1
|
Zhang W, Hong X, Wu W, Wang C, Johnson D, Gan GN, Lin Y, Gao H. Multi-collimator proton minibeam radiotherapy with joint dose and PVDR optimization. Med Phys 2025; 52:1182-1192. [PMID: 39607058 DOI: 10.1002/mp.17548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND The clinical translation of proton minibeam radiation therapy (pMBRT) presents significant challenges, particularly in developing an optimal treatment planning technique. A uniform target dose is crucial for maximizing anti-tumor efficacy and facilitating the clinical acceptance of pMBRT. However, achieving a high peak-to-valley dose ratio (PVDR) in organs-at-risk (OAR) is essential for sparing normal tissue. This balance becomes particularly difficult when OARs are located distal to the beam entrance or require patient-specific collimators. PURPOSE This work proposes a novel pMBRT treatment planning method that can achieve high PVDR at OAR and uniform dose at target simultaneously, via multi-collimator pMBRT (MC-pMBRT) treatment planning method with joint dose and PVDR optimization (JDPO). METHODS MC-pMBRT utilizes a set of generic and premade multi-slit collimators with different center-to-center distances and does not need patient-specific collimators. The collimator selection per field is OAR-specific and tailored to maximize PVDR in OARs while preserving target dose uniformity. Then, the inverse optimization method JDPO is utilized to jointly optimize target dose uniformity, PVDR, and other dose-volume-histogram based dose objectives, which is solved by iterative convex relaxation optimization algorithm and alternating direction method of multipliers. RESULTS The need and efficacy of MC-pMBRT is demonstrated by comparing the single-collimator (SC) approach with the multi-collimator (MC) approach. While SC degraded either PVDR for OAR or dose uniformity for the target, MC provided a good balance of PVDR and target dose uniformity. The proposed JDPO method is validated in comparison with the dose-only optimization (DO) method for MC-pMBRT, in reference to the conventional (CONV) proton RT (no pMBRT). Compared to CONV, MC-pMBRT (DO and JDPO) preserved target dose uniformity and plan quality, while providing unique PVDR in OAR. Compared to DO, JDPO further improved PVDR via PVDR optimization during treatment planning. CONCLUSION A novel pMBRT treatment planning method called MC-pMBRT is proposed that utilizes a set of generic and premade collimators with joint dose and PVDR optimization algorithm to optimize OAR-specific PVDR and target dose uniformity simultaneously.
Collapse
Affiliation(s)
- Weijie Zhang
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Xue Hong
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Wei Wu
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas, USA
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu, China
| | - Chao Wang
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Daniel Johnson
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Gregory N Gan
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Yuting Lin
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Hao Gao
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
2
|
Gupta K, Perkerson RB, Parsons TM, Angom R, Amerna D, Burgess JD, Ren Y, McLean PJ, Mukhopadhyay D, Vibhute P, Wszolek ZK, Zubair AC, Quiñones-Hinojosa A, Kanekiyo T. Secretome from iPSC-derived MSCs exerts proangiogenic and immunosuppressive effects to alleviate radiation-induced vascular endothelial cell damage. Stem Cell Res Ther 2024; 15:230. [PMID: 39075600 PMCID: PMC11287895 DOI: 10.1186/s13287-024-03847-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/13/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Radiation therapy is the standard of care for central nervous system tumours. Despite the success of radiation therapy in reducing tumour mass, irradiation (IR)-induced vasculopathies and neuroinflammation contribute to late-delayed complications, neurodegeneration, and premature ageing in long-term cancer survivors. Mesenchymal stromal cells (MSCs) are adult stem cells that facilitate tissue integrity, homeostasis, and repair. Here, we investigated the potential of the iPSC-derived MSC (iMSC) secretome in immunomodulation and vasculature repair in response to radiation injury utilizing human cell lines. METHODS We generated iPSC-derived iMSC lines and evaluated the potential of their conditioned media (iMSC CM) to treat IR-induced injuries in human monocytes (THP1) and brain vascular endothelial cells (hCMEC/D3). We further assessed factors in the iMSC secretome, their modulation, and the molecular pathways they elicit. RESULTS Increasing doses of IR disturbed endothelial tube and spheroid formation in hCMEC/D3. When IR-injured hCMEC/D3 (IR ≤ 5 Gy) were treated with iMSC CM, endothelial cell viability, adherence, spheroid compactness, and proangiogenic sprout formation were significantly ameliorated, and IR-induced ROS levels were reduced. iMSC CM augmented tube formation in cocultures of hCMEC/D3 and iMSCs. Consistently, iMSC CM facilitated angiogenesis in a zebrafish model in vivo. Furthermore, iMSC CM suppressed IR-induced NFκB activation, TNF-α release, and ROS production in THP1 cells. Additionally, iMSC CM diminished NF-kB activation in THP1 cells cocultured with irradiated hCMEC/D3, iMSCs, or HMC3 microglial lines. The cytokine array revealed that iMSC CM contains the proangiogenic and immunosuppressive factors MCP1/CCL2, IL6, IL8/CXCL8, ANG (Angiogenin), GROα/CXCL1, and RANTES/CCL5. Common promoter regulatory elements were enriched in TF-binding motifs such as androgen receptor (ANDR) and GATA2. hCMEC/D3 phosphokinome profiling revealed increased expression of pro-survival factors, the PI3K/AKT/mTOR modulator PRAS40 and β-catenin in response to CM. The transcriptome analysis revealed increased expression of GATA2 in iMSCs and the enrichment of pathways involved in RNA metabolism, translation, mitochondrial respiration, DNA damage repair, and neurodevelopment. CONCLUSIONS The iMSC secretome is a comodulated composite of proangiogenic and immunosuppressive factors that has the potential to alleviate radiation-induced vascular endothelial cell damage and immune activation.
Collapse
Affiliation(s)
- Kshama Gupta
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA.
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA.
| | - Ralph B Perkerson
- Center of Regenerative Biotherapeutics, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Tammee M Parsons
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
- Center of Regenerative Biotherapeutics, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Ramacharan Angom
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Danilyn Amerna
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Jeremy D Burgess
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Yingxue Ren
- Department of Quantitative Health Sciences, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Pamela J McLean
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Debabrata Mukhopadhyay
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Prasanna Vibhute
- Department of Radiology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Zbigniew K Wszolek
- Department of Neurology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Abba C Zubair
- Center of Regenerative Biotherapeutics, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Alfredo Quiñones-Hinojosa
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
- Department of Neurosurgery, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Takahisa Kanekiyo
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA.
- Center of Regenerative Biotherapeutics, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA.
| |
Collapse
|
3
|
Longitudinally Heterogeneous Tumor Dose Optimizes Proton Broadbeam, Interlaced Minibeam, and FLASH Therapy. Cancers (Basel) 2022; 14:cancers14205162. [PMID: 36291946 PMCID: PMC9601234 DOI: 10.3390/cancers14205162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/09/2022] [Accepted: 10/17/2022] [Indexed: 11/21/2022] Open
Abstract
Simple Summary The aim of any kind of external radiation therapy is to control a tumor with the highest possible probability of the lowest possible side effects. Here, we study further opportunities of reducing the side effects of proton therapy by applying longitudinally heterogeneous dose distributions in the tumor respecting the delivery of a minimum prescribed dose. In our simulations, the longitudinally heterogeneous dose distributions show a reduced dose in the healthy tissue already in the case of proton broadbeam irradiations, but a much higher (calculated) mean cell survival in the case of proton minibeam irradiation. This demonstrates its potential to substantially reduce side effects at a simultaneously higher tumor control probability, opening new opportunities of easier application when striving for high dose-rate applications of proton beams (>~10 Gy/s), in order to additionally profit from the so-called FLASH effects. Abstract The prerequisite of any radiation therapy modality (X-ray, electron, proton, and heavy ion) is meant to meet at least a minimum prescribed dose at any location in the tumor for the best tumor control. In addition, there is also an upper dose limit within the tumor according to the International Commission on Radiation Units (ICRU) recommendations in order to spare healthy tissue as well as possible. However, healthy tissue may profit from the lower side effects when waving this upper dose limit and allowing a larger heterogeneous dose deposition in the tumor, but maintaining the prescribed minimum dose level, particularly in proton minibeam therapy. Methods: Three different longitudinally heterogeneous proton irradiation modes and a standard spread-out Bragg peak (SOBP) irradiation mode are simulated for their depth-dose curves under the constraint of maintaining a minimum prescribed dose anywhere in the tumor region. Symmetric dose distributions of two opposing directions are overlaid in a 25 cm-thick water phantom containing a 5 cm-thick tumor region. Interlaced planar minibeam dose distributions are compared to those of a broadbeam using the same longitudinal dose profiles. Results and Conclusion: All longitudinally heterogeneous proton irradiation modes show a dose reduction in the healthy tissue compared to the common SOBP mode in the case of broad proton beams. The proton minibeam cases show eventually a much larger mean cell survival and thus a further reduced equivalent uniform dose (EUD) in the healthy tissue than any broadbeam case. In fact, the irradiation mode using only one proton energy from each side shows better sparing capabilities in the healthy tissue than the common spread-out Bragg peak irradiation mode with the option of a better dose fall-off at the tumor edges and an easier technical realization, particularly in view of proton minibeam irradiation at ultra-high dose rates larger than ~10 Gy/s (so-called FLASH irradiation modes).
Collapse
|
4
|
Gupta K, Jones JC, Farias VDA, Mackeyev Y, Singh PK, Quiñones-Hinojosa A, Krishnan S. Identification of Synergistic Drug Combinations to Target KRAS-Driven Chemoradioresistant Cancers Utilizing Tumoroid Models of Colorectal Adenocarcinoma and Recurrent Glioblastoma. Front Oncol 2022; 12:840241. [PMID: 35664781 PMCID: PMC9158132 DOI: 10.3389/fonc.2022.840241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/28/2022] [Indexed: 11/20/2022] Open
Abstract
Treatment resistance is observed in all advanced cancers. Colorectal cancer (CRC) presenting as colorectal adenocarcinoma (COAD) is the second leading cause of cancer deaths worldwide. Multimodality treatment includes surgery, chemotherapy, and targeted therapies with selective utilization of immunotherapy and radiation therapy. Despite the early success of anti-epidermal growth factor receptor (anti-EGFR) therapy, treatment resistance is common and often driven by mutations in APC, KRAS, RAF, and PI3K/mTOR and positive feedback between activated KRAS and WNT effectors. Challenges in the direct targeting of WNT regulators and KRAS have caused alternative actionable targets to gain recent attention. Utilizing an unbiased drug screen, we identified combinatorial targeting of DDR1/BCR-ABL signaling axis with small-molecule inhibitors of EGFR-ERBB2 to be potentially cytotoxic against multicellular spheroids obtained from WNT-activated and KRAS-mutant COAD lines (HCT116, DLD1, and SW480) independent of their KRAS mutation type. Based on the data-driven approach using available patient datasets (The Cancer Genome Atlas (TCGA)), we constructed transcriptomic correlations between gene DDR1, with an expression of genes for EGFR, ERBB2-4, mitogen-activated protein kinase (MAPK) pathway intermediates, BCR, and ABL and genes for cancer stem cell reactivation, cell polarity, and adhesion; we identified a positive association of DDR1 with EGFR, ERBB2, BRAF, SOX9, and VANGL2 in Pan-Cancer. The evaluation of the pathway network using the STRING database and Pathway Commons database revealed DDR1 protein to relay its signaling via adaptor proteins (SHC1, GRB2, and SOS1) and BCR axis to contribute to the KRAS-PI3K-AKT signaling cascade, which was confirmed by Western blotting. We further confirmed the cytotoxic potential of our lead combination involving EGFR/ERBB2 inhibitor (lapatinib) with DDR1/BCR-ABL inhibitor (nilotinib) in radioresistant spheroids of HCT116 (COAD) and, in an additional devastating primary cancer model, glioblastoma (GBM). GBMs overexpress DDR1 and share some common genomic features with COAD like EGFR amplification and WNT activation. Moreover, genetic alterations in genes like NF1 make GBMs have an intrinsically high KRAS activity. We show the combination of nilotinib plus lapatinib to exhibit more potent cytotoxic efficacy than either of the drugs administered alone in tumoroids of patient-derived recurrent GBMs. Collectively, our findings suggest that combinatorial targeting of DDR1/BCR-ABL with EGFR-ERBB2 signaling may offer a therapeutic strategy against stem-like KRAS-driven chemoradioresistant tumors of COAD and GBM, widening the window for its applications in mainstream cancer therapeutics.
Collapse
Affiliation(s)
- Kshama Gupta
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, United States
| | - Jeremy C Jones
- Department of Oncology, Mayo Clinic, Jacksonville, FL, United States
| | | | - Yuri Mackeyev
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, United States
| | - Pankaj K Singh
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, United States
| | - Alfredo Quiñones-Hinojosa
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, United States.,Department of Oncology, Mayo Clinic, Jacksonville, FL, United States.,Department of Neurosurgery, Mayo Clinic, Jacksonville, FL, United States.,Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| | - Sunil Krishnan
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, United States
| |
Collapse
|
5
|
McAuley GA, Lim CJ, Teran AV, Slater JD, Wroe AJ. Monte Carlo evaluation of high-gradient magnetically focused planar proton minibeams in a passive nozzle. Phys Med Biol 2022; 67. [PMID: 35421853 DOI: 10.1088/1361-6560/ac678b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/14/2022] [Indexed: 11/12/2022]
Abstract
Objective. To investigate the potential of using a single quadrupole magnet with a high magnetic field gradient to create planar minibeams suitable for clinical applications of proton minibeam radiation therapy.Approach. We performed Monte Carlo simulations involving single quadrupole Halbach cylinders in a passively scattered nozzle in clinical use for proton therapy. Pencil beams produced by the nozzle of 10-15 mm initial diameters and particle range of ∼10-20 cm in water were focused by magnets with field gradients of 225-350 T m-1and cylinder lengths of 80-110 mm to produce very narrow elongated (planar) beamlets. The corresponding dose distributions were scored in a water phantom. Composite minibeam dose distributions composed from three beamlets were created by laterally shifting copies of the single beamlet distribution to either side of a central beamlet. Modulated beamlets (with 18-30 mm nominal central SOBP) and corresponding composite dose distributions were created in a similar manner. Collimated minibeams were also compared with beams focused using one magnet/particle range combination.Main results. The focusing magnets produced planar beamlets with minimum lateral FWHM of ∼1.1-1.6 mm. Dose distributions composed from three unmodulated beamlets showed a high degree of proximal spatial fractionation and a homogeneous target dose. Maximal peak-to-valley dose ratios (PVDR) for the unmodulated beams ranged from 32 to 324, and composite modulated beam showed maximal PVDR ranging from 32 to 102 and SOBPs with good target dose coverage.Significance.Advantages of the high-gradient magnets include the ability to focus beams with phase space parameters that reflect beams in operation today, and post-waist particle divergence allowing larger beamlet separations and thus larger PVDR. Our results suggest that high gradient quadrupole magnets could be useful to focus beams of moderate emittance in clinical proton therapy.
Collapse
Affiliation(s)
- Grant A McAuley
- Department of Radiation Medicine, Loma Linda University, Loma Linda CA, United States of America
| | - Crystal J Lim
- School of Medicine, Loma Linda University, Loma Linda, CA United States of America
| | - Anthony V Teran
- Department of Radiation Medicine, Loma Linda University, Loma Linda CA, United States of America.,Orange County CyberKnife and Radiation Oncology Center, Fountain Valley, CA, United States of America
| | - Jerry D Slater
- Department of Radiation Medicine, Loma Linda University, Loma Linda CA, United States of America
| | - Andrew J Wroe
- School of Medicine, Loma Linda University, Loma Linda, CA United States of America.,Department of Radiation Oncology, Miami Cancer Institute, Miami, FL, United States of America.,Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, United States of America
| |
Collapse
|
6
|
Eley JG, Haga CW, Keller A, Lazenby EM, Raver C, Rusek A, Dilmanian FA, Krishnan S, Waddell J. Heavy Ion Minibeam Therapy: Side Effects in Normal Brain. Cancers (Basel) 2021; 13:cancers13246207. [PMID: 34944825 PMCID: PMC8699126 DOI: 10.3390/cancers13246207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/05/2021] [Accepted: 12/06/2021] [Indexed: 11/16/2022] Open
Abstract
The purpose of this work was to investigate whether minibeam therapy with heavy ions might offer improvements of the therapeutic ratio for the treatment of human brain cancers. To assess neurotoxicity, we irradiated normal juvenile rats using 120 MeV lithium-7 ions at an absorbed integral dose of 20 Gy. Beams were configured either as a solid parallel circular beam or as an array of planar parallel minibeams having 300-micron width and 1-mm center-to-center spacing within a circular array. We followed animals for 6 months after treatment and utilized behavioral testing and immunohistochemical studies to investigate the resulting cognitive impairment and chronic pathologic changes. We found both solid-beam therapy and minibeam therapy to result in cognitive impairment compared with sham controls, with no apparent reduction in neurotoxicity using heavy ion minibeams instead of solid beams under the conditions of this study.
Collapse
Affiliation(s)
- John G. Eley
- Department of Radiation Oncology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA;
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
- Correspondence:
| | - Catherine W. Haga
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Asaf Keller
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.K.); (C.R.)
| | - Ellis M. Lazenby
- Department of Radiation Oncology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA;
| | - Charles Raver
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.K.); (C.R.)
| | - Adam Rusek
- Brookhaven National Laboratory, Upton, NY 11973, USA;
- NASA Space Radiation Laboratory, Upton, NY 11973, USA
| | - Farrokh Avraham Dilmanian
- Health Sciences Center, Departments of Radiation Oncology, Radiology, and Neurology, Stony Brook University, Stony Brook, NY 11794, USA;
| | - Sunil Krishnan
- Mayo Clinic Cancer Center, Department of Radiation Oncology, Jacksonville, FL 32224, USA;
| | - Jaylyn Waddell
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| |
Collapse
|