1
|
Manna S, Das K, Halder S. Hydrogen Bond Donor-Catalyzed One-Pot Transformations of 2,2-Disubstituted Epoxides: Synthesis of Functionalized Nitrile-Rich Derivatives. J Org Chem 2024. [PMID: 39686886 DOI: 10.1021/acs.joc.4c02111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
A practically intriguing catalytic domino methodology has been developed for the synthesis of highly functionalized pyran and ethene-1,1,2-tricarbonitrile derivatives in a single-pot operation. The gem-dicyano olefins and the corresponding epoxide were taken as the reactive partners in the presence of a hydrogen bond donor (HBD)-catalyzed condition. The reaction was found to be highly efficient in terms of the formation of sequential C-C and O-C bonds along with an exceptional CSp2-CSp coupling step through a metal-free organocatalytic pathway. This strategy has been further utilized on ester-substituted epoxides, although the results differ from those with gem-dicyano epoxides. The process remains versatile and effective across a wide range of substrates. This catalytic protocol has been proven to be very generalized with varieties of substrate scope. A low catalyst loading, ambient reaction conditions, and satisfactory yields of all of the products are the vital features of this approach. Moreover, the overall atom-economic outcome along with the synergistic reactivity pattern between the activated epoxide and the malononitrile derivatives is also very significant to address the originality of this process. Spectroscopic analysis is utilized to validate the mechanistic interpretation.
Collapse
Affiliation(s)
- Sibasish Manna
- Laboratory of Organo Catalysis and Synthesis, Department of Chemistry, Visvesvaraya National Institute of Technology (VNIT), Nagpur, Maharashtra 440010, India
| | - Koushik Das
- Laboratory of Organo Catalysis and Synthesis, Department of Chemistry, Visvesvaraya National Institute of Technology (VNIT), Nagpur, Maharashtra 440010, India
| | - Sandipan Halder
- Laboratory of Organo Catalysis and Synthesis, Department of Chemistry, Visvesvaraya National Institute of Technology (VNIT), Nagpur, Maharashtra 440010, India
| |
Collapse
|
2
|
Wu CY, Chen XL, Yang DS, Tang YX, Wang LS, Du YD, Wu YD, Wu AX. Difluorocarbene-Enabled Trifluoromethylation and Cyclization for the Synthesis of 3-(Trifluoromethyl)-4 H-pyrans. Org Lett 2024; 26:8589-8593. [PMID: 39329447 DOI: 10.1021/acs.orglett.4c03266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
A three-component annulation reaction and trifluoromethylation for the construction of 3-(trifluoromethyl)-4H-pyrans using β-CF3-1,3-enynes, BrCF2CO2Et, and sulfoxonium ylides as readily available substrates has been developed. This metal-free process involves two C-F bond cleavages of β-CF3-1,3-enynes and a CF3 group generated in situ from BrCF2CO2Et. This method is applicable to the late-stage modification of pharmaceutically active molecules.
Collapse
Affiliation(s)
- Chun-Yan Wu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, China
| | - Xiang-Long Chen
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, China
| | - Dong-Sheng Yang
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, China
| | - Yong-Xing Tang
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, China
| | - Li-Sheng Wang
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, China
| | - Yong-Dong Du
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, China
| | - Yan-Dong Wu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, China
| | - An-Xin Wu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
3
|
Fajer AN, Al-Bahrani HA, Kadhum AAH, Kazemi M. Synthesis of pyrano-pyrimidines: recent advances in catalysis by magnetically recoverable nanocatalysts. Mol Divers 2024; 28:3523-3555. [PMID: 38066350 DOI: 10.1007/s11030-023-10751-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/16/2023] [Indexed: 12/05/2024]
Abstract
The widespread use of catalysts in chemistry in the current century, especially in multicomponent reactions, has led researchers to design catalysts with high catalytic power and which can be recycled. In recent years, most scientists and researchers of chemical science have become interested in magnetic nanocatalysts and used them to perform chemical reactions. Due to the magnetic property of this nanocatalyst, it can be separated and collected from the reaction mixture by a magnet after the reaction is complete and reused. Pyrano-pyrimidines are a group of heterocyclic compounds and important pharmaceutical compounds. Pyrano-pyrimidine derivatives are of great interest due to the wide role they play in biological activities. During the past years, various methods for the synthesis of pyrano-pyrimidines based on the use of magnetic nanocatalysts have been reported. In this review article, for the first time, we would like to focus on the reported non-magnetic materials as magnetically recoverable nanocatalysts for the synthesis of pyrano-pyrimidine derivatives. Considering the wonderful features of magnetic nanocatalysts such as simple separation and preparation, high catalytic activity and stability, we expect more articles on the synthesis of heterocycles using this type of catalyst to be published in the near future.
Collapse
Affiliation(s)
- Ali Noory Fajer
- Department Chemistry, College of Education, University of Al-Qadisiyah, Al Diwaniyah, Iraq.
| | - Hussein Ali Al-Bahrani
- Department of Chemistry Collage of Education for Pure Science, University of Karbala, Karbala, Iraq
| | | | - Mosstafa Kazemi
- Young Researchers and Elite Club, Tehran Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
4
|
Hosseinchi Qareaghaj O, Ghaffarzadeh M, Azizi N. Ultrafast and efficient continuous flow organic synthesis with a modified extruder-grinder system. Sci Rep 2024; 14:9671. [PMID: 38671008 PMCID: PMC11053142 DOI: 10.1038/s41598-024-59567-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
The study introduces a groundbreaking continuous system that combines an extruder and grinder to enable catalyst-free and solvent-free reactions under mild conditions. This temperature-controlled system facilitates the synthesis of highly functionalized chromenes, which have valuable applications in generating combinatorial libraries and complex target molecules. The newly developed mill extruder machine offers several advantages for industrial production on a large scale. It effectively reduces waste, saves energy, and enhances time efficiency. This system represents a significant advancement in the field, providing a new strategy for one-pot synthesis of various types of highly functionalized spirooxindoles and chromenes. Remarkably, these reactions can be accomplished within a short timeframe of 2-10 min, yielding impressive results of 75-98%. The results demonstrate superior performance compared to traditional reaction methods, making it an appealing tool and hotspot area of research in green chemistry.
Collapse
Affiliation(s)
| | - Mohammad Ghaffarzadeh
- Chemistry and Chemical Engineering Research Center of Iran, P.O. Box 14335-186, Tehran, Iran
| | - Najmedin Azizi
- Chemistry and Chemical Engineering Research Center of Iran, P.O. Box 14335-186, Tehran, Iran.
| |
Collapse
|
5
|
Javahershenas R, Nikzat S. Recent developments using malononitrile in ultrasound-assisted multicomponent synthesis of heterocycles. ULTRASONICS SONOCHEMISTRY 2024; 102:106741. [PMID: 38176128 PMCID: PMC10793181 DOI: 10.1016/j.ultsonch.2023.106741] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 01/06/2024]
Abstract
Ultrasonic irradiation serves as a vigorous and environmentally sustainable approach for augmenting multicomponent reactions (MCRs), offering benefits such as thermal enhancement, agitation, and activation, among others. Malononitrile emerges as a versatile reagent in this context, participating in a myriad of MCRs to produce structurally diverse heterocyclic frameworks. This review encapsulates the critical role of malononitrile in the sonochemical multicomponent synthesis of these heterocyclic structures. The paper further delves into the biochemical and pharmacological implications of these heterocycles, elucidating their reaction mechanisms as well as delineating the method's scope and limitations. We furnish an overview of the merits and challenges inherent to this synthetic approach and offer insights for potential avenues in future research.
Collapse
Affiliation(s)
- Ramin Javahershenas
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran.
| | - Sahand Nikzat
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada.
| |
Collapse
|
6
|
Tamaddon F, Maddah-Roodan S. Advanced Guareschi-Thorpe synthesis of pyridines in green buffer, and pH-controlled aqueous medium with ammonium carbonate. RSC Adv 2023; 13:24846-24853. [PMID: 37608967 PMCID: PMC10440631 DOI: 10.1039/d3ra04590k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/14/2023] [Indexed: 08/24/2023] Open
Abstract
Hydroxy-cyanopyridines are easily synthesized via an advanced version of the Guareschi-Thorpe reaction by either three-component condensation of alkyl cyanoacetate or cyanoacetamide with 1,3-dicarbonyls and ammonium carbonate in an aqueous medium. Reactions proceed productively to give the desired products in high yields. Simple mechanistic monitoring showed the role of (NH4)2CO3 as both a nitrogen source for the pyridine ring and the reaction promoter. This new multicomponent approach for pyridine synthesis is inexpensive, user-friendly, and eco-friendly, while green buffer conditions, versatility, precipitation of products in the reaction medium, and simple work-up are extra advantages.
Collapse
Affiliation(s)
- Fatemeh Tamaddon
- Department of Chemistry, Faculty of Science, Yazd University Yazd 89195-741 Iran
| | | |
Collapse
|
7
|
Zamisa SJ, Adeleke AA, Devnarain N, Rhman MA, Owira PMO, Omondi B. The link between relative stability constant of DNA- and BSA-chromenopyrimidine complexes and cytotoxicity towards human breast cancer cells (MCF-7). RSC Adv 2023; 13:21820-21837. [PMID: 37475760 PMCID: PMC10354499 DOI: 10.1039/d3ra01741a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/11/2023] [Indexed: 07/22/2023] Open
Abstract
In this study, we synthesized and characterized ten chromenopyrimidine derivatives using analytical and spectroscopic methods. Studies on DNA and albumin binding affinity, as well as cytotoxicity tests on human breast cancer (MCF-7) cells, of the chromenopyrimidines, were conducted. The natural logarithm of the relative stability constant of DNA- and BSA-chromenopyrimidine complexes [ln(KDNA/KBSA)] was used as a criterion for selecting compounds for cytotoxicity studies. We found that ln(KDNA/KBSA) was inversely related to IC50 values of the compounds in MCF-7 cells. The antiproliferative effects of the compounds were found to induce apoptosis in MCF-7 cells, which is a desired mechanism of cell death. Correlations between the DNA and albumin binding affinities of chromenopyrimidines were established. We propose that this relationship approach can, for a given set of compounds, assist in predicting the cytotoxicity of potential drug candidates towards MCF-7 cells based on their experimentally determined CT-DNA and BSA binding affinities.
Collapse
Affiliation(s)
- Sizwe J Zamisa
- School of Chemistry and Physics, University of KwaZulu-Natal Private Bag X54001 Durban 4000 South Africa
| | - Adesola A Adeleke
- School of Chemistry and Physics, University of KwaZulu-Natal Private Bag X54001 Durban 4000 South Africa
| | - Nikita Devnarain
- Molecular and Clinical Pharmacology Research Laboratory, Department of Pharmacology, Discipline of Pharmaceutical Science, University of KwaZulu-Natal Private Bag X54001 Durban 4000 South Africa
| | - Mahasin Abdel Rhman
- Molecular and Clinical Pharmacology Research Laboratory, Department of Pharmacology, Discipline of Pharmaceutical Science, University of KwaZulu-Natal Private Bag X54001 Durban 4000 South Africa
| | - Peter M O Owira
- Molecular and Clinical Pharmacology Research Laboratory, Department of Pharmacology, Discipline of Pharmaceutical Science, University of KwaZulu-Natal Private Bag X54001 Durban 4000 South Africa
| | - Bernard Omondi
- School of Chemistry and Physics, University of KwaZulu-Natal Private Bag X54001 Durban 4000 South Africa
| |
Collapse
|
8
|
Abd El-Lateef HM, Abdelhamid AA, Khalaf MM, Gouda M, Elkanzi NAA, El-Shamy H, Ali AM. Green Synthesis of Novel Pyridines via One-Pot Multicomponent Reaction and Their Anti-Inflammatory Evaluation. ACS OMEGA 2023; 8:11326-11334. [PMID: 37008112 PMCID: PMC10061656 DOI: 10.1021/acsomega.3c00066] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/24/2023] [Indexed: 06/19/2023]
Abstract
A functional and environmentally green procedure for the design of novel pyridine 5a-h and 7a-d derivatives through two pathways is presented. The first pathway is via a one-pot, four-component reaction of p-formylphenyl-4-toluenesulfonate (1), ethyl cyanoacetate (2), acetophenone derivatives 3a-h or acetyl derivatives 6a-d, and ammonium acetate (4) under microwave irradiation in ethanol. The advantages of this method are an excellent yield (82%-94%), pure products, a short reaction time (2-7 min), and low-cost processing. The second pathway was obtained by the traditional method with treatment of the same mixture under refluxing in ethanol, which afforded the same products, 5a-h and 7a-d, in less yield (71%-88%) and over a longer reaction time (6-9 h). The constructions of the novel compounds were articulated via spectral and elemental analysis. Overall, the compounds have been designed, synthesized, and studied for their in vitro anti-inflammatory activity using diclofenac as a reference drug (5 mg/kg). The most potent four compounds, 5a, 5f, 5g, and 5h, showed promising anti-inflammatory activity.
Collapse
Affiliation(s)
- Hany M. Abd El-Lateef
- Department
of Chemistry, College of Science, King Faisal
University, Al-Ahsa 31982, Saudi Arabia
- Department
of Chemistry, Faculty of Science, Sohag
University, Sohag 82524, Egypt
| | - Antar A. Abdelhamid
- Department
of Chemistry, Faculty of Science, Sohag
University, Sohag 82524, Egypt
- Department
of Chemistry, Faculty of Science, Albaha
University, P.O. Box 1988, Al Baha Saudi Arabia
| | - Mai M. Khalaf
- Department
of Chemistry, College of Science, King Faisal
University, Al-Ahsa 31982, Saudi Arabia
- Department
of Chemistry, Faculty of Science, Sohag
University, Sohag 82524, Egypt
| | - Mohamed Gouda
- Department
of Chemistry, College of Science, King Faisal
University, Al-Ahsa 31982, Saudi Arabia
| | - Nadia. A. A. Elkanzi
- Department
of Chemistry, College of Science, Jouf University, P.O. Box 2014, Sakaka, Saudi Arabia
- Department
of Chemistry, Faculty of Science, Aswan
University, P.O. Box 81528, Aswan, Egypt
| | - Hemdan El-Shamy
- Deanship
of Student Affairs, King Faisal University, P.O. Box 380, Al-Ahsa 31982, Saudi Arabia
| | - Ali M. Ali
- Department
of Chemistry, Faculty of Science, Sohag
University, Sohag 82524, Egypt
| |
Collapse
|
9
|
Borah B, Swain S, Patat M, Kumar B, Prajapat KK, Biswas R, Vasantha R, Chowhan LR. Brønsted acid catalyzed mechanochemical domino multicomponent reactions by employing liquid assisted grindstone chemistry. Sci Rep 2023; 13:1386. [PMID: 36697475 PMCID: PMC9876939 DOI: 10.1038/s41598-023-27948-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/10/2023] [Indexed: 01/27/2023] Open
Abstract
Here, we have demonstrated a metal-free energy-efficient mechanochemical approach for expedient access to a diverse set of 2-amino-3-cyano-aryl/heteroaryl-4H-chromenes, tetrahydrospiro[chromene-3,4'-indoline], 2,2'-aryl/heteroarylmethylene-bis(3-hydroxy-5,5-dimethylcyclohex-2-enone) as well as tetrahydro-1H-xanthen-1-one by employing the reactivity of 5,5-dimethylcyclohexane-1,3-dione/cyclohexane-1,3-dione with TsOH⋅H2O as Brønsted acid catalyst under water-assisted grinding conditions at ambient temperature. The ability to accomplish multiple C-C, C=C, C-O, and C-N bonds from readily available starting materials via a domino multicomponent strategy in the absence of metal-catalyst as well as volatile organic solvents with an immediate reduction in the cost of the transformation without necessitates complex operational procedures, features the significant highlights of this approach. The excellent yield of the products, broad functional group tolerances, easy set-up, column-free, scalable synthesis with ultralow catalyst loading, short reaction time, waste-free, ligand-free, and toxic-free, are other notable advantages of this approach. The greenness and sustainability of the protocol were also established by demonstrating several green metrics parameters.
Collapse
Affiliation(s)
- Biplob Borah
- grid.448759.30000 0004 1764 7951School of Applied Material Sciences, Centre for Applied Chemistry, Sector-30, Central University of Gujarat, Gandhinagar, 382030 India
| | - Sidhartha Swain
- grid.448759.30000 0004 1764 7951School of Applied Material Sciences, Centre for Applied Chemistry, Sector-30, Central University of Gujarat, Gandhinagar, 382030 India
| | - Mihir Patat
- grid.448759.30000 0004 1764 7951School of Applied Material Sciences, Centre for Applied Chemistry, Sector-30, Central University of Gujarat, Gandhinagar, 382030 India
| | - Bhupender Kumar
- grid.448759.30000 0004 1764 7951School of Applied Material Sciences, Centre for Applied Chemistry, Sector-30, Central University of Gujarat, Gandhinagar, 382030 India
| | - Ketan Kumar Prajapat
- grid.448759.30000 0004 1764 7951School of Applied Material Sciences, Centre for Applied Chemistry, Sector-30, Central University of Gujarat, Gandhinagar, 382030 India
| | - Rathindranath Biswas
- grid.428366.d0000 0004 1773 9952Department of Chemistry, Central University of Punjab, Bathinda, 151401 India
| | - R. Vasantha
- grid.448759.30000 0004 1764 7951School of Applied Material Sciences, Centre for Applied Chemistry, Sector-30, Central University of Gujarat, Gandhinagar, 382030 India
| | - L. Raju Chowhan
- grid.448759.30000 0004 1764 7951School of Applied Material Sciences, Centre for Applied Chemistry, Sector-30, Central University of Gujarat, Gandhinagar, 382030 India
| |
Collapse
|
10
|
Zeng Q, Huang X, Liu M, Yu Z, Xiao Y. Synthesis of Trifluoromethylated 4 H-Pyran and 4 H-Thiopyran via Divergent Reaction of β-CF 3-1,3-Enynes with β-Ketothioamides. Org Lett 2022; 24:8186-8191. [DOI: 10.1021/acs.orglett.2c03264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Qin Zeng
- The Public Experiment Center, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, P. R. China
| | - Xinyu Huang
- Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Mingqing Liu
- Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Zongxiang Yu
- Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Yuanjing Xiao
- Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| |
Collapse
|
11
|
Singh A, Singh G, Sharma S, Kaur N, Singh N. Metal‐Free, Biomass‐Derived Nano‐Architectured Carbon Quantum Dots as an Efficient Acid‐Base Bifunctional Catalyst for Facile Synthesis of Benzo[g]chromene and Pyrimidine Analogs. ChemistrySelect 2022. [DOI: 10.1002/slct.202200942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Amanpreet Singh
- Department of Chemistry Indian Institute of Technology Ropar Punjab 140001 India
| | - Gagandeep Singh
- Department of Biomedical Engineering Indian Institute of Technology Ropar Punjab 140001 India
| | - Shilpa Sharma
- Department of Chemistry Indian Institute of Technology Ropar Punjab 140001 India
| | - Navneet Kaur
- Department of Chemistry Panjab University Chandigarh 160014 India
| | - Narinder Singh
- Department of Chemistry Indian Institute of Technology Ropar Punjab 140001 India
| |
Collapse
|
12
|
Decoration of A-Ring of a Lupane-Type Triterpenoid with Different Oxygen and Nitrogen Heterocycles. Molecules 2022; 27:molecules27154904. [PMID: 35956853 PMCID: PMC9370315 DOI: 10.3390/molecules27154904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 11/30/2022] Open
Abstract
Betulinic acid (BA) was used as starting building block to create a library of novel BA-derived compounds containing O- and N-heterocycles. Firstly, BA was converted into methyl betulonate (BoOMe), which was used as intermediate in the developed methodologies. 1,2-Oxazine-fused BoOMe compounds were obtained in 12–25% global yields through a Michael addition of nitromethane to methyl (E)-2-benzylidenebetulonate derivatives, followed by nitro group reduction and intramolecular cyclization. Remarkably, the triterpene acts as a diastereoselective inducer in the conjugate addition of nitromethane, originating only one diastereomer out of four possible ones. Furthermore, other oxygen and nitrogen-containing heterocycles were installed at the A-ring of BoOMe, affording 2-amino-3-cyano-4H-pyran-fused BoOMe, diarylpyridine-fused BoOMe and 1,2,3-triazole–BoOMe compounds, using simple and straightforward synthetic methodologies. Finally, BA was revealed to be a versatile starting material, allowing the creation of a molecular diversification of compounds containing a triterpenic scaffold and O- and N-heterocycles.
Collapse
|
13
|
Yang XC, Hu CF, Zhang PL, Li S, Hu CS, Geng RX, Zhou CH. Coumarin thiazoles as unique structural skeleton of potential antimicrobial agents. Bioorg Chem 2022; 124:105855. [DOI: 10.1016/j.bioorg.2022.105855] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/19/2022] [Accepted: 05/04/2022] [Indexed: 12/12/2022]
|
14
|
Fallah-Mehrjardi M, Shirzadi M, Banitaba SH. A New Basic Ionic Liquid Supported on Magnetite Nanoparticles: An Efficient Phase-Transfer Catalyst for the Green Synthesis of 2-Amino-3-Cyano-4 H-Pyrans. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2020.1830131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Mehdi Fallah-Mehrjardi
- Department of Chemistry, Payame Noor University (PNU), Tehran, Iran
- Research Center of Environmental Chemistry, Payame Noor University, Ardakan, Iran
| | - Mahdieh Shirzadi
- Department of Chemistry, Payame Noor University (PNU), Tehran, Iran
| | - Sayed Hossein Banitaba
- Department of Chemistry, Payame Noor University (PNU), Tehran, Iran
- Research Center of Environmental Chemistry, Payame Noor University, Ardakan, Iran
| |
Collapse
|
15
|
Chitosan-EDTA-Cellulose network as a green, recyclable and multifunctional biopolymeric organocatalyst for the one-pot synthesis of 2-amino-4H-pyran derivatives. Sci Rep 2022; 12:8642. [PMID: 35606381 PMCID: PMC9126885 DOI: 10.1038/s41598-022-10774-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 04/13/2022] [Indexed: 12/17/2022] Open
Abstract
AbstractIn this research, cellulose grafted to chitosan by EDTA (Cs-EDTA-Cell) bio-based material is reported and characterized by a series of various methods and techniques such as FTIR, DRS-UV–Vis, TGA, FESEM, XRD and EDX analysis. In fact, the Cs-EDTA-Cell network is more thermally stable than pristine cellulose or chitosan. There is a plenty of both acidic and basic sites on the surface of this bio-based and biodegradable network, as a multifunctional organocatalyst, to proceed three-component synthesis of 2-amino-4H-pyran derivatives at room temperature in EtOH. The Cs-EDTA-Cell nanocatalyst can be easily recovered from the reaction mixture by using filtration and reused for at least five times without significant decrease in its catalytic activity. In general, the Cs-EDTA-Cell network, as a heterogeneous catalyst, demonstrated excellent catalytic activity in an environmentally-benign solvent to afford desired products in short reaction times and required simple experimental and work-up procedure compared to many protocols using similar catalytic systems.
Collapse
|
16
|
Borah B, Chowhan LR. Ultrasound-assisted transition-metal-free catalysis: a sustainable route towards the synthesis of bioactive heterocycles. RSC Adv 2022; 12:14022-14051. [PMID: 35558846 PMCID: PMC9092113 DOI: 10.1039/d2ra02063g] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/27/2022] [Indexed: 12/13/2022] Open
Abstract
Heterocycles of synthetic and natural origin are a well-established class of compounds representing a broad range of organic molecules that constitute over 60% of drugs and agrochemicals in the market or research pipeline. Considering the vast abundance of these structural motifs, the development of chemical processes providing easy access to novel complex target molecules by introducing environmentally benign conditions with the main focus on improving the cost-effectiveness of the chemical transformation is highly demanding and challenging. Accordingly, sonochemistry appears to be an excellent alternative and a highly feasible environmentally benign energy input that has recently received considerable and steadily increasing interest in organic synthesis. However, the involvement of transition-metal-catalyst(s) in a chemical process often triggers an unintended impact on the greenness or sustainability of the transformation. Consequently, enormous efforts have been devoted to developing metal-free routes for assembling various heterocycles of medicinal interest, particularly under ultrasound irradiation. The present review article aims to demonstrate a brief overview of the current progress accomplished in the ultrasound-assisted synthesis of pharmaceutically relevant diverse heterocycles using transition-metal-free catalysis.
Collapse
Affiliation(s)
- Biplob Borah
- School of Applied Material Sciences, Centre for Applied Chemistry, Central University of Gujarat Gandhinagar-382030 India
| | - L Raju Chowhan
- School of Applied Material Sciences, Centre for Applied Chemistry, Central University of Gujarat Gandhinagar-382030 India
| |
Collapse
|
17
|
An efficient one-pot synthesis of indolyl-4H-chromene derivatives. Chem Heterocycl Compd (N Y) 2022. [DOI: 10.1007/s10593-021-03040-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Pagadala R, Kasi V, Shabalala NG, Jonnalagadda SB. Ultrasound-assisted multicomponent synthesis of heterocycles in water – A review. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103544] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
19
|
Tamilthendral V, Ramesh R, Malecki JG. New ruthenium( ii) catalysts enable the synthesis of 2-amino-4 H-chromenes using primary alcohols via acceptorless dehydrogenative coupling. NEW J CHEM 2022. [DOI: 10.1039/d2nj03268f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Direct access to a diverse range of 2-amino-4H-chromenes was established in excellent yields through a one-pot multicomponent ADC reaction of benzyl alcohols catalysed by p-cymene Ru(ii) complexes under additive/promotor-free conditions.
Collapse
Affiliation(s)
- Veerappan Tamilthendral
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli-620 024, Tamilnadu, India
| | - Rengan Ramesh
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli-620 024, Tamilnadu, India
| | - Jan Grzegorz Malecki
- Department of Crystallography, Institute of Chemistry, University of Silesia, 40-006 Katowice, Poland
| |
Collapse
|
20
|
Demidov MR, Osipov DV, Korol'kov KA, Osyanin VA. Two‐Step Sequence Multicomponent Synthesis/Reductive Rearrangement of 2‐Acyl‐2,3‐dihydrofurans for Modular Assembly of Annulated 4
H
‐Pyrans. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Maxim R. Demidov
- Department of Organic Chemistry Chemical Technological Faculty Samara State Technical University 244 Molodogvardeyskaya St. Samara 443100 Russia
| | - Dmitry V. Osipov
- Department of Organic Chemistry Chemical Technological Faculty Samara State Technical University 244 Molodogvardeyskaya St. Samara 443100 Russia
| | - Konstantin A. Korol'kov
- Department of Organic Chemistry Chemical Technological Faculty Samara State Technical University 244 Molodogvardeyskaya St. Samara 443100 Russia
| | - Vitaly A. Osyanin
- Department of Organic Chemistry Chemical Technological Faculty Samara State Technical University 244 Molodogvardeyskaya St. Samara 443100 Russia
| |
Collapse
|
21
|
Wang J, Zhang PL, Ansari MF, Li S, Zhou CH. Molecular design and preparation of 2-aminothiazole sulfanilamide oximes as membrane active antibacterial agents for drug resistant Acinetobacter baumannii. Bioorg Chem 2021; 113:105039. [PMID: 34091291 DOI: 10.1016/j.bioorg.2021.105039] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/18/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023]
Abstract
A series of 2-aminothiazole sulfanilamide oximes were developed as new membrane active antibacterial agents to conquer the microbial infection. Benzoyl derivative 10c was preponderant for the treatment of drug-resistant A. baumannii infection in contrast to norfloxacin and exerted excellent biocompatibility against mammalian cells including erythrocyte and LO2 cell line. Meanwhile, it had ability to eradicate established biofilm to alleviate the resistance burden. Mechanism investigation elucidated that compound 10c was able to disturb the membrane effectively and inhibit lactic dehydrogenase, which led to cytoplasmic content leakage. The cellular redox homeostasis was interfered via the production of reactive oxygen and nitrogen species (RONS), which further contributed to respiratory pathway inactivation and reduction of GSH activity. This work indicated that 2-aminothiazole sulfanilamide oximes could be a promising start for the exploitation of novel antibacterial agents against pathogens.
Collapse
Affiliation(s)
- Juan Wang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Peng-Li Zhang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Mohammad Fawad Ansari
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Shuo Li
- School of Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China.
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
22
|
Saranya S, Radhika S, Afsina Abdulla CM, Anilkumar G. Ultrasound irradiation in heterocycle synthesis: An overview. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Salim Saranya
- School of Chemical Sciences Mahatma Gandhi University Kottayam Kerala India
| | - Sankaran Radhika
- School of Chemical Sciences Mahatma Gandhi University Kottayam Kerala India
| | | | - Gopinathan Anilkumar
- School of Chemical Sciences Mahatma Gandhi University Kottayam Kerala India
- Advanced Molecular Materials Research Centre (AMMRC) Mahatma Gandhi University Kottayam Kerala India
- Institute for Integrated Programmes and Research in Basic Sciences (IIRBS) Mahatma Gandhi University Kottayam Kerala India
| |
Collapse
|
23
|
C. Malakar C, Singh V, Kumar V, Singh D, Gujjarappa R. Efficient Approach towards the Polysubstituted 4H-Pyran Hybrid Quinolone Derivatives and Subsequent Copper-Catalyzed Hydroxylation of Haloarenes. HETEROCYCLES 2021. [DOI: 10.3987/com-20-14383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|