1
|
Glessi C, Polman FA, Hagen CW. Water-assisted purification during electron beam-induced deposition of platinum and gold. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:884-896. [PMID: 39076692 PMCID: PMC11285079 DOI: 10.3762/bjnano.15.73] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/20/2024] [Indexed: 07/31/2024]
Abstract
Direct fabrication of pure metallic nanostructures is one of the main aims of focused electron beam-induced deposition (FEBID). It was recently achieved for gold deposits by the co-injection of a water precursor and the gold precursor Au(tfac)Me2. In this work results are reported, using the same approach, on a different gold precursor, Au(acac)Me2, as well as the frequently used platinum precursor MeCpPtMe3. As a water precursor MgSO4·7H2O was used. The purification during deposition led to a decrease of the carbon-to-gold ratio (in atom %) from 2.8 to 0.5 and a decrease of the carbon-to-platinum ratio (in atom %) from 6-7 to 0.2. The purification was done in a regular scanning electron microscope using commercially available components and chemicals, which paves the way for a broader application of direct etching-assisted FEBID to obtain pure metallic structures.
Collapse
Affiliation(s)
- Cristiano Glessi
- Delft University of Technology, Fac. Applied Sciences, Dept. Imaging Physics, Lorentzweg 1, 2628CJ Delft, Netherlands
| | - Fabian A Polman
- Delft University of Technology, Fac. Applied Sciences, Dept. Imaging Physics, Lorentzweg 1, 2628CJ Delft, Netherlands
| | - Cornelis W Hagen
- Delft University of Technology, Fac. Applied Sciences, Dept. Imaging Physics, Lorentzweg 1, 2628CJ Delft, Netherlands
| |
Collapse
|
2
|
Boeckers H, Chaudhary A, Martinović P, Walker AV, McElwee-White L, Swiderek P. Electron-induced deposition using Fe(CO) 4MA and Fe(CO) 5 - effect of MA ligand and process conditions. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:500-516. [PMID: 38745584 PMCID: PMC11092064 DOI: 10.3762/bjnano.15.45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/18/2024] [Indexed: 05/16/2024]
Abstract
The electron-induced decomposition of Fe(CO)4MA (MA = methyl acrylate), which is a potential new precursor for focused electron beam-induced deposition (FEBID), was investigated by surface science experiments under UHV conditions. Auger electron spectroscopy was used to monitor deposit formation. The comparison between Fe(CO)4MA and Fe(CO)5 revealed the effect of the modified ligand architecture on the deposit formation in electron irradiation experiments that mimic FEBID and cryo-FEBID processes. Electron-stimulated desorption and post-irradiation thermal desorption spectrometry were used to obtain insight into the fate of the ligands upon electron irradiation. As a key finding, the deposits obtained from Fe(CO)4MA and Fe(CO)5 were surprisingly similar, and the relative amount of carbon in deposits prepared from Fe(CO)4MA was considerably less than the amount of carbon in the MA ligand. This demonstrates that electron irradiation efficiently cleaves the neutral MA ligand from the precursor. In addition to deposit formation by electron irradiation, the thermal decomposition of Fe(CO)4MA and Fe(CO)5 on an Fe seed layer prepared by EBID was compared. While Fe(CO)5 sustains autocatalytic growth of the deposit, the MA ligand hinders the thermal decomposition in the case of Fe(CO)4MA. The heteroleptic precursor Fe(CO)4MA, thus, offers the possibility to suppress contributions of thermal reactions, which can compromise control over the deposit shape and size in FEBID processes.
Collapse
Affiliation(s)
- Hannah Boeckers
- Institute for Applied and Physical Chemistry (IAPC), Faculty 2 (Chemistry/Biology), University of Bremen, Leobener Str. 5, 28359 Bremen, Germany
| | - Atul Chaudhary
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Petra Martinović
- Institute for Applied and Physical Chemistry (IAPC), Faculty 2 (Chemistry/Biology), University of Bremen, Leobener Str. 5, 28359 Bremen, Germany
| | - Amy V Walker
- Department of Materials Science and Engineering RL10, University of Texas at Dallas, 800 W. Campbell Rd, Richardson, Texas 75080, United States
| | - Lisa McElwee-White
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Petra Swiderek
- Institute for Applied and Physical Chemistry (IAPC), Faculty 2 (Chemistry/Biology), University of Bremen, Leobener Str. 5, 28359 Bremen, Germany
| |
Collapse
|
3
|
Boeckers H, Swiderek P, Rohdenburg M. Towards Improved Humidity Sensing Nanomaterials via Combined Electron and NH 3 Treatment of Carbon-Rich FEBID Deposits. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4455. [PMID: 36558308 PMCID: PMC9785463 DOI: 10.3390/nano12244455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Focused Electron Beam Induced Deposition (FEBID) is a unique tool to produce nanoscale materials. The resulting deposits can be used, for instance, as humidity or strain sensors. The humidity sensing concept relies on the fact that FEBID using organometallic precursors often yields deposits which consist of metal nanoparticles embedded in a carbonaceous matrix. The electrical conductivity of such materials is altered in the presence of polar molecules such as water. Herein, we provide evidence that the interaction with water can be enhanced by incorporating nitrogen in the deposit through post-deposition electron irradiation in presence of ammonia (NH3). This opens the perspective to improve and tune the properties of humidity sensors fabricated by FEBID. As a proof-of-concept experiment, we have prepared carbonaceous deposits by electron irradiation of adsorbed layers of three different precursors, namely, the aliphatic hydrocarbon n-pentane, a simple alkene (2-methyl-2-butene), and the potential Ru FEBID precursor bis(ethylcyclopentadienyl)ruthenium(II). In a subsequent processing step, we incorporated C-N bonds in the deposit by electron irradiation of adsorbed NH3. To test the resulting material with respect to its potential humidity sensing capabilities, we condensed sub-monolayer quantities of water (H2O) on the deposit and evaluated their thermal desorption behavior. The results confirm that the desorption temperature of H2O decisively depends on the degree of N incorporation into the carbonaceous residue which, in turn, depends on the chemical nature of the precursor used for deposition of the carbonaceous layer. We thus anticipate that the sensitivity of a FEBID-based humidity sensor can be tuned by a precisely timed post-deposition electron and NH3 processing step.
Collapse
Affiliation(s)
- Hannah Boeckers
- Institute for Applied and Physical Chemistry, University of Bremen, Leobener Str. 5, 28359 Bremen, Germany
| | - Petra Swiderek
- Institute for Applied and Physical Chemistry, University of Bremen, Leobener Str. 5, 28359 Bremen, Germany
| | - Markus Rohdenburg
- Institute for Applied and Physical Chemistry, University of Bremen, Leobener Str. 5, 28359 Bremen, Germany
- Wilhelm-Ostwald-Institute for Physical and Theoretical Chemistry, Leipzig University, Linnéstr. 2, 04103 Leipzig, Germany
| |
Collapse
|
4
|
Kamali A, Bilgilisoy E, Wolfram A, Gentner TX, Ballmann G, Harder S, Marbach H, Ingólfsson O. On the Electron-Induced Reactions of (CH 3)AuP(CH 3) 3: A Combined UHV Surface Science and Gas-Phase Study. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2727. [PMID: 35957158 PMCID: PMC9370483 DOI: 10.3390/nano12152727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/27/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Focused-electron-beam-induced deposition (FEBID) is a powerful nanopatterning technique where electrons trigger the local dissociation of precursor molecules, leaving a deposit of non-volatile dissociation products. The fabrication of high-purity gold deposits via FEBID has significant potential to expand the scope of this method. For this, gold precursors that are stable under ambient conditions but fragment selectively under electron exposure are essential. Here, we investigated the potential gold precursor (CH3)AuP(CH3)3 using FEBID under ultra-high vacuum (UHV) and spectroscopic characterization of the corresponding metal-containing deposits. For a detailed insight into electron-induced fragmentation, the deposit's composition was compared with the fragmentation pathways of this compound through dissociative ionization (DI) under single-collision conditions using quantum chemical calculations to aid the interpretation of these data. Further comparison was made with a previous high-vacuum (HV) FEBID study of this precursor. The average loss of about 2 carbon and 0.8 phosphor per incident was found in DI, which agreed well with the carbon content of the UHV FEBID deposits. However, the UHV deposits were found to be as good as free of phosphor, indicating that the trimethyl phosphate is a good leaving group. Differently, the HV FEBID experiments showed significant phosphor content in the deposits.
Collapse
Affiliation(s)
- Ali Kamali
- Department of Chemistry and Science Institute, University of Iceland, Dunhagi 3, 107 Reykjavik, Iceland
| | - Elif Bilgilisoy
- Physikalische Chemie II, Friedrich-Alexander Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Alexander Wolfram
- Physikalische Chemie II, Friedrich-Alexander Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Thomas Xaver Gentner
- Inorganic and Organometallic Chemistry, Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Gerd Ballmann
- Inorganic and Organometallic Chemistry, Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Sjoerd Harder
- Inorganic and Organometallic Chemistry, Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Hubertus Marbach
- Physikalische Chemie II, Friedrich-Alexander Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
- Carl Zeiss SMT GmbH, 64380 Roßdorf, Germany
| | - Oddur Ingólfsson
- Department of Chemistry and Science Institute, University of Iceland, Dunhagi 3, 107 Reykjavik, Iceland
| |
Collapse
|
5
|
Jurczyk J, Pillatsch L, Berger L, Priebe A, Madajska K, Kapusta C, Szymańska IB, Michler J, Utke I. In Situ Time-of-Flight Mass Spectrometry of Ionic Fragments Induced by Focused Electron Beam Irradiation: Investigation of Electron Driven Surface Chemistry inside an SEM under High Vacuum. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2710. [PMID: 35957140 PMCID: PMC9370286 DOI: 10.3390/nano12152710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/22/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Recent developments in nanoprinting using focused electron beams have created a need to develop analysis methods for the products of electron-induced fragmentation of different metalorganic compounds. The original approach used here is termed focused-electron-beam-induced mass spectrometry (FEBiMS). FEBiMS enables the investigation of the fragmentation of electron-sensitive materials during irradiation within the typical primary electron beam energy range of a scanning electron microscope (0.5 to 30 keV) and high vacuum range. The method combines a typical scanning electron microscope with an ion-extractor-coupled mass spectrometer setup collecting the charged fragments generated by the focused electron beam when impinging on the substrate material. The FEBiMS of fragments obtained during 10 keV electron irradiation of grains of silver and copper carboxylates and shows that the carboxylate ligand dissociates into many smaller volatile fragments. Furthermore, in situ FEBiMS was performed on carbonyls of ruthenium (solid) and during electron-beam-induced deposition, using tungsten carbonyl (inserted via a gas injection system). Loss of carbonyl ligands was identified as the main channel of dissociation for electron irradiation of these carbonyl compounds. The presented results clearly indicate that FEBiMS analysis can be expanded to organic, inorganic, and metal organic materials used in resist lithography, ice (cryo-)lithography, and focused-electron-beam-induced deposition and becomes, thus, a valuable versatile analysis tool to study both fundamental and process parameters in these nanotechnology fields.
Collapse
Affiliation(s)
- Jakub Jurczyk
- Laboratory for Mechanics of Materials and Nanostructures, Empa-Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkerstrasse 39, CH-3602 Thun, Switzerland
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology Krakow, Al. Mickiewicza 30, 30-059 Kraków, Poland
| | - Lex Pillatsch
- TOFWERK AG, Schorenstrasse 39, CH-3645 Thun, Switzerland
| | - Luisa Berger
- Laboratory for Mechanics of Materials and Nanostructures, Empa-Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkerstrasse 39, CH-3602 Thun, Switzerland
| | - Agnieszka Priebe
- Laboratory for Mechanics of Materials and Nanostructures, Empa-Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkerstrasse 39, CH-3602 Thun, Switzerland
| | - Katarzyna Madajska
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Czesław Kapusta
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology Krakow, Al. Mickiewicza 30, 30-059 Kraków, Poland
| | - Iwona B. Szymańska
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Johann Michler
- Laboratory for Mechanics of Materials and Nanostructures, Empa-Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkerstrasse 39, CH-3602 Thun, Switzerland
| | - Ivo Utke
- Laboratory for Mechanics of Materials and Nanostructures, Empa-Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkerstrasse 39, CH-3602 Thun, Switzerland
| |
Collapse
|
6
|
Salvador-Porroche A, Herrer L, Sangiao S, de Teresa JM, Cea P. Low-resistivity Pd nanopatterns created by a direct electron beam irradiation process free of post-treatment steps. NANOTECHNOLOGY 2022; 33:405302. [PMID: 34983030 DOI: 10.1088/1361-6528/ac47cf] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/04/2022] [Indexed: 05/28/2023]
Abstract
The ability to create metallic patterned nanostructures with excellent control of size, shape and spatial orientation is of utmost importance in the construction of next-generation electronic and optical devices as well as in other applications such as (bio)sensors, reactive surfaces for catalysis, etc. Moreover, development of simple, rapid and low-cost fabrication processes of metallic patterned nanostructures is a challenging issue for the incorporation of such devices in real market applications. In this contribution, a direct-write method that results in highly conducting palladium-based nanopatterned structures without the need of applying subsequent curing processes is presented. Spin-coated films of palladium acetate were irradiated with an electron beam to produce palladium nanodeposits (PdNDs) with controlled size, shape and height. The use of different electron doses was investigated and its influence on the PdNDs features determined, namely: (1) thickness of the deposits, (2) atomic percentage of palladium content, (3) oxidation state of palladium in the deposit, (4) morphology of the sample and grain size of the Pd nanocrystals and (5) resistivity. It has been probed that the use of high electron doses, 30000μC cm-2results in the lowest resistivity reported to date for PdNDs, namely 145μΩ cm, which is only one order of magnitude higher than bulk palladium. This result paves the way for development of simplified lithography processes of nanostructured deposits avoiding subsequent post-treatment steps.
Collapse
Affiliation(s)
- Alba Salvador-Porroche
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, E-50009 Zaragoza, Spain
- Departamento de Física de la Materia Condensada, Facultad de Ciencias, Universidad de Zaragoza, E-50009 Zaragoza, Spain
- Laboratorio de Microscopías avanzadas (LMA), Universidad de Zaragoza, E-50018 Zaragoza, Spain
| | - Lucía Herrer
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, E-50009 Zaragoza, Spain
- Laboratorio de Microscopías avanzadas (LMA), Universidad de Zaragoza, E-50018 Zaragoza, Spain
| | - Soraya Sangiao
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, E-50009 Zaragoza, Spain
- Departamento de Física de la Materia Condensada, Facultad de Ciencias, Universidad de Zaragoza, E-50009 Zaragoza, Spain
- Laboratorio de Microscopías avanzadas (LMA), Universidad de Zaragoza, E-50018 Zaragoza, Spain
| | - José María de Teresa
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, E-50009 Zaragoza, Spain
- Departamento de Física de la Materia Condensada, Facultad de Ciencias, Universidad de Zaragoza, E-50009 Zaragoza, Spain
- Laboratorio de Microscopías avanzadas (LMA), Universidad de Zaragoza, E-50018 Zaragoza, Spain
| | - Pilar Cea
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, E-50009 Zaragoza, Spain
- Laboratorio de Microscopías avanzadas (LMA), Universidad de Zaragoza, E-50018 Zaragoza, Spain
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, E-50009 Zaragoza, Spain
| |
Collapse
|
7
|
Utke I, Swiderek P, Höflich K, Madajska K, Jurczyk J, Martinović P, Szymańska I. Coordination and organometallic precursors of group 10 and 11: Focused electron beam induced deposition of metals and insight gained from chemical vapour deposition, atomic layer deposition, and fundamental surface and gas phase studies. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.213851] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
8
|
Shih PY, Tafrishi R, Cipriani M, Hermanns CF, Oster J, Gölzhäuser A, Edinger K, Ingólfsson O. Dissociative ionization and electron beam induced deposition of tetrakis(dimethylamino)silane, a precursor for silicon nitride deposition. Phys Chem Chem Phys 2022; 24:9564-9575. [PMID: 35395668 DOI: 10.1039/d2cp00257d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Motivated by the use of tetrakis(dimethylamino)silane (TKDMAS) to produce silicon nitride-based deposits and its potential as a precursor for Focused Electron Beam Induced Deposition (FEBID), we have studied its reactivity towards low energy electrons in the gas phase and the composition of its deposits created by FEBID. While no negative ion formation was observed through dissociative electron attachment (DEA), significant fragmentation was observed in dissociative ionization (DI). Appearance energies (AEs) of fragments formed in DI were measured and are compared to the respective threshold energies calculated at the DFT and coupled cluster (CC) levels of theory. The average carbon and nitrogen loss per DI incident is calculated and compared to its deposit composition in FEBID. We find that hydrogen transfer reactions and new bond formations play a significant role in the DI of TKDMAS. Surprisingly, a significantly lower nitrogen content is observed in the deposits than is to be expected from the DI experiments. Furthermore, a post treatment protocol using water vapour during electron exposure was developed to remove the unwanted carbon content of FEBIDs created from TKDMAS. For comparison, these were also applied to FEBID deposits formed with tetraethyl orthosilicate (TEOS). In contrast, effective carbon removal was achieved in post treatment of TKDMAS, while his approach only marginally affected the composition of deposits made with TEOS.
Collapse
Affiliation(s)
- Po-Yuan Shih
- Carl Zeiss SMT GmbH, Industriestraße 1, 64380 Roßdorf, Germany.,Faculty of Physics, Bielefeld University, 33615 Bielefeld, Germany
| | - Reza Tafrishi
- Science Institute and Department of Chemistry, University of Iceland, Dunhagi 3, 107 Reykjavik, Iceland.
| | - Maicol Cipriani
- Science Institute and Department of Chemistry, University of Iceland, Dunhagi 3, 107 Reykjavik, Iceland.
| | | | - Jens Oster
- Carl Zeiss SMT GmbH, Industriestraße 1, 64380 Roßdorf, Germany
| | - Armin Gölzhäuser
- Faculty of Physics, Bielefeld University, 33615 Bielefeld, Germany
| | - Klaus Edinger
- Carl Zeiss SMT GmbH, Industriestraße 1, 64380 Roßdorf, Germany
| | - Oddur Ingólfsson
- Science Institute and Department of Chemistry, University of Iceland, Dunhagi 3, 107 Reykjavik, Iceland.
| |
Collapse
|
9
|
Abstract
Electron-induced chemistry is relevant to many processes that occur when ionizing radiation interacts with matter. This includes radiation damage, curing of polymers, and nanofabrication processes but also the formation of complex molecules in molecular ices grown on dust particles in space. High-energy radiation liberates from such materials an abundance of secondary electrons of which most have energies below 20 eV. These electrons efficiently trigger reactions when they attach to molecules or induce electronic excitation and further ionization. This review focuses on the present state of insight regarding the mechanisms of reactions induced by electrons with energies between 0 and 20 eV that lead to formation of larger products in binary ice layers consisting of small molecules (H2O, CO, CH3OH, NH3, CH4, C2H4, CH3CN, C2H6) or some derivatives thereof (C2H5NH2 and (C2H5)2NH, CH2=CHCH3). It summarizes our approach to identify products and quantify their amounts based on thermal desorption spectrometry (TDS) and electron-stimulated desorption (ESD) experiments performed in ultrahigh vacuum (UHV). The overview of the results demonstrates that, although the initial electron-molecule interaction is a non-thermal process, product formation from the resulting reactive species is often governed by subsequent reactions that follow well-known thermal and radical-driven mechanisms of organic chemistry.
Collapse
|
10
|
Yu JC, Abdel-Rahman MK, Fairbrother DH, McElwee-White L. Charged Particle-Induced Surface Reactions of Organometallic Complexes as a Guide to Precursor Design for Electron- and Ion-Induced Deposition of Nanostructures. ACS APPLIED MATERIALS & INTERFACES 2021; 13:48333-48348. [PMID: 34633789 DOI: 10.1021/acsami.1c12327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Focused electron beam-induced deposition (FEBID) and focused ion beam-induced deposition (FIBID) are direct-write fabrication techniques that use focused beams of charged particles (electrons or ions) to create 3D metal-containing nanostructures by decomposing organometallic precursors onto substrates in a low-pressure environment. For many applications, it is important to minimize contamination of these nanostructures by impurities from incomplete ligand dissociation and desorption. This spotlight on applications describes the use of ultra high vacuum surface science studies to obtain mechanistic information on electron- and ion-induced processes in organometallic precursor candidates. The results are used for the mechanism-based design of custom precursors for FEBID and FIBID.
Collapse
Affiliation(s)
- Jo-Chi Yu
- Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Mohammed K Abdel-Rahman
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218-2685, United States
| | - D Howard Fairbrother
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218-2685, United States
| | - Lisa McElwee-White
- Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, United States
| |
Collapse
|
11
|
The Role of Low-Energy Electron Interactions in cis-Pt(CO) 2Br 2 Fragmentation. Int J Mol Sci 2021; 22:ijms22168984. [PMID: 34445690 PMCID: PMC8396611 DOI: 10.3390/ijms22168984] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 01/22/2023] Open
Abstract
Platinum coordination complexes have found wide applications as chemotherapeutic anticancer drugs in synchronous combination with radiation (chemoradiation) as well as precursors in focused electron beam induced deposition (FEBID) for nano-scale fabrication. In both applications, low-energy electrons (LEE) play an important role with regard to the fragmentation pathways. In the former case, the high-energy radiation applied creates an abundance of reactive photo- and secondary electrons that determine the reaction paths of the respective radiation sensitizers. In the latter case, low-energy secondary electrons determine the deposition chemistry. In this contribution, we present a combined experimental and theoretical study on the role of LEE interactions in the fragmentation of the Pt(II) coordination compound cis-PtBr2(CO)2. We discuss our results in conjunction with the widely used cancer therapeutic Pt(II) coordination compound cis-Pt(NH3)2Cl2 (cisplatin) and the carbonyl analog Pt(CO)2Cl2, and we show that efficient CO loss through dissociative electron attachment dominates the reactivity of these carbonyl complexes with low-energy electrons, while halogen loss through DEA dominates the reactivity of cis-Pt(NH3)2Cl2.
Collapse
|
12
|
Mahgoub A, Lu H, Thorman RM, Preradovic K, Jurca T, McElwee-White L, Fairbrother H, Hagen CW. Electron beam-induced deposition of platinum from Pt(CO) 2Cl 2 and Pt(CO) 2Br 2. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:1789-1800. [PMID: 33299738 PMCID: PMC7705861 DOI: 10.3762/bjnano.11.161] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/06/2020] [Indexed: 06/12/2023]
Abstract
Two platinum precursors, Pt(CO)2Cl2 and Pt(CO)2Br2, were designed for focused electron beam-induced deposition (FEBID) with the aim of producing platinum deposits of higher purity than those deposited from commercially available precursors. In this work, we present the first deposition experiments in a scanning electron microscope (SEM), wherein series of pillars were successfully grown from both precursors. The growth of the pillars was studied as a function of the electron dose and compared to deposits grown from the commercially available precursor MeCpPtMe3. The composition of the deposits was determined using energy-dispersive X-ray spectroscopy (EDX) and compared to the composition of deposits from MeCpPtMe3, as well as deposits made in an ultrahigh-vacuum (UHV) environment. A slight increase in metal content and a higher growth rate are achieved in the SEM for deposits from Pt(CO)2Cl2 compared to MeCpPtMe3. However, deposits made from Pt(CO)2Br2 show slightly less metal content and a lower growth rate compared to MeCpPtMe3. With both Pt(CO)2Cl2 and Pt(CO)2Br2, a marked difference in composition was found between deposits made in the SEM and deposits made in UHV. In addition to Pt, the UHV deposits contained halogen species and little or no carbon, while the SEM deposits contained only small amounts of halogen species but high carbon content. Results from this study highlight the effect that deposition conditions can have on the composition of deposits created by FEBID.
Collapse
Affiliation(s)
- Aya Mahgoub
- Delft University of Technology, Fac. Applied Sciences, Dept. Imaging Physics, Lorentzweg 1, 2628CJ Delft, Netherlands
| | - Hang Lu
- Department of Chemistry, University of Florida, Gainesville, Florida, 32611-7200, USA
| | - Rachel M Thorman
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Konstantin Preradovic
- Department of Chemistry and the Renewable Energy and Chemical Transformations Cluster, University of Central Florida, Orlando, Florida, 32816-2366, USA
| | - Titel Jurca
- Department of Chemistry and the Renewable Energy and Chemical Transformations Cluster, University of Central Florida, Orlando, Florida, 32816-2366, USA
| | - Lisa McElwee-White
- Department of Chemistry, University of Florida, Gainesville, Florida, 32611-7200, USA
| | - Howard Fairbrother
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Cornelis W Hagen
- Delft University of Technology, Fac. Applied Sciences, Dept. Imaging Physics, Lorentzweg 1, 2628CJ Delft, Netherlands
| |
Collapse
|
13
|
Rohdenburg M, Fröch JE, Martinović P, Lobo CJ, Swiderek P. Combined Ammonia and Electron Processing of a Carbon-Rich Ruthenium Nanomaterial Fabricated by Electron-Induced Deposition. MICROMACHINES 2020; 11:mi11080769. [PMID: 32806527 PMCID: PMC7466110 DOI: 10.3390/mi11080769] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 01/22/2023]
Abstract
Ammonia (NH3)-assisted purification of deposits fabricated by focused electron beam-induced deposition (FEBID) has recently been proven successful for the removal of halide contaminations. Herein, we demonstrate the impact of combined NH3 and electron processing on FEBID deposits containing hydrocarbon contaminations that stem from anionic cyclopentadienyl-type ligands. For this purpose, we performed FEBID using bis(ethylcyclopentadienyl)ruthenium(II) as the precursor and subjected the resulting deposits to NH3 and electron processing, both in an environmental scanning electron microscope (ESEM) and in a surface science study under ultrahigh vacuum (UHV) conditions. The results provide evidence that nitrogen from NH3 is incorporated into the carbon content of the deposits which results in a covalent nitride material. This approach opens a perspective to combine the promising properties of carbon nitrides with respect to photocatalysis or nanosensing with the unique 3D nanoprinting capabilities of FEBID, enabling access to a novel class of tailored nanodevices.
Collapse
Affiliation(s)
- Markus Rohdenburg
- Institute for Applied and Physical Chemistry (IAPC), Fachbereich 2 (Chemie/Biologie), University of Bremen, Leobener Str. 5 (NW2), 28359 Bremen, Germany;
- Correspondence: (M.R.); (P.S.); Tel.: +49-421-218-63203 (M.R.); +49-421-218-63200 (P.S.)
| | - Johannes E. Fröch
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; (J.E.F.); (C.J.L.)
| | - Petra Martinović
- Institute for Applied and Physical Chemistry (IAPC), Fachbereich 2 (Chemie/Biologie), University of Bremen, Leobener Str. 5 (NW2), 28359 Bremen, Germany;
| | - Charlene J. Lobo
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; (J.E.F.); (C.J.L.)
| | - Petra Swiderek
- Institute for Applied and Physical Chemistry (IAPC), Fachbereich 2 (Chemie/Biologie), University of Bremen, Leobener Str. 5 (NW2), 28359 Bremen, Germany;
- Correspondence: (M.R.); (P.S.); Tel.: +49-421-218-63203 (M.R.); +49-421-218-63200 (P.S.)
| |
Collapse
|