1
|
Webi E, Abkallo HM, Obiero G, Ndegwa P, Xie S, Zhao S, Nene V, Steinaa L. Genome Editing in Apicomplexan Parasites: Current Status, Challenges, and Future Possibilities. CRISPR J 2024. [PMID: 39387255 DOI: 10.1089/crispr.2024.0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein (Cas) technology has revolutionized genome editing across various biological systems, including the Apicomplexa phylum. This review describes the status, challenges, and applications of CRISPR-Cas9 editing technology in apicomplexan parasites, such as Plasmodium, Toxoplasma, Theileria, Babesia, and Cryptosporidium. The discussion encompasses successfully implemented CRISPR-Cas9-based techniques in these parasites, highlighting the achieved milestones, from precise gene modifications to genome-wide screening. In addition, the review addresses the challenges hampering efficient genome editing, including the parasites' complex life cycles, multiple intracellular stages, and the lack of robust genetic tools. It further explores the ethical and policy considerations surrounding genome editing and the future perspectives of CRISPR-Cas applications in apicomplexan parasites.
Collapse
Affiliation(s)
- Ethel Webi
- Animal and Human Health Program, International Livestock Research Institute, Nairobi, Kenya
- Department of Biochemistry, University of Nairobi, Nairobi, Kenya
| | - Hussein M Abkallo
- Animal and Human Health Program, International Livestock Research Institute, Nairobi, Kenya
| | - George Obiero
- Department of Biochemistry, University of Nairobi, Nairobi, Kenya
| | - Paul Ndegwa
- Department of Biology, University of Nairobi, Nairobi, Kenya
| | - Shengsong Xie
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, P. R. China
| | - Shuhong Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, P. R. China
| | - Vishvanath Nene
- Animal and Human Health Program, International Livestock Research Institute, Nairobi, Kenya
| | - Lucilla Steinaa
- Animal and Human Health Program, International Livestock Research Institute, Nairobi, Kenya
| |
Collapse
|
2
|
Charneau S, de Oliveira LS, Zenonos Z, Hopp CS, Bastos IMD, Loew D, Lombard B, Pandolfo Silveira A, de Carvalho Nardeli Basílio Lobo G, Bao SN, Grellier P, Rayner JC. APEX2-based proximity proteomic analysis identifies candidate interactors for Plasmodium falciparum knob-associated histidine-rich protein in infected erythrocytes. Sci Rep 2024; 14:11242. [PMID: 38755230 PMCID: PMC11099048 DOI: 10.1038/s41598-024-61295-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/03/2024] [Indexed: 05/18/2024] Open
Abstract
The interaction of Plasmodium falciparum-infected red blood cells (iRBCs) with the vascular endothelium plays a crucial role in malaria pathology and disease. KAHRP is an exported P. falciparum protein involved in iRBC remodelling, which is essential for the formation of protrusions or "knobs" on the iRBC surface. These knobs and the proteins that are concentrated within them allow the parasites to escape the immune response and host spleen clearance by mediating cytoadherence of the iRBC to the endothelial wall, but this also slows down blood circulation, leading in some cases to severe cerebral and placental complications. In this work, we have applied genetic and biochemical tools to identify proteins that interact with P. falciparum KAHRP using enhanced ascorbate peroxidase 2 (APEX2) proximity-dependent biotinylation and label-free shotgun proteomics. A total of 30 potential KAHRP-interacting candidates were identified, based on the assigned fragmented biotinylated ions. Several identified proteins have been previously reported to be part of the Maurer's clefts and knobs, where KAHRP resides. This study may contribute to a broader understanding of P. falciparum protein trafficking and knob architecture and shows for the first time the feasibility of using APEX2-proximity labelling in iRBCs.
Collapse
Affiliation(s)
- Sébastien Charneau
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, 70910-900, Brazil.
| | - Lucas Silva de Oliveira
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, 70910-900, Brazil
- UMR 7245 MCAM Molecules of Communication and Adaptation of Microorganisms, Muséum National d'Histoire Naturelle, CNRS, 75231, Paris Cedex 05, France
| | - Zenon Zenonos
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
- Biologics Engineering, Oncology R&D, AstraZenecaGranta Park, Cambridge, UK
| | - Christine S Hopp
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Izabela M D Bastos
- Laboratory of Host Pathogen Interaction, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, 70910-900, Brazil
| | - Damarys Loew
- Institut Curie, Centre de Recherche, PSL Research University, CurieCoreTech Mass Spectrometry Proteomics, 26 rue d'Ulm, 75248, Paris Cedex 05, France
| | - Bérangère Lombard
- Institut Curie, Centre de Recherche, PSL Research University, CurieCoreTech Mass Spectrometry Proteomics, 26 rue d'Ulm, 75248, Paris Cedex 05, France
| | - Ariane Pandolfo Silveira
- Laboratory of Microscopy and Microanalysis, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasília, 70910-900, Brazil
| | | | - Sônia Nair Bao
- Laboratory of Microscopy and Microanalysis, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasília, 70910-900, Brazil
| | - Philippe Grellier
- UMR 7245 MCAM Molecules of Communication and Adaptation of Microorganisms, Muséum National d'Histoire Naturelle, CNRS, 75231, Paris Cedex 05, France
| | - Julian C Rayner
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge, CB2 0XY, UK
| |
Collapse
|
3
|
Mambwe D, Coertzen D, Leshabane M, Mulubwa M, Njoroge M, Gibhard L, Girling G, Wicht KJ, Lee MCS, Wittlin S, Moreira DRM, Birkholtz LM, Chibale K. hERG, Plasmodium Life Cycle, and Cross Resistance Profiling of New Azabenzimidazole Analogues of Astemizole. ACS Med Chem Lett 2024; 15:463-469. [PMID: 38628794 PMCID: PMC11017395 DOI: 10.1021/acsmedchemlett.3c00496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/01/2024] [Accepted: 03/06/2024] [Indexed: 04/19/2024] Open
Abstract
Toward addressing the cardiotoxicity liability associated with the antimalarial drug astemizole (AST, hERG IC50 = 0.0042 μM) and its derivatives, we designed and synthesized analogues based on compound 1 (Pf NF54 IC50 = 0.012 μM; hERG IC50 = 0.63 μM), our previously identified 3-trifluoromethyl-1,2,4-oxadiazole AST analogue. Compound 11 retained in vitro multistage antiplasmodium activity (ABS PfNF54 IC50 = 0.017 μM; gametocytes PfiGc/PfLGc IC50 = 1.24/1.39 μM, and liver-stage PbHepG2 IC50 = 2.30 μM), good microsomal metabolic stability (MLM CLint < 11 μL·min-1·mg-1, EH < 0.33), and solubility (150 μM). It shows a ∼6-fold and >6000-fold higher selectivity against human ether-á-go-go-related gene higher selectively potential over hERG relative to 1 and AST, respectively. Despite the excellent in vitro antiplasmodium activity profile, in vivo efficacy in the Plasmodium berghei mouse infection model was diminished, attributable to suboptimal oral bioavailability (F = 14.9%) at 10 mg·kg-1 resulting from poor permeability (log D7.4 = -0.82). No cross-resistance was observed against 44 common Pf mutant lines, suggesting activity via a novel mechanism of action.
Collapse
Affiliation(s)
- Dickson Mambwe
- Department
of Chemistry, University of Cape Town, Rondebosch, 7701 Cape Town, South Africa
| | - Dina Coertzen
- Department
of Biochemistry, Genetics & Microbiology, Institute for Sustainable
Malaria Control, University of Pretoria, Private Bag X20, Hatfield, 0028 Pretoria, South Africa
| | - Meta Leshabane
- Department
of Biochemistry, Genetics & Microbiology, Institute for Sustainable
Malaria Control, University of Pretoria, Private Bag X20, Hatfield, 0028 Pretoria, South Africa
| | - Mwila Mulubwa
- Drug
Discovery and Development Centre (H3D), DMPK & Pharmacology, University of Cape Town, Observatory, 7925 Cape Town, South Africa
| | - Mathew Njoroge
- Drug
Discovery and Development Centre (H3D), DMPK & Pharmacology, University of Cape Town, Observatory, 7925 Cape Town, South Africa
| | - Liezl Gibhard
- Drug
Discovery and Development Centre (H3D), DMPK & Pharmacology, University of Cape Town, Observatory, 7925 Cape Town, South Africa
| | - Gareth Girling
- Wellcome
Sanger Institute, Wellcome
Trust Genome Campus, Hinxton CB10 1SA, United Kingdom
| | - Kathryn J. Wicht
- Department
of Chemistry, University of Cape Town, Rondebosch, 7701 Cape Town, South Africa
| | - Marcus C. S. Lee
- Wellcome
Sanger Institute, Wellcome
Trust Genome Campus, Hinxton CB10 1SA, United Kingdom
- Biological
Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 4HN, Scotland, United Kingdom
| | - Sergio Wittlin
- Swiss
Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland
- University
of Basel, 4003 Basel, Switzerland
| | | | - Lyn-Marie Birkholtz
- Department
of Biochemistry, Genetics & Microbiology, Institute for Sustainable
Malaria Control, University of Pretoria, Private Bag X20, Hatfield, 0028 Pretoria, South Africa
| | - Kelly Chibale
- Department
of Chemistry, University of Cape Town, Rondebosch, 7701 Cape Town, South Africa
- Drug
Discovery and Development Centre (H3D), DMPK & Pharmacology, University of Cape Town, Observatory, 7925 Cape Town, South Africa
- South
African Medical Research Council Drug Discovery and Development Research
Unit, University of Cape Town, Rondebosch, 7701 Cape Town, South Africa
- Institute
of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, 7701 Cape Town, South Africa
| |
Collapse
|
4
|
Pance A, Ng BL, Mwikali K, Koutsourakis M, Agu C, Rouhani FJ, Montandon R, Law F, Ponstingl H, Rayner JC. Novel stem cell technologies are powerful tools to understand the impact of human factors on Plasmodium falciparum malaria. Front Cell Infect Microbiol 2023; 13:1287355. [PMID: 38173794 PMCID: PMC10762799 DOI: 10.3389/fcimb.2023.1287355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024] Open
Abstract
Plasmodium falciparum parasites have a complex life cycle, but the most clinically relevant stage of the disease is the invasion of erythrocytes and the proliferation of the parasite in the blood. The influence of human genetic traits on malaria has been known for a long time, however understanding the role of the proteins involved is hampered by the anuclear nature of erythrocytes that makes them inaccessible to genetic tools. Here we overcome this limitation using stem cells to generate erythroid cells with an in-vitro differentiation protocol and assess parasite invasion with an adaptation of flow cytometry to detect parasite hemozoin. We combine this strategy with reprogramming of patient cells to Induced Pluripotent Stem Cells and genome editing to understand the role of key genes and human traits in malaria infection. We show that deletion of basigin ablates invasion while deletion of ATP2B4 has a minor effect and that erythroid cells from reprogrammed patient-derived HbBart α-thalassemia samples poorly support infection. The possibility to obtain patient-secific and genetically modifed erythoid cells offers an unparalleled opportunity to study the role of human genes and polymorphisms in malaria allowing preservation of the genomic background to demonstrate their function and understand their mechanisms.
Collapse
Affiliation(s)
- Alena Pance
- Wellcome Sanger Institute, Cambridge, United Kingdom
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
| | - Bee L. Ng
- Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Kioko Mwikali
- Wellcome Sanger Institute, Cambridge, United Kingdom
- Bioscience Department, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | | | - Chukwuma Agu
- Wellcome Sanger Institute, Cambridge, United Kingdom
| | | | - Ruddy Montandon
- Wellcome Sanger Institute, Cambridge, United Kingdom
- Wellcome Centre of Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Frances Law
- Wellcome Sanger Institute, Cambridge, United Kingdom
| | | | - Julian C. Rayner
- Wellcome Sanger Institute, Cambridge, United Kingdom
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
5
|
Voorberg-van der Wel A, Zeeman AM, Kocken CHM. Transfection Models to Investigate Plasmodium vivax-Type Dormant Liver Stage Parasites. Pathogens 2023; 12:1070. [PMID: 37764878 PMCID: PMC10534883 DOI: 10.3390/pathogens12091070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Plasmodium vivax causes the second highest number of malaria morbidity and mortality cases in humans. Several biological traits of this parasite species, including the formation of dormant stages (hypnozoites) that persist inside the liver for prolonged periods of time, present an obstacle for intervention measures and create a barrier for the elimination of malaria. Research into the biology of hypnozoites requires efficient systems for parasite transmission, liver stage cultivation and genetic modification. However, P. vivax research is hampered by the lack of an in vitro blood stage culture system, rendering it reliant on in vivo-derived, mainly patient, material for transmission and liver stage culture. This has also resulted in limited capability for genetic modification, creating a bottleneck in investigations into the mechanisms underlying the persistence of the parasite inside the liver. This bottleneck can be overcome through optimal use of the closely related and experimentally more amenable nonhuman primate (NHP) parasite, Plasmodium cynomolgi, as a model system. In this review, we discuss the genetic modification tools and liver stage cultivation platforms available for studying P. vivax persistent stages and highlight how their combined use may advance our understanding of hypnozoite biology.
Collapse
Affiliation(s)
- Annemarie Voorberg-van der Wel
- Department of Parasitology, Biomedical Primate Research Centre, 2288 GJ Rijswijk, The Netherlands; (A.-M.Z.); (C.H.M.K.)
| | | | | |
Collapse
|
6
|
Carrasquilla M, Drammeh NF, Rawat M, Sanderson T, Zenonos Z, Rayner JC, Lee MCS. Barcoding Genetically Distinct Plasmodium falciparum Strains for Comparative Assessment of Fitness and Antimalarial Drug Resistance. mBio 2022; 13:e0093722. [PMID: 35972144 PMCID: PMC9600763 DOI: 10.1128/mbio.00937-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/27/2022] [Indexed: 11/20/2022] Open
Abstract
The repeated emergence of antimalarial drug resistance in Plasmodium falciparum, including to the current frontline antimalarial artemisinin, is a perennial problem for malaria control. Next-generation sequencing has greatly accelerated the identification of polymorphisms in resistance-associated genes but has also highlighted the need for more sensitive and accurate laboratory tools to profile current and future antimalarials and to quantify the impact of drug resistance acquisition on parasite fitness. The interplay of fitness and drug response is of fundamental importance in understanding why particular genetic backgrounds are better at driving the evolution of drug resistance in natural populations, but the impact of parasite fitness landscapes on the epidemiology of drug resistance has typically been laborious to accurately quantify in the lab, with assays being limited in accuracy and throughput. Here we present a scalable method to profile fitness and drug response of genetically distinct P. falciparum strains with well-described sensitivities to several antimalarials. We leverage CRISPR/Cas9 genome-editing and barcode sequencing to track unique barcodes integrated into a nonessential gene (pfrh3). We validate this approach in multiplex competitive growth assays of three strains with distinct geographical origins. Furthermore, we demonstrate that this method can be a powerful approach for tracking artemisinin response as it can identify an artemisinin resistant strain within a mix of multiple parasite lines, suggesting an approach for scaling the laborious ring-stage survival assay across libraries of barcoded parasite lines. Overall, we present a novel high-throughput method for multiplexed competitive growth assays to evaluate parasite fitness and drug response. IMPORTANCE The complex interplay between antimalarial resistance and parasite fitness has important implications for understanding the development and spread of drug resistance alleles and the impact of genetic background on transmission. One limitation with current methodologies to measure parasite fitness is the ability to scale this beyond simple head-to-head competition experiments between a wildtype control line and test line, with a need for a scalable approach that allows tracking of parasite growth in complex mixtures. In our study, we have used CRISPR editing to insert unique DNA barcodes into a safe-harbor genomic locus to tag multiple parasite strains and use next-generation sequencing to read out strain dynamics. We observe inherent fitness differences between the strains, as well as sensitive modulation of responses to challenge with clinically relevant antimalarials, including artemisinin.
Collapse
Affiliation(s)
- Manuela Carrasquilla
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Max Planck Institute for Infection Biology, Berlin, Germany
| | - Ndey F. Drammeh
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Mukul Rawat
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Theo Sanderson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- The Francis Crick Institute, London, United Kingdom
| | - Zenon Zenonos
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Biologics Engineering, Early Oncology, AstraZeneca, Cambridge, United Kingdom
| | - Julian C. Rayner
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Marcus C. S. Lee
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| |
Collapse
|
7
|
Adjalley S, Lee MCS. CRISPR/Cas9 Editing of the Plasmodium falciparum Genome. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2470:221-239. [PMID: 35881349 DOI: 10.1007/978-1-0716-2189-9_17] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The ability to interrogate gene function in Plasmodium parasites has been greatly enhanced by the advent of CRISPR/Cas9 systems. The breadth of genome manipulations ranges from single point mutations to large multigene deletions, however many of the technical considerations for designing CRISPR-based experiments are common to any editing approach. This review will discuss protocols for vector construction and donor design for genome editing P. falciparum, including pitfalls, variables, and validation methods.
Collapse
Affiliation(s)
- Sophie Adjalley
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Micrographia Bio, Translation and Innovation Hub, London, UK
| | | |
Collapse
|
8
|
Wang S, Zeng W, Zhao W, Xiang Z, Zhao H, Yang Q, Li X, Duan M, Li X, Wang X, Si Y, Rosenthal BM, Yang Z. Comparison of in vitro transformation efficiency methods for Plasmodium falciparum. Mol Biochem Parasitol 2021; 247:111432. [PMID: 34826523 DOI: 10.1016/j.molbiopara.2021.111432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/03/2021] [Accepted: 11/19/2021] [Indexed: 11/30/2022]
Abstract
Poor efficiency plagues conventional methods to transfect Plasmodium falciparum with genetic modifications, impeding research aimed at limiting the damage wrought by this agent of severe malaria. Here, we sought and documented improvements, using fluoresce imaging, cell sorting, and drug selection as means to measure efficiency. Through the transfection of EGFP plasmid, the transfection efficiency of the three methods used in this study was as high as 10-3. A method that pre-loaded uninfected erythrocytes with plasmids using the Bio-Rad Gene Pulser Xcell achieved the highest efficiency (0.48%±0.06%), twice the efficiency of a method using nuclear transfection of ring stages employing the 4D-NucleofectorTM X Kit L. We also evaluated an approach using the Nucleofactor system to transform schizont stages. We considered efficiency and the time required to complete drug screening experiments when evaluating transfection methods. Fluorescence measurements confirmed greater efficiencies for the Pre-load method (52.4% vs. 25%; P < 0.0001), but the Nuc-Ring method required less time to complete drug selection experiments following CRISPR/Cas9 editing. These data should benefit future studies seeking to remove or modify genes of P. falciparum.
Collapse
Affiliation(s)
- Siqi Wang
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, Yunnan Province 650500, China; National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology (National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention), Shanghai, 200025, China
| | - Weilin Zeng
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, Yunnan Province 650500, China
| | - Wei Zhao
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, Yunnan Province 650500, China
| | - Zheng Xiang
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, Yunnan Province 650500, China
| | - Hui Zhao
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, Yunnan Province 650500, China
| | - Qi Yang
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, Yunnan Province 650500, China
| | - Xinxin Li
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, Yunnan Province 650500, China
| | - Mengxi Duan
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, Yunnan Province 650500, China
| | - Xiaosong Li
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, Yunnan Province 650500, China
| | - Xun Wang
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, Yunnan Province 650500, China
| | - Yu Si
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, Yunnan Province 650500, China
| | - Benjamin M Rosenthal
- Animal Parasitic Disease Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - Zhaoqing Yang
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, Yunnan Province 650500, China.
| |
Collapse
|
9
|
Jonsdottir TK, Gabriela M, Crabb BS, F de Koning-Ward T, Gilson PR. Defining the Essential Exportome of the Malaria Parasite. Trends Parasitol 2021; 37:664-675. [PMID: 33985912 DOI: 10.1016/j.pt.2021.04.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/15/2021] [Accepted: 04/15/2021] [Indexed: 02/06/2023]
Abstract
To survive inside red blood cells (RBCs), malaria parasites export many proteins to alter their host cell's physiological properties. Although most proteins of this exportome are involved in immune avoidance or in the trafficking of exported proteins to the host membrane, about 20% are essential for parasite survival in culture but little is known about their biological functions. Here, we have combined information from large-scale genetic screens and targeted gene-disruption studies to tabulate all currently known Plasmodium falciparum exported proteins according to their likelihood of being essential. We also discuss the essential functional pathways that exported proteins might be involved in to help direct research efforts towards a more comprehensive understanding of host-cell remodelling.
Collapse
Affiliation(s)
- Thorey K Jonsdottir
- Burnet Institute, Melbourne, Victoria 3004, Australia; Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Mikha Gabriela
- Burnet Institute, Melbourne, Victoria 3004, Australia; School of Medicine, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Brendan S Crabb
- Burnet Institute, Melbourne, Victoria 3004, Australia; Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | | | - Paul R Gilson
- Burnet Institute, Melbourne, Victoria 3004, Australia.
| |
Collapse
|