d'Azur, INRAE, CNRS, ISA, F-06903 Sophia Antipolis, France
| | - Vasakorn Bullangpoti
- Animal Toxicology and Physiology Specialty Research Unit, Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
6
|
Godoy DN, Pretto VE, de Almeida PG, Weschenfelder MAG, Warpechowski LF, Horikoshi RJ, Martinelli S, Head GP, Bernardi O. Dose Effects of Flubendiamide and Thiodicarb against Spodoptera Species Developing on Bt and Non-Bt Soybean. INSECTS 2023; 14:766. [PMID: 37754734 PMCID: PMC10532366 DOI: 10.3390/insects14090766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/10/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023]
Abstract
An increase in Spodoptera species was reported in Bt soybean fields expressing Cry1Ac insecticidal proteins in Brazil, requiring additional management with chemical insecticides. Here, we evaluated the dose effects of flubendiamide and thiodicarb on Spodoptera cosmioides (Walker, 1858), Spodoptera eridania (Stoll, 1782), Spodoptera albula (Walker, 1857) and Spodoptera frugiperda (J. E. Smith, 1797) (Lepidoptera: Noctuidae) that survived on MON 87751 × MON 87708 × MON 87701 × MON 89788, expressing Cry1A.105, Cry2Ab2 and Cry1Ac; MON 87701 × MON 89788 soybean, expressing Cry1Ac; and non-Bt soybean. On unsprayed Cry1A.105/Cry2Ab2/Cry1Ac soybean, only S. frugiperda showed ~60% mortality after 10 d, whereas S. cosmioides, S. eridania and S. albula showed >81% mortality. The surviving larvae of all species on this Bt soybean showed >80% mortality when exposed to the field label dose of flubendiamide (70 mL/ha) or thiodicarb (400 g/ha) or at 50% of these doses. In contrast, all four species had <25% and <19% mortality on Cry1Ac and non-Bt soybean, respectively. The surviving S. cosmioides, S. eridania and S. albula on these soybean types presented >83% mortality after exposure to both dose levels of flubendiamide and thiodicarb. Some S. frugiperda larvae surviving on Cry1Ac and non-Bt soybean sprayed with a 50% dose of either insecticide developed into adults. However, the L1 larvae developing on Cry1Ac soybean leaves sprayed with flubendiamide and the L2 larvae on this soybean sprayed with thiodicarb had a prolonged immature stage, and the females displayed lower fecundity, which are likely to impact S. frugiperda population growth on soybean.
Collapse
Affiliation(s)
- Daniela N. Godoy
- Department of Plant Protection, Federal University of Santa Maria (UFSM), Roraima Avenue 1000, Santa Maria 97105-900, Brazil; (D.N.G.); (V.E.P.); (P.G.d.A.); (M.A.G.W.); (L.F.W.)
| | - Venicius E. Pretto
- Department of Plant Protection, Federal University of Santa Maria (UFSM), Roraima Avenue 1000, Santa Maria 97105-900, Brazil; (D.N.G.); (V.E.P.); (P.G.d.A.); (M.A.G.W.); (L.F.W.)
| | - Poliana G. de Almeida
- Department of Plant Protection, Federal University of Santa Maria (UFSM), Roraima Avenue 1000, Santa Maria 97105-900, Brazil; (D.N.G.); (V.E.P.); (P.G.d.A.); (M.A.G.W.); (L.F.W.)
| | - Marlon A. G. Weschenfelder
- Department of Plant Protection, Federal University of Santa Maria (UFSM), Roraima Avenue 1000, Santa Maria 97105-900, Brazil; (D.N.G.); (V.E.P.); (P.G.d.A.); (M.A.G.W.); (L.F.W.)
| | - Luiz F. Warpechowski
- Department of Plant Protection, Federal University of Santa Maria (UFSM), Roraima Avenue 1000, Santa Maria 97105-900, Brazil; (D.N.G.); (V.E.P.); (P.G.d.A.); (M.A.G.W.); (L.F.W.)
| | | | - Samuel Martinelli
- Regulatory Science, Bayer Crop Science, Chesterfield, MO 63017, USA; (S.M.); (G.P.H.)
| | - Graham P. Head
- Regulatory Science, Bayer Crop Science, Chesterfield, MO 63017, USA; (S.M.); (G.P.H.)
| | - Oderlei Bernardi
- Department of Plant Protection, Federal University of Santa Maria (UFSM), Roraima Avenue 1000, Santa Maria 97105-900, Brazil; (D.N.G.); (V.E.P.); (P.G.d.A.); (M.A.G.W.); (L.F.W.)
| |
Collapse
|
7
|
Sultana MS, Mazarei M, Jurat-Fuentes JL, Hewezi T, Millwood RJ, Stewart CN. Overexpression of soybean trypsin inhibitor genes decreases defoliation by corn earworm ( Helicoverpa zea) in soybean ( Glycine max) and Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2023; 14:1129454. [PMID: 36875574 PMCID: PMC9982021 DOI: 10.3389/fpls.2023.1129454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Trypsin inhibitors (TIs) are widely distributed in plants and are known to play a protective role against herbivores. TIs reduce the biological activity of trypsin, an enzyme involved in the breakdown of many different proteins, by inhibiting the activation and catalytic reactions of proteins. Soybean (Glycine max) contains two major TI classes: Kunitz trypsin inhibitor (KTI) and Bowman-Birk inhibitor (BBI). Both genes encoding TI inactivate trypsin and chymotrypsin enzymes, which are the main digestive enzymes in the gut fluids of Lepidopteran larvae feeding on soybean. In this study, the possible role of soybean TIs in plant defense against insects and nematodes was investigated. A total of six TIs were tested, including three known soybean trypsin inhibitors (KTI1, KTI2 and KTI3) and three genes encoding novel inhibitors identified in soybean (KTI5, KTI7, and BBI5). Their functional role was further examined by overexpression of the individual TI genes in soybean and Arabidopsis. The endogenous expression patterns of these TI genes varied among soybean tissues, including leaf, stem, seed, and root. In vitro enzyme inhibitory assays showed significant increase in trypsin and chymotrypsin inhibitory activities in both transgenic soybean and Arabidopsis. Detached leaf-punch feeding bioassays detected significant reduction in corn earworm (Helicoverpa zea) larval weight when larvae fed on transgenic soybean and Arabidopsis lines, with the greatest reduction observed in KTI7 and BBI5 overexpressing lines. Whole soybean plant greenhouse feeding bioassays with H. zea on KTI7 and BBI5 overexpressing lines resulted in significantly reduced leaf defoliation compared to non-transgenic plants. However, bioassays of KTI7 and BBI5 overexpressing lines with soybean cyst nematode (SCN, Heterodera glycines) showed no differences in SCN female index between transgenic and non-transgenic control plants. There were no significant differences in growth and productivity between transgenic and non-transgenic plants grown in the absence of herbivores to full maturity under greenhouse conditions. The present study provides further insight into the potential applications of TI genes for insect resistance improvement in plants.
Collapse
Affiliation(s)
- Mst Shamira Sultana
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, United States
- Center for Agricultural Synthetic Biology, University of Tennessee, Knoxville, TN, United States
| | - Mitra Mazarei
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, United States
- Center for Agricultural Synthetic Biology, University of Tennessee, Knoxville, TN, United States
| | - Juan Luis Jurat-Fuentes
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, United States
| | - Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, United States
| | - Reginald J. Millwood
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, United States
| | - C. Neal Stewart
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, United States
- Center for Agricultural Synthetic Biology, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
8
|
Barcellos GA, Hanich MR, Pretto VE, Weschenfelder MAG, Horikoshi RJ, Dourado PM, Ovejero RFL, Berger GU, Martinelli S, Head GP, Bernardi O. Characterizing the lethal and sub-lethal effects of genetically modified soybean expressing Cry1A.105, Cry2Ab2, and Cry1Ac insecticidal proteins against Spodoptera species (Lepidoptera: Noctuidae) in Brazil. PEST MANAGEMENT SCIENCE 2023; 79:548-559. [PMID: 36205335 DOI: 10.1002/ps.7225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/13/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND MON 87701 × MON 89788 × MON 87751 × MON 87708 soybean, that expresses Cry1A.105, Cry2Ab2, and Cry1Ac insecticidal proteins and confers tolerance to glyphosate and dicamba, is a potential tool for managing Spodoptera species in soybean fields in Brazil. In this study, we characterized the lethal and sub-lethal effects of Cry1A.105/Cry2Ab2/Cry1Ac soybean against Spodoptera species and genotypes of Spodoptera frugiperda resistant and susceptible to Cry1 and Cry2 proteins. These evaluations were also conducted with MON 87701 × MON 89788 soybean, which expresses Cry1Ac protein. RESULTS Cry1A.105/Cry2Ab2/Cry1Ac soybean caused high lethality in neonates of Spodoptera cosmioides and Spodoptera albula. However, it showed low lethality in S. frugiperda genotypes homozygous for resistance to Cry1 and Cry2 proteins but reduced their population growth potential. No relevant lethal effects of Cry1Ac soybean were detected in the Spodoptera species and genotypes evaluated. Spodoptera frugiperda genotypes heterozygous for Cry1 and Cry2 resistance were controlled by Cry1A.105/Cry2Ab2/Cry1Ac soybean, with no insects developing into adults. This Bt soybean also caused intermediate mortality of neonates of Spodoptera eridania (60%-83%) but no surviving larvae developed to adulthood, resulting in population suppression. CONCLUSIONS Cry1A.105/Cry2Ab2/Cry1Ac soybean caused high mortality of S. cosmioides, S. albula, and S. frugiperda genotypes susceptible to Cry1 and Cry2 and heterozygous for Cry1 and Cry2 resistance. This Bt soybean also suppressed population growth of S. eridania but had minimal impact on S. frugiperda homozygous for resistance to Cry1 and Cry2 proteins. Cry1Ac soybean had minimal impact on all Spodoptera species and genotypes evaluated. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Giovani A Barcellos
- Department of Plant Protection, Federal University of Santa Maria, Santa Maria, Brazil
| | - Manoela R Hanich
- Department of Plant Protection, Federal University of Santa Maria, Santa Maria, Brazil
| | - Venicius E Pretto
- Department of Plant Protection, Federal University of Santa Maria, Santa Maria, Brazil
| | | | | | | | | | | | | | - Graham P Head
- Regulatory Science, Bayer Crop Science, Chesterfield, MO, USA
| | - Oderlei Bernardi
- Department of Plant Protection, Federal University of Santa Maria, Santa Maria, Brazil
| |
Collapse
|
9
|
Usseglio VL, Dambolena JS, Zunino MP. Can Essential Oils Be a Natural Alternative for the Control of Spodoptera frugiperda? A Review of Toxicity Methods and Their Modes of Action. PLANTS (BASEL, SWITZERLAND) 2022; 12:3. [PMID: 36616132 PMCID: PMC9823514 DOI: 10.3390/plants12010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/02/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Spodoptera frugiperda is a major pest of maize crops. The application of synthetic insecticides and the use of Bt maize varieties are the principal strategies used for its control. However, due to the development of pesticide resistance and the negative impact of insecticides on the environment, natural alternatives are constantly being searched for. Accordingly, the objective of this review was to evaluate the use of essential oils (EOs) as natural alternatives for controlling S. frugiperda. This review article covers the composition of EOs, methods used for the evaluation of EO toxicity, EO effects, and their mode of action. Although the EOs of Ocimum basilicum, Piper marginatum, and Lippia alba are the most frequently used, Ageratum conyzoides, P. septuplinervium. O. gratissimum and Siparuna guianensis were shown to be the most effective. As the principal components of these EOs vary, then their mode of action on the pest could be different. The results of our analysis allowed us to evaluate and compare the potential of certain EOs for the control of this insect. In order to obtain comparable results when evaluating the toxicity of EOs on S. frugiperda, it is important that methodological issues are taken into account.
Collapse
Affiliation(s)
- Virginia L. Usseglio
- Instituto Multidisciplinario de Biología Vegetal (IMBiV-CONICET-UNC), Córdoba X5016GCN, Argentina
- Cátedra de Química General, Faculta de Ciencias Exactas, Físicas y Naturales (FCEFyN-UNC), Córdoba X5016GCN, Argentina
- Instituto de Ciencia y Tecnología de los Alimentos (ICTA-FCEFyN-UNC), Córdoba X5016GCN, Argentina
| | - José S. Dambolena
- Instituto Multidisciplinario de Biología Vegetal (IMBiV-CONICET-UNC), Córdoba X5016GCN, Argentina
- Instituto de Ciencia y Tecnología de los Alimentos (ICTA-FCEFyN-UNC), Córdoba X5016GCN, Argentina
- Cátedras de Química Orgánica y Productos Naturales (FCEFyN-UNC), Córdoba X5016GCN, Argentina
| | - María P. Zunino
- Instituto Multidisciplinario de Biología Vegetal (IMBiV-CONICET-UNC), Córdoba X5016GCN, Argentina
- Instituto de Ciencia y Tecnología de los Alimentos (ICTA-FCEFyN-UNC), Córdoba X5016GCN, Argentina
- Cátedras de Química Orgánica y Productos Naturales (FCEFyN-UNC), Córdoba X5016GCN, Argentina
| |
Collapse
|
10
|
Garlet CG, Muraro DS, Godoy DN, Cossa GE, Hanich MR, Stacke RF, Bernardi O. Assessing fitness costs of the resistance of Spodoptera frugiperda (Lepidoptera: Noctuidae) to pyramided Cry1 and Cry2 insecticidal proteins on different host plants. BULLETIN OF ENTOMOLOGICAL RESEARCH 2022; 112:575-583. [PMID: 35016737 DOI: 10.1017/s0007485321001152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Fall armyworm (FAW), Spodoptera frugiperda (Smith), is one of the major pests targeted by transgenic crops expressing insecticidal proteins from Bacillus thuringiensis (Bt) Berliner. However, FAW presents a high capacity to develop resistance to Bt protein-expressing crop lines, as reported in Brazil, Argentina, Puerto Rico and the southeastern U.S. Here, FAW genotypes resistant to pyramided maize events expressing Cry1F/Cry1A.105/Cry2Ab2 (P-R genotype) and Cry1A.105/Cry2Ab2 (Y-R genotype) from Brazil were used to investigate the interactions between non-Bt hosts (non-Bt maize, non-Bt cotton, millet and sorghum) and fitness costs. We also tested a FAW genotype susceptible to Bt maize and F1 hybrids of the resistant and susceptible genotypes (heterozygotes). Recessive fitness costs (i.e., costs affecting the resistant insects) were observed for pupal and neonate to adult survival of the P-R genotype on non-Bt cotton; larval developmental time of the P-R genotype on millet and sorghum; larval and neonate-to-adult developmental time of the Y-R genotype on non-Bt cotton and sorghum; the fecundity of the Y-R genotype on non-Bt cotton; and mean generation time of both resistant genotypes. However, on non-Bt cotton and non-Bt maize, the P-R genotype had a higher fitness (i.e., fitness benefits), displaying greater fecundity and rates of population increases than the Sus genotype. Non-recessive fitness costs (i.e., costs affecting heterozygotes) were found for fecundity and population increases on millet and sorghum. These findings suggest that, regardless of the disadvantages of the resistant genotypes in some hosts, the resistance of FAW to Cry1 and Cry2 Bt proteins is not linked with substantial fitness costs, and may persist in field conditions once present.
Collapse
Affiliation(s)
- Cínthia G Garlet
- Department of Plant Protection, Federal University of Santa Maria, Roraima avenue 1000, Santa Maria, Rio Grande do Sul 97105-900, Brazil
| | - Dionei S Muraro
- Department of Entomology and Acarology, University of São Paulo, Padua Dias avenue, 11, Piracicaba, São Paulo 13418-900, Brazil
| | - Daniela N Godoy
- Department of Plant Protection, Federal University of Santa Maria, Roraima avenue 1000, Santa Maria, Rio Grande do Sul 97105-900, Brazil
| | - Gisele E Cossa
- Department of Plant Protection, Federal University of Santa Maria, Roraima avenue 1000, Santa Maria, Rio Grande do Sul 97105-900, Brazil
| | - Manoela R Hanich
- Department of Plant Protection, Federal University of Santa Maria, Roraima avenue 1000, Santa Maria, Rio Grande do Sul 97105-900, Brazil
| | - Regis F Stacke
- Department of Plant Protection, Federal University of Santa Maria, Roraima avenue 1000, Santa Maria, Rio Grande do Sul 97105-900, Brazil
| | - Oderlei Bernardi
- Department of Plant Protection, Federal University of Santa Maria, Roraima avenue 1000, Santa Maria, Rio Grande do Sul 97105-900, Brazil
| |
Collapse
|
11
|
Okuma DM, Cuenca A, Nauen R, Omoto C. Large-Scale Monitoring of the Frequency of Ryanodine Receptor Target-Site Mutations Conferring Diamide Resistance in Brazilian Field Populations of Fall Armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae). INSECTS 2022; 13:626. [PMID: 35886802 PMCID: PMC9323691 DOI: 10.3390/insects13070626] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 02/01/2023]
Abstract
Fall armyworm (FAW), Spodoptera frugiperda, is an important lepidopteran pest in the Americas, and recently invaded the Eastern Hemisphere. In Brazil, FAW is considered the most destructive pest of corn and cotton. FAW has evolved resistance to many insecticides and Bacillus thuringiensis (Bt) proteins. Here, a large-scale monitoring was performed between 2019 and 2021 to assess diamide insecticide susceptibility in more than 65 FAW populations sampled in corn and cotton. We did not detect a significant shift in FAW susceptibility to flubendiamide, but a few populations were less affected by a discriminating rate. F2 screen results of 31 selected FAW populations across regions confirmed that the frequency of diamide resistance alleles remained rather stable. Two laboratory-selected strains exhibited high resistance ratios against flubendiamide, and cross-resistance to anthranilic diamides. Reciprocal crosses indicated that resistance is autosomal and (incompletely) recessive in both strains. F1 backcrosses suggested monogenic resistance, supported by the identification of an I4734M/K target-site mutation in the ryanodine receptor (RyR). Subsequent genotyping of field-collected samples employing a TaqMan-based allelic discrimination assay, revealed a low frequency of RyR I4790M/K mutations significantly correlated with phenotypic diamide resistance. Our findings will help to sustainably employ diamides in FAW resistance management strategies across crops.
Collapse
Affiliation(s)
- Daniela M. Okuma
- Department of Entomology and Acarology, University of São Paulo (ESALQ/USP)-Piracicaba, São Paulo 13418-900, Brazil;
- Bayer SA, Agronomic Solutions, Av. Dr. Roberto Moreira, 5005, EAE, Sao Paulo 13148-914, Brazil;
| | - Ana Cuenca
- Bayer SA, Agronomic Solutions, Av. Dr. Roberto Moreira, 5005, EAE, Sao Paulo 13148-914, Brazil;
| | - Ralf Nauen
- Bayer AG, Crop Science Division, R&D, Pest Control, Alfred Nobel Str. 50, 40789 Monheim am Rhein, Germany
| | - Celso Omoto
- Department of Entomology and Acarology, University of São Paulo (ESALQ/USP)-Piracicaba, São Paulo 13418-900, Brazil;
| |
Collapse
|
12
|
Franz L, Raming K, Nauen R. Recombinant Expression of ABCC2 Variants Confirms the Importance of Mutations in Extracellular Loop 4 for Cry1F Resistance in Fall Armyworm. Toxins (Basel) 2022; 14:toxins14020157. [PMID: 35202184 PMCID: PMC8878193 DOI: 10.3390/toxins14020157] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 01/15/2023] Open
Abstract
Fall armyworm (FAW), Spodoptera frugiperda, is a highly destructive and invasive global noctuid pest. Its control is based on insecticide applications and Bacillus thuringiensis (Bt) insecticidal Cry toxins expressed in transgenic crops, such as Cry1F in Bt corn. Continuous selection pressure has resulted in populations that are resistant to Bt corn, particularly in Brazil. FAW resistance to Cry1F was recently shown to be conferred by mutations of ATP-binding cassette transporter C2 (ABCC2), but several mutations, particularly indels in extracellular loop 4 (ECL4), are not yet functionally validated. We addressed this knowledge gap by baculovirus-free insect cell expression of ABCC2 variants (and ABCC3) by electroporation technology and tested their response to Cry1F, Cry1A.105 and Cry1Ab. We employed a SYTOXTM orange cell viability test measuring ABCC2-mediated Bt toxin pore formation. In total, we tested seven different FAW ABCC2 variants mutated in ECL4, two mutants modified in nucleotide binding domain (NBD) 2, including a deletion mutant lacking NBD2, and S. frugiperda ABCC3. All tested ECL4 mutations conferred high resistance to Cry1F, but much less to Cry1A.105 and Cry1Ab, whereas mutations in NBD2 hardly affected Bt toxin activity. Our study confirms the importance of indels in ECL4 for Cry1F resistance in S. frugiperda ABCC2.
Collapse
|
13
|
Machado EP, Garlet CG, Weschenfelder MAG, Führ FM, Godoy DN, Pretto VE, Contini RE, Franco CR, Omoto C, Bernardi O. Interspecific Variation in Susceptibility to Insecticides by Lepidopteran Pests of Soybean, Cotton, and Maize Crops From Brazil. JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:305-312. [PMID: 34993551 DOI: 10.1093/jee/toab265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Indexed: 06/14/2023]
Abstract
The interspecific variation in susceptibility to insecticides by lepidopteran species of soybean [Glycine max L. (Merr.)], cotton (Gossypium hirsutum L.), and maize (Zea mays L.) crops from Brazil were evaluated. Populations of Anticarsia gemmatalis (Hübner) (Lepidoptera: Erebidae), Chrysodeixis includens (Walker), Helicoverpa armigera (Hübner), Spodoptera frugiperda (Smith), Spodoptera eridania (Stoll), Spodoptera cosmioides (Walker), and Spodoptera albula (Walker) (Lepidoptera: Noctuidae) were collected from 2019 to 2021. Early L3 larvae (F2 generation) were exposed to the formulated insecticides methoxyfenozide, indoxacarb, spinetoram, flubendiamide, and chlorfenapyr in diet-overlay bioassays. The median lethal concentrations (LC50) were used to calculate tolerance ratios (TR) of each species in relation to the most susceptible species to each insecticide. The lowest LC50 values were verified for A. gemmatalis to all insecticides tested. Chrysodeixis includens and most of the Spodoptera species were moderately tolerant to methoxyfenozide (TR < 8.0-fold) and indoxacarb (TR < 39.4-fold), whereas H. armigera was the most tolerant species to methoxyfenozide (TR = 21.5-fold), and indoxacarb (TR = 106.4-fold). Spodoptera cosmioides, S. eridania, and S. albula showed highest tolerance to spinetoram (TR > 1270-fold), S. eridania, S. frugiperda, and S. albula to flubendiamide (TR from 38- to 547-fold), and S. albula to indoxacarb (TR = 138.6-fold). A small variation in susceptibility to chlorfenapyr (TR < 4.4-fold) was found among the lepidopteran evaluated. Our findings indicate a large variation in susceptibility to indoxacarb, spinetoram, and flubendiamide and a relatively low variation in susceptibility to methoxyfenozide and chlorfenapyr by lepidopteran species of soybean, cotton, and maize from Brazil.
Collapse
Affiliation(s)
- Eduardo P Machado
- Department of Plant Protection, Federal University of Santa Maria (UFSM), Roraima Avenue 1000, Santa Maria, Rio Grande do Sul 97105-900, Brazil
- Department of Entomology and Acarology, University of São Paulo (USP), Padua Dias Avenue 11, Piracicaba, São Paulo 13418-900, Brazil
| | - Cínthia G Garlet
- Department of Plant Protection, Federal University of Santa Maria (UFSM), Roraima Avenue 1000, Santa Maria, Rio Grande do Sul 97105-900, Brazil
| | - Marlon A G Weschenfelder
- Department of Plant Protection, Federal University of Santa Maria (UFSM), Roraima Avenue 1000, Santa Maria, Rio Grande do Sul 97105-900, Brazil
| | - Fábio M Führ
- Department of Plant Protection, Federal University of Santa Maria (UFSM), Roraima Avenue 1000, Santa Maria, Rio Grande do Sul 97105-900, Brazil
- Department of Entomology and Acarology, University of São Paulo (USP), Padua Dias Avenue 11, Piracicaba, São Paulo 13418-900, Brazil
| | - Daniela N Godoy
- Department of Plant Protection, Federal University of Santa Maria (UFSM), Roraima Avenue 1000, Santa Maria, Rio Grande do Sul 97105-900, Brazil
| | - Venicius E Pretto
- Department of Plant Protection, Federal University of Santa Maria (UFSM), Roraima Avenue 1000, Santa Maria, Rio Grande do Sul 97105-900, Brazil
| | - Rafael E Contini
- Department of Agronomy, Santa Catarina State University, Luiz de Camões Avenue 2090, Lages, Santa Catarina 88520-000, Brazil
| | - Cláudio R Franco
- Department of Agronomy, Santa Catarina State University, Luiz de Camões Avenue 2090, Lages, Santa Catarina 88520-000, Brazil
| | - Celso Omoto
- Department of Entomology and Acarology, University of São Paulo (USP), Padua Dias Avenue 11, Piracicaba, São Paulo 13418-900, Brazil
| | - Oderlei Bernardi
- Department of Plant Protection, Federal University of Santa Maria (UFSM), Roraima Avenue 1000, Santa Maria, Rio Grande do Sul 97105-900, Brazil
| |
Collapse
|
14
|
Stinguel P, Paiva CEC, Zuim V, Azevedo ACT, Valicente FH, Dos Santos Júnior HJG. Optimization of In Vivo Production of Spodoptera frugiperda multiple nucleopolyhedrovirus (SfMNPV). NEOTROPICAL ENTOMOLOGY 2022; 51:122-132. [PMID: 34590293 DOI: 10.1007/s13744-021-00917-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
Insect viruses have been used to protect crops and forests worldwide for decades. Among insect viruses, isolates of Spodoptera frugiperda multiple nucleopolyhedrovirus (SfMNPV) have proven potential for the control of Spodoptera frugiperda (J. E. Smith) (FAW) (Lepidoptera: Noctuidae), a pest of many economically essential crops across several continents. Mass production of SfMNPV depends on an in vivo system using host insect rearing. However, many factors can limit its production, including abiotic factors and host characteristics, such as the stage of development and an antagonist intraspecific interaction. Thus, to improve in vivo production, we verified the most suitable larval age to inoculate the virus and the influence of incubation temperature on viral production. Subsequently, cannibal behavior was verified in FAW larvae reared at different densities, while reproducing the conditions of the best treatments. The highest viral yield occurred when FAW larvae were inoculated at 10 and 8 days old and incubated at 22 °C and 25 °C, respectively. Nonetheless, survival (lethal period in days) and cannibal behavior were positively influenced by larval development, which potentially increases the load of contamination and requires larval individualization for these production conditions. In contrast, 4-day-old larvae, which were inoculated and incubated at 31 °C, also demonstrated high viral production, with lower rates of cannibalism and death on the same day, thereby showing potential. The information presented in this study is useful for the optimization of the in vivo production systems of SfMNPV.
Collapse
Affiliation(s)
- Priscila Stinguel
- Federal University of Espírito Santo, Porto Alegre, ES, Brazil
- Federal Institute of Espírito Santo, Montanha, ES, Brazil
| | | | | | | | | | | |
Collapse
|
15
|
Zakseski MR, da Silva Filho JG, Rakes M, Pazini JDB, da Rosa APSA, Marçon P, Popham HJR, Bernardi O, Bernardi D. Pathogenic Assessment of SfMNPV-Based Biopesticide on Spodoptera frugiperda (Lepidoptera: Noctuidae) Developing on Transgenic Soybean Expressing Cry1Ac Insecticidal Protein. JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:2264-2270. [PMID: 34487171 DOI: 10.1093/jee/toab170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Pathogenic assessment of a baculovirus-based biopesticide containing Spodoptera frugiperda multiple nucleopolyhedrovirus (SfMNPV: Baculoviridae: Alphabaculovirus) infecting fall armyworm, Spodoptera frugiperda (J. E. Smith, 1797) (Lepidoptera: Noctuidae) is reported. In the bioassays, neonates were infected with different doses of SfMNPV applied on Cry1Ac Bt soybean and non-Bt soybean. Our findings indicated that S. frugiperda neonates did not survive at 10 d post infection or develop into adults on Bt and non-Bt soybean sprayed with the field recommended dose of SfMNPV. In contrast, a proportion of the infected neonates developed into adults when infected with lower doses of SfMNPV (50%, 25%, and 10% of field dose) in both Bt and non-Bt soybean. However, S. frugiperda neonates surviving infection at the lowest virus doses on both soybean varieties showed longer neonate-to-pupa and neonate-to-adult periods, lower larval and pupal weights, reduced fecundity, and increased population suppression. Nevertheless, more pronounced pathogenicity of SfMNPV infecting neonates of S. frugiperda were verified on larvae that developed on Bt soybean. These findings revealed that, beyond mortality, the biopesticide containing SfMNPV also causes significant sublethal pathogenic effects on neonates of S. frugiperda developing on Bt and non-Bt soybean and suggested an additive effect among SfMNPV and Cry1Ac insecticidal protein expressed in Bt soybean.
Collapse
Affiliation(s)
- Marcelo R Zakseski
- Department of Crop Protection, Federal University of Pelotas (UFPel), Eliseu Maciel Avenue, Capão do Leão, Rio Grande do Sul 96160-000, Brazil
| | - José G da Silva Filho
- Department of Crop Protection, Federal University of Pelotas (UFPel), Eliseu Maciel Avenue, Capão do Leão, Rio Grande do Sul 96160-000, Brazil
| | - Matheus Rakes
- Department of Crop Protection, Federal University of Pelotas (UFPel), Eliseu Maciel Avenue, Capão do Leão, Rio Grande do Sul 96160-000, Brazil
| | - Juliano de B Pazini
- Department of Crop Protection, Federal University of Pelotas (UFPel), Eliseu Maciel Avenue, Capão do Leão, Rio Grande do Sul 96160-000, Brazil
| | - Ana Paula S A da Rosa
- Brazilian Agricultural Research Corporation (Embrapa Temperate Agriculture), Pelotas, Rio Grande do Sul 9601-971, Brazil
| | | | | | - Oderlei Bernardi
- Department of Plant Protection, Federal University of Santa Maria (UFSM), Roraima Avenue 1000, Santa Maria, Rio Grande do Sul 97105-900, Brazil
| | - Daniel Bernardi
- Department of Crop Protection, Federal University of Pelotas (UFPel), Eliseu Maciel Avenue, Capão do Leão, Rio Grande do Sul 96160-000, Brazil
| |
Collapse
|
16
|
Paredes-Sánchez FA, Rivera G, Bocanegra-García V, Martínez-Padrón HY, Berrones-Morales M, Niño-García N, Herrera-Mayorga V. Advances in Control Strategies against Spodoptera frugiperda. A Review. Molecules 2021; 26:molecules26185587. [PMID: 34577058 PMCID: PMC8471127 DOI: 10.3390/molecules26185587] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 11/24/2022] Open
Abstract
The strategies for controlling the insect pest Spodoptera frugiperda have been developing over the past four decades; however, the insecticide resistance and the remarkable adaptability of this insect have hindered its success. This review first analyzes the different chemical compounds currently available and the most promising options to control S. frugiperda. Then, we analyze the metabolites obtained from plant extracts with antifeedant, repellent, insecticide, or ovicide effects that could be environmentally friendly options for developing botanical S. frugiperda insecticides. Subsequently, we analyze the biological control based on the use of bacteria, viruses, fungi, and parasitoids against this pest. Finally, the use of sex pheromones to monitor this pest is analyzed. The advances reviewed could provide a wide panorama to guide the search for new pesticidal strategies but focused on environmental sustainability against S. frugiperda.
Collapse
Affiliation(s)
- Francisco A. Paredes-Sánchez
- Unidad Académica Multidisciplinaria Mante, Universidad Autónoma de Tamaulipas, El Mante 89840, Tamaulipas, Mexico; (F.A.P.-S.); (M.B.-M.); (N.N.-G.)
| | - Gildardo Rivera
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Tamaulipas, Mexico; (G.R.); (V.B.-G.)
| | - Virgilio Bocanegra-García
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Tamaulipas, Mexico; (G.R.); (V.B.-G.)
| | - Hadassa Y. Martínez-Padrón
- Subdirección de Enseñanza e Investigación, Hospital Regional de Alta Especialidad de Ciudad Victoria “Bicentenario 2010”, Cd. Victoria 87087, Tamaulipas, Mexico;
| | - Martín Berrones-Morales
- Unidad Académica Multidisciplinaria Mante, Universidad Autónoma de Tamaulipas, El Mante 89840, Tamaulipas, Mexico; (F.A.P.-S.); (M.B.-M.); (N.N.-G.)
| | - Nohemí Niño-García
- Unidad Académica Multidisciplinaria Mante, Universidad Autónoma de Tamaulipas, El Mante 89840, Tamaulipas, Mexico; (F.A.P.-S.); (M.B.-M.); (N.N.-G.)
| | - Verónica Herrera-Mayorga
- Unidad Académica Multidisciplinaria Mante, Universidad Autónoma de Tamaulipas, El Mante 89840, Tamaulipas, Mexico; (F.A.P.-S.); (M.B.-M.); (N.N.-G.)
- Correspondence: ; Tel.: +52-(492)-909-3646
| |
Collapse
|
17
|
Garlet CG, Moreira RP, Gubiani PDS, Palharini RB, Farias JR, Bernardi O. Fitness Cost of Chlorpyrifos Resistance in Spodoptera frugiperda (Lepidoptera: Noctuidae) on Different Host Plants. ENVIRONMENTAL ENTOMOLOGY 2021; 50:898-908. [PMID: 34018549 DOI: 10.1093/ee/nvab046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Indexed: 06/12/2023]
Abstract
Spodoptera frugiperda (J. E. Smith, 1797) is a polyphagous pest of global relevance due to the damage it inflicts on agricultural crops. In South American countries, this species is one of the principal pests of maize and cotton. Currently, S. frugiperda is also emerging as an important pest of soybeans and winter cereals in Brazil. Chemical control is one of the main control tactics against S. frugiperda, even though resistance against numerous modes of action insecticides has been reported. To support insect resistance management programs, we evaluated the fitness costs of resistance of S. frugiperda to the acetylcholinesterase inhibitor chlorpyrifos. Fitness costs were quantified by comparing biological parameters of chlorpyrifos-resistant and -susceptible S. frugiperda and their F1 hybrids (heterozygotes) on non-Bt cotton, non-Bt maize, non-Bt soybean, and oats. The results revealed that the chlorpyrifos-resistant genotype showed lower pupa-to-adult and egg-to-adult survivorship and reduced larval weights on oats; longer neonate-to-pupa and egg-to-adult developmental periods, and lower pupal weights and fecundity on maize; lower pupal weights on soybean; and reduced fecundity on cotton compared with the chlorpyrifos-susceptible genotype. Fitness costs also affected fertility life table parameters of the resistant genotype, increasing the mean length of a generation on cotton and maize and reducing the potential for population growth on all hosts. These findings suggest fitness costs at the individual and population levels of chlorpyrifos resistance in S. frugiperda, indicating that removal of the selective agent from the environment would result in reduced resistance and opportunities for the restoration of susceptibility.
Collapse
Affiliation(s)
- Cínthia G Garlet
- Department of Plant Protection, Federal University of Santa Maria (UFSM), Roraima avenue 1000, Santa Maria, Rio Grande do Sul 97105-900, Brazil
| | - Rafaella P Moreira
- Department of Plant Protection, Federal University of Santa Maria (UFSM), Roraima avenue 1000, Santa Maria, Rio Grande do Sul 97105-900, Brazil
| | - Patricia da S Gubiani
- Department of Plant Protection, Federal University of Santa Maria (UFSM), Roraima avenue 1000, Santa Maria, Rio Grande do Sul 97105-900, Brazil
| | - Ramon B Palharini
- Department of Plant Protection, Federal University of Santa Maria (UFSM), Roraima avenue 1000, Santa Maria, Rio Grande do Sul 97105-900, Brazil
| | - Juliano R Farias
- Department of Crop Protection, Regional Integrated University of Alto Uruguay (URI), Santo Ângelo, Rio Grande do Sul 98902-470, Brazil
| | - Oderlei Bernardi
- Department of Plant Protection, Federal University of Santa Maria (UFSM), Roraima avenue 1000, Santa Maria, Rio Grande do Sul 97105-900, Brazil
| |
Collapse
|
18
|
Horikoshi RJ, Dourado PM, Berger GU, de S Fernandes D, Omoto C, Willse A, Martinelli S, Head GP, Corrêa AS. Large-scale assessment of lepidopteran soybean pests and efficacy of Cry1Ac soybean in Brazil. Sci Rep 2021; 11:15956. [PMID: 34354186 PMCID: PMC8342623 DOI: 10.1038/s41598-021-95483-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/26/2021] [Indexed: 02/06/2023] Open
Abstract
The soybean technology MON 87701 × MON 89788, expressing Cry1Ac and conferring tolerance to glyphosate, has been widely adopted in Brazil since 2013. However, pest shifts or resistance evolution could reduce the benefits of this technology. To assess Cry1Ac soybean performance and understand the composition of lepidopteran pest species attacking soybeans, we implemented large-scale sampling of larvae on commercial soybean fields during the 2019 and 2020 crop seasons to compare with data collected prior to the introduction of Cry1Ac soybeans. Chrysodeixis includens was the main lepidopteran pest in non-Bt fields. More than 98% of larvae found in Cry1Ac soybean were Spodoptera spp., although the numbers of Spodoptera were similar between Cry1Ac soybean and non-Bt fields. Cry1Ac soybean provided a high level of protection against Anticarsia gemmatalis, C. includens, Chloridea virescens and Helicoverpa spp. Significant reductions in insecticide sprays for lepidopteran control in soybean were observed from 2012 to 2019. Our study showed that C. includens and A. gemmatalis continue to be primary lepidopteran pests of soybean in Brazil and that Cry1Ac soybean continues to effectively manage the target lepidopteran pests. However, there was an increase in the relative abundance of non-target Spodoptera spp. larvae in both non-Bt and Cry1Ac soybeans.
Collapse
Affiliation(s)
- Renato J Horikoshi
- Bayer Crop Science, São Paulo, SP, Brazil.
- Departamento de Entomologia e Acarologia, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, SP, Brazil.
| | | | | | - Davi de S Fernandes
- Departamento de Entomologia e Acarologia, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Celso Omoto
- Departamento de Entomologia e Acarologia, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Alan Willse
- Regulatory Science, Bayer Crop Science, Chesterfield, MO, 63017, USA
| | - Samuel Martinelli
- Regulatory Science, Bayer Crop Science, Chesterfield, MO, 63017, USA
| | - Graham P Head
- Regulatory Science, Bayer Crop Science, Chesterfield, MO, 63017, USA
| | - Alberto S Corrêa
- Departamento de Entomologia e Acarologia, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, SP, Brazil
| |
Collapse
|
19
|
Wengrat APGS, Coelho Junior A, Parra JRP, Takahashi TA, Foerster LA, Corrêa AS, Polaszek A, Johnson NF, Costa VA, Zucchi RA. Integrative taxonomy and phylogeography of Telenomus remus (Scelionidae), with the first record of natural parasitism of Spodoptera spp. in Brazil. Sci Rep 2021; 11:14110. [PMID: 34238969 PMCID: PMC8266905 DOI: 10.1038/s41598-021-93510-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/24/2021] [Indexed: 02/06/2023] Open
Abstract
The egg parasitoid Telenomus remus (Hymenoptera: Scelionidae) has been investigated for classical and applied biological control of noctuid pests, especially Spodoptera (Lepidoptera: Noctuidae) species. Although T. remus was introduced into Brazil over three decades ago for classical biological control of S. frugiperda, this wasp has not been recorded as established in corn or soybean crops. We used an integrative approach to identify T. remus, combining a taxonomic key based on the male genitalia with DNA barcoding, using a cytochrome c oxidase subunit I mitochondrial gene fragment. This is the first report of natural parasitism of T. remus on S. frugiperda and S. cosmioides eggs at two locations in Brazil. We also confirmed that the T. remus lineage in Brazil derives from a strain in Venezuela (originally from Papua New Guinea and introduced into the Americas, Africa, and Asia). The occurrence of T. remus parasitizing S. frugiperda and S. cosmioides eggs in field conditions, not associated with inundative releases, suggests that the species has managed to establish itself in the field in Brazil. This opens possibilities for future biological control programs, since T. remus shows good potential for mass rearing and egg parasitism of important agricultural pests such as Spodoptera species.
Collapse
Affiliation(s)
- Ana P. G. S. Wengrat
- grid.11899.380000 0004 1937 0722Department of Entomology and Acarology, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo Brazil
| | - Aloisio Coelho Junior
- grid.11899.380000 0004 1937 0722Department of Entomology and Acarology, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo Brazil
| | - Jose R. P. Parra
- grid.11899.380000 0004 1937 0722Department of Entomology and Acarology, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo Brazil
| | - Tamara A. Takahashi
- grid.20736.300000 0001 1941 472XDepartment of Phytotechnics and Plant Health, Federal University of Paraná, Curitiba, Paraná Brazil
| | - Luis A. Foerster
- grid.20736.300000 0001 1941 472XDepartament of Zoology, Federal University of Paraná, Curitiba, Paraná Brazil
| | - Alberto S. Corrêa
- grid.11899.380000 0004 1937 0722Department of Entomology and Acarology, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo Brazil
| | - Andrew Polaszek
- grid.35937.3b0000 0001 2270 9879Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD UK
| | - Norman F. Johnson
- grid.261331.40000 0001 2285 7943Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, 1315 Kinnear Road, Columbus, OH 43212 USA
| | - Valmir A. Costa
- grid.419041.90000 0001 1547 1081Instituto Biológico, Unidade Laboratorial de Referência em Controle Biológico, Campinas, São Paulo Brazil
| | - Roberto A. Zucchi
- grid.11899.380000 0004 1937 0722Department of Entomology and Acarology, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo Brazil
| |
Collapse
|
20
|
Garcia AG, Malaquias JB, Ferreira CP, Tomé MP, Weber ID, Godoy WAC. Ecological Modelling of Insect Movement in Cropping Systems. NEOTROPICAL ENTOMOLOGY 2021; 50:321-334. [PMID: 33900576 DOI: 10.1007/s13744-021-00869-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
The spatio-temporal dynamics of insect pests in agricultural landscapes involves the potential of species to move, invade, colonise, and establish in different areas. This study revised the dispersal of the important crop pests Diabrotica speciosa Germar and Spodoptera frugiperda (J.E. Smith) by using computational modelling to represent the movement of these polyphagous pests in agricultural mosaics. The findings raise significant questions regarding the dispersal of pests through crops and refuge areas, indicating that understanding pest movement is essential for developing strategies to predict critical infestation levels to assist in pest-management decisions. In addition, our modelling approach can be adapted for other insect species and other cropping systems despite discussing two specific species in the current manuscript. We present an overview of studies, combining experimentation and ecological modelling, discussing the methods used and the importance of studying insect movement as well as the implications for agricultural landscapes in Brazil.
Collapse
Affiliation(s)
- Adriano Gomes Garcia
- Dept of Entomology and Acarology, Luiz de Queiroz College of Agriculture, Univ of São Paulo, Piracicaba, São Paulo, Brazil
| | | | | | - Maysa Pereira Tomé
- Dept of Entomology and Acarology, Luiz de Queiroz College of Agriculture, Univ of São Paulo, Piracicaba, São Paulo, Brazil
| | - Igor Daniel Weber
- Dept of Entomology and Acarology, Luiz de Queiroz College of Agriculture, Univ of São Paulo, Piracicaba, São Paulo, Brazil
| | - Wesley Augusto Conde Godoy
- Dept of Entomology and Acarology, Luiz de Queiroz College of Agriculture, Univ of São Paulo, Piracicaba, São Paulo, Brazil.
| |
Collapse
|
21
|
Marques LH, Lepping M, Castro BA, Santos AC, Rossetto J, Nunes MZ, Silva OABN, Moscardini VF, de Sá VGM, Nowatzki T, Dahmer ML, Gontijo PC. Field efficacy of Bt cotton containing events DAS-21023-5 × DAS-24236-5 × SYN-IR102-7 against lepidopteran pests and impact on the non-target arthropod community in Brazil. PLoS One 2021; 16:e0251134. [PMID: 33945577 PMCID: PMC8096009 DOI: 10.1371/journal.pone.0251134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/21/2021] [Indexed: 11/19/2022] Open
Abstract
The efficacy and non-target arthropod effects of transgenic DAS-21023-5 × DAS-24236-5 × SYN-IR102-7 Bt cotton, expressing proteins Cry1Ac, Cry1F and Vip3Aa19, was examined through field trials in Brazil. Fifteen field efficacy experiments were conducted from 2014 through the 2020 growing season across six different states in Brazil to evaluate performance against key lepidopteran pests through artificial infestations of Chrysodeixis includens (Walker), Spodoptera frugiperda (J.E. Smith,1797), Spodoptera cosmioides (Walker, 1858) and Chloridea virescens (F., 1781), and natural infestations of Alabama argillacea (Hübner) and S. frugiperda. The impact of this Bt cotton technology on the non-target arthropod community in Brazilian cotton production systems was also assessed in a multi-site experiment. DAS-21023-5 × DAS-24236-5 × SYN-IR102-7 cotton significantly reduced the feeding damage caused by S. frugiperda, S. cosmioides, C. includens, C. virescens and A. argillacea, causing high levels of mortality (greater than 99%) to all target lepidopteran pests evaluated during vegetative and/or reproductive stages of crop development. Non-target arthropod community-level analyses confirmed no unintended effects on the arthropod groups monitored. These results demonstrate the value of transgenic Bt cotton containing event DAS-21023-5 × DAS-24236-5 × SYN-IR102-7 for consideration as part of an integrated approach for managing key lepidopteran pests in Brazilian cotton production systems.
Collapse
Affiliation(s)
| | - Miles Lepping
- Corteva Agriscience, Indianapolis, Indiana, United States of America
| | - Boris A. Castro
- Corteva Agriscience, Indianapolis, Indiana, United States of America
| | | | | | | | | | | | | | | | - Mark L. Dahmer
- Corteva Agriscience, Johnston, Iowa, United States of America
| | - Pablo C. Gontijo
- Instituto Federal Goiano, Campus Rio Verde, Rio Verde, Goiás, Brazil
| |
Collapse
|