1
|
He S, Ye H, Wang Q, He Y, Liu X, Song J, Zhao C, Hu Y, Luo L, Guo Y, Liu Q. Ginsenoside Rb1 targets to HO-1 to improve sepsis by inhibiting ferroptosis. Free Radic Biol Med 2024; 226:13-28. [PMID: 39510452 DOI: 10.1016/j.freeradbiomed.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/02/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Sepsis remains the leading cause of mortality among Intensive Care Unit (ICU) patients, with its pathogenesis and treatment not yet fully elucidated. Ferroptosis plays a critical role in sepsis, suggesting that ferroptosis-related genes may serve as potential therapeutic targets. This study aims to identify key ferroptosis-related genes in sepsis and explore targeted therapeutics. Through differential expression analysis of the GSE13940 and GSE26440 datasets, heme oxygenase-1 (HO-1) was identified as a hub gene associated with ferroptosis. Additionally, single-cell analysis of the GSE175453 dataset revealed a significant upregulation of HO-1 expression in monocyte lineages during sepsis. The cecal ligation and puncture (CLP) method was employed to induce sepsis in a mouse model, lung and intestinal tissues exhibited typical ferroptosis characteristics, with a significant increase in HO-1 expression. However, treatment with the HO-1 inhibitor zinc protoporphyrin (ZNPP) significantly ameliorated ferroptosis in CLP-induced lung and intestinal tissues, as well as in lipopolysaccharide (LPS)-induced THP-1 cells. Subsequently, molecular docking, surface plasmon resonance (SPR), and microscale thermophoresis (MST) experiments demonstrated that ginsenoside Rb1 specifically targets HO-1, identifying K18A as the key binding residue. Finally, experiments conducted both in vitro and in vivo verified that ginsenoside Rb1 significantly reduces HO-1 expression, inhibits ferroptosis in sepsis-induced lung, and intestinal tissues and THP-1 cells, and improves sepsis-induced pulmonary and intestinal damage. In conclusion, this study identifies HO-1 as a key ferroptosis target in sepsis and suggests ginsenoside Rb1 as a potential novel HO-1 inhibitor for the therapeutic approach of sepsis-induced organ dysfunction.
Collapse
Affiliation(s)
- Shasha He
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China; Beijing Institute of Traditional Chinese Medicine, Beijing, 100010, China; Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, 100010, China
| | - Haoran Ye
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China; Beijing Institute of Traditional Chinese Medicine, Beijing, 100010, China; Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, 100010, China
| | - Qian Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yidong He
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, China
| | - Xin Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China; Beijing Institute of Traditional Chinese Medicine, Beijing, 100010, China
| | - Jin Song
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China; Beijing Institute of Traditional Chinese Medicine, Beijing, 100010, China
| | - Chunxia Zhao
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China; Beijing Institute of Traditional Chinese Medicine, Beijing, 100010, China; Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, 100010, China
| | - Yahui Hu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China; Beijing Institute of Traditional Chinese Medicine, Beijing, 100010, China; Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, 100010, China
| | - Lianxiang Luo
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, China.
| | - Yuhong Guo
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China; Beijing Institute of Traditional Chinese Medicine, Beijing, 100010, China; Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, 100010, China.
| | - Qingquan Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China; Beijing Institute of Traditional Chinese Medicine, Beijing, 100010, China; Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, 100010, China.
| |
Collapse
|
2
|
Fietz SA, Kalusa M, Jergens AE, Sahoo DK, Stewart T, Heilmann RM. Ultrastructural changes in chronic inflammatory enteropathies-a comparison between dogs and humans. Front Cell Dev Biol 2024; 12:1379714. [PMID: 38872928 PMCID: PMC11173093 DOI: 10.3389/fcell.2024.1379714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/24/2024] [Indexed: 06/15/2024] Open
Abstract
Chronic inflammatory enteropathies (CIEs) are an important group of diseases in dogs and involve complex pathogenetic aspects. Endoscopy and histopathology are vital for documenting the disease but are less useful for subclassifying CIEs and predicting the response to treatment. However, healing of the mucosal disease process (deep remission) and ultrastructural evaluation of the mucosa have received little attention in canine CIE. Given that canine CIE shares many similarities with inflammatory bowel diseases (IBDs) in human patients-and presents a good spontaneous disease model for human IBD-this perspective article evaluates the literature on ultrastructural lesions in canine CIE and human IBD and offers future directions for the study of ultrastructural mucosal lesions in canine CIE. Such lesions might have a higher sensitivity of detection than structural changes revealed upon light microscopy and may even precede or remain after the resolution of the clinical signs and histologic lesions.
Collapse
Affiliation(s)
- Simone A. Fietz
- Institute of Anatomy, Histology and Embryology, College of Veterinary Medicine, Leipzig University, Leipzig, Saxony, Germany
| | - Mirjam Kalusa
- Institute of Anatomy, Histology and Embryology, College of Veterinary Medicine, Leipzig University, Leipzig, Saxony, Germany
| | - Albert E. Jergens
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Tracey Stewart
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Romy M. Heilmann
- Department for Small Animals, College of Veterinary Medicine, Leipzig University, Leipzig, Saxony, Germany
| |
Collapse
|
3
|
Oami T, Abtahi S, Shimazui T, Chen CW, Sweat YY, Liang Z, Burd EM, Farris AB, Roland JT, Tsukita S, Ford ML, Turner JR, Coopersmith CM. Claudin-2 upregulation enhances intestinal permeability, immune activation, dysbiosis, and mortality in sepsis. Proc Natl Acad Sci U S A 2024; 121:e2217877121. [PMID: 38412124 PMCID: PMC10927519 DOI: 10.1073/pnas.2217877121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/16/2024] [Indexed: 02/29/2024] Open
Abstract
Intestinal epithelial expression of the tight junction protein claudin-2, which forms paracellular cation and water channels, is precisely regulated during development and in disease. Here, we show that small intestinal epithelial claudin-2 expression is selectively upregulated in septic patients. Similar changes occurred in septic mice, where claudin-2 upregulation coincided with increased flux across the paracellular pore pathway. In order to define the significance of these changes, sepsis was induced in claudin-2 knockout (KO) and wild-type (WT) mice. Sepsis-induced increases in pore pathway permeability were prevented by claudin-2 KO. Moreover, claudin-2 deletion reduced interleukin-17 production and T cell activation and limited intestinal damage. These effects were associated with reduced numbers of neutrophils, macrophages, dendritic cells, and bacteria within the peritoneal fluid of septic claudin-2 KO mice. Most strikingly, claudin-2 deletion dramatically enhanced survival in sepsis. Finally, the microbial changes induced by sepsis were less pathogenic in claudin-2 KO mice as survival of healthy WT mice injected with cecal slurry collected from WT mice 24 h after sepsis was far worse than that of healthy WT mice injected with cecal slurry collected from claudin-2 KO mice 24 h after sepsis. Claudin-2 upregulation and increased pore pathway permeability are, therefore, key intermediates that contribute to development of dysbiosis, intestinal damage, inflammation, ineffective pathogen control, and increased mortality in sepsis. The striking impact of claudin-2 deletion on progression of the lethal cascade activated during sepsis suggests that claudin-2 may be an attractive therapeutic target in septic patients.
Collapse
Affiliation(s)
- Takehiko Oami
- Department of Surgery and Emory Critical Care Center, Emory University School of Medicine, Atlanta, GA30322
- Department of Emergency and Critical Care Medicine, Chiba University Graduate School of Medicine, Chiba260-8670, Japan
| | - Shabnam Abtahi
- Laboratory of Mucosal Pathobiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA02115
| | - Takashi Shimazui
- Department of Surgery and Emory Critical Care Center, Emory University School of Medicine, Atlanta, GA30322
- Department of Emergency and Critical Care Medicine, Chiba University Graduate School of Medicine, Chiba260-8670, Japan
| | - Ching-Wen Chen
- Department of Surgery and Emory Critical Care Center, Emory University School of Medicine, Atlanta, GA30322
| | - Yan Y. Sweat
- Laboratory of Mucosal Pathobiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA02115
| | - Zhe Liang
- Department of Surgery and Emory Critical Care Center, Emory University School of Medicine, Atlanta, GA30322
| | - Eileen M. Burd
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA30322
| | - Alton B. Farris
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA30322
| | - Joe T. Roland
- Epithelial Biology Center, Department of Surgery, Vanderbilt University Medical Center, Nashville, TN37240
| | - Sachiko Tsukita
- Advanced Comprehensive Research Organization, Teikyo University, Tokyo173-0003, Japan
| | - Mandy L. Ford
- Department of Surgery and Emory Transplant Center, Emory University School of Medicine, Atlanta, GA30322
| | - Jerrold R. Turner
- Laboratory of Mucosal Pathobiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA02115
| | - Craig M. Coopersmith
- Department of Surgery and Emory Critical Care Center, Emory University School of Medicine, Atlanta, GA30322
| |
Collapse
|
4
|
Li Z, Xu Y, Lu S, Gao Y, Deng Y. Bone mesenchymal stem cell extracellular vesicles delivered miR let-7-5p alleviate endothelial glycocalyx degradation and leakage via targeting ABL2. Cell Commun Signal 2023; 21:205. [PMID: 37587494 PMCID: PMC10428537 DOI: 10.1186/s12964-023-01229-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/15/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND Endothelial glycocalyx (EG) is an active player and treatment target in inflammatory-related vascular leakage. The bone marrow mesenchymal stem cells (bMSCs) are promising potential treatments for leakage; however, the therapeutic effect and mechanism of bMSC on EG degradation needs to be elucidated. METHODS EG degradation and leakage were evaluated in both lipopolysaccharide (LPS)-induced mice ear vascular leakage model and LPS-stimulated human umbilical vein endothelial cells (HUVECs) model treated with bMSCs. Extracellular vesicles (EVs) were extracted from bMSCs and the containing microRNA profile was analyzed. EV and miR let-7-5p were inhibited to determine their function in the therapeutic process. The ABL2 gene was knockdown in HUVECs to verify its role as a therapeutic target in EG degradation. RESULTS bMSCs treatment could alleviate LPS-induced EG degradation and leakage in vivo and in vitro, whereas EVs/let-7-5p-deficient bMSCs were insufficient to reduce EG degradation. LPS down-regulated the expression of let-7-5p while upregulated endothelial expression of ABL2 in HUVECs and induced EG degradation and leakage. bMSC-EVs uptaken by HUVECs could deliver let-7-5p targeting endothelial ABL2, which suppressed the activation of downstream p38MAPK and IL-6, IL-1β levels, and thus reversed LPS-induced EG degradation and leakage. CONCLUSION bMCSs alleviate LPS-induced EG degradation and leakage through EV delivery of miR let-7-5p targeting endothelial ABL2.
Collapse
Affiliation(s)
- Zhe Li
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160, Pujian Road, Pudong New District, Shanghai, 200120, China
| | - Yuqing Xu
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160, Pujian Road, Pudong New District, Shanghai, 200120, China
| | - Shiyue Lu
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160, Pujian Road, Pudong New District, Shanghai, 200120, China
| | - Yuan Gao
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160, Pujian Road, Pudong New District, Shanghai, 200120, China.
| | - Yuxiao Deng
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160, Pujian Road, Pudong New District, Shanghai, 200120, China.
| |
Collapse
|
5
|
Gut Microbiota Dysbiosis Ameliorates in LNK-Deficient Mouse Models with Obesity-Induced Insulin Resistance Improvement. J Clin Med 2023; 12:jcm12051767. [PMID: 36902554 PMCID: PMC10002478 DOI: 10.3390/jcm12051767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
PURPOSE To investigate the potential role of gut microbiota in obesity-induced insulin resistance (IR). METHODS Four-week-old male C57BL/6 wild-type mice (n = 6) and whole-body SH2 domain-containing adaptor protein (LNK)-deficient in C57BL/6 genetic backgrounds mice (n = 7) were fed with a high-fat diet (HFD, 60% calories from fat) for 16 weeks. The gut microbiota of 13 mice feces samples was analyzed by using a 16 s rRNA sequencing analysis. RESULTS The structure and composition of the gut microbiota community of WT mice were significantly different from those in the LNK-/- group. The abundance of the lipopolysaccharide (LPS)-producing genus Proteobacteria was increased in WT mice, while some short-chain fatty acid (SCFA)-producing genera in WT groups were significantly lower than in LNK-/- groups (p < 0.05). CONCLUSIONS The structure and composition of the intestinal microbiota community of obese WT mice were significantly different from those in the LNK-/- group. The abnormality of the gut microbial structure and composition might interfere with glucolipid metabolism and exacerbate obesity-induced IR by increasing LPS-producing genera while reducing SCFA-producing probiotics.
Collapse
|
6
|
Peng Y, Wei J, Jia X, Luan F, Man M, Ma X, Luo Y, Li Y, Li N, Wang Q, Wang X, Zhou Y, Ji Y, Mu W, Wang J, Wang C, Zhang Q, Yu K, Zhao M, Wang C. Changes in the microbiota in different intestinal segments of mice with sepsis. Front Cell Infect Microbiol 2023; 12:954347. [PMID: 36704101 PMCID: PMC9871835 DOI: 10.3389/fcimb.2022.954347] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Introduction The small intestine, as the main digestion and absorption site of the gastrointestinal tract, is often overlooked in studies, and the overall microbiota does not reflect the makeup of the microbiota in different segments of the intestine. Therefore, we aimed to exclude the influence of routine ICU treatment measures on sepsis patients and observed changes in the diversity and abundance of gut microbiota in different intestinal segments of septic mice. Methods The mice were randomly divided into the CLP6h group and the sham group. The contents of the colon and small intestine of the experimental group and the control group were collected after 6 h. Results After CLP, the number and structure of the gut microbiota in the colon changed most obviously, among which Bacteroidetes had the most significant changes. Akkermansia, D.Firmicutes_bacterium_M10_2, Blautia, Bifidobacterium, Lactobacillus, Candidatus_Arthromitus, and Muribaculaceae were changed in the colon. Lactobacillus, Bifidobacterium, Akkermansia, Blautia, Candidatus_Arthromitus, and Lachnospiraceae_NK4A136_group were changed in the small intestine. Discussion Our experiment found that there were different numbers of unique and common gut microbiota in the small intestine and colon after sepsis, and the gut microbiota of the colon changed more drastically after sepsis than the small intestine. Thus, we should focus on protective gut microbiota and mucin-degrading microbes. We hope that these results will provide help for sepsis treatment in the future.
Collapse
Affiliation(s)
- Yahui Peng
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Jieling Wei
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Xiaonan Jia
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Feiyu Luan
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Mingyin Man
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Xiaohui Ma
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Yinghao Luo
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Yue Li
- Department of Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Nana Li
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Qian Wang
- Department of Critical Care Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, China
| | - Xibo Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Yang Zhou
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Yuanyuan Ji
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Wenjing Mu
- Department of Critical Care Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, China
| | - Jun Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Chunying Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Qianqian Zhang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Kaijiang Yu
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Mingyan Zhao
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Changsong Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
- Department of Critical Care Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
7
|
Pan H, Huo L, Shen W, Dai Z, Bao Y, Ji C, Zhang J. Study on the protective effect of berberine treatment on sepsis based on gut microbiota and metabolomic analysis. Front Nutr 2022; 9:1049106. [PMID: 36601077 PMCID: PMC9806126 DOI: 10.3389/fnut.2022.1049106] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction Sepsis, an infection with multiorgan dysfunction, is a serious burden on human health. Berberine (BBR), a bioactive component, has a protective effect on sepsis and the effect may be related to gut microbiota. However, studies on the role of BBR with gut microbiota in sepsis are lacking. Therefore, this study investigated the ameliorative effects and the underlying mechanisms of BBR on cecal ligature and puncture (CLP) rats. Methods This study has observed the effect of BBR on pathological injury, Inflammation, intestinal barrier function, gut microbiota, and metabolite change in CLP rats by Hematoxylin-eosin staining, enzyme-linked immunosorbent assays, flow cytometry, 16S rDNA, and metabolomics analyses. Results The inhibition effects of BBR treatment on the histological damage of the lung, kidney, and ileum, the interleukin (IL)-1b, IL-6, IL-17A, and monocyte chemokine-1 levels in serum in CLP rats were proved. Also, the BBR inhibited the diamine-oxidase and fluorescein isothiocyanate-dextran 40 levels, suggesting it can improve intestinal barrier function disorders. The cluster of differentiation (CD) 4+, CD8+, and CD25+ Forkhead box protein P3 (Foxp3) + T lymphocytes in splenocytes were up-regulated by BBR, while the IL-17A+CD4+ cell level was decreased. The abundance of gut microbiota in CLP rats was significantly different from that of the sham and BBR treatment rats. The significantly changed metabolites in the serum mainly included carbohydrates, phenols, benzoic acids, alcohols, vitamins et al. Additionally, this study predicted that the biological mechanism of BBR to ameliorate sepsis involves glycolysis-, nucleotide-, and amino acid-related metabolic pathways. Discussion This study proved the strong correlation between the improvement effect of BBR on sepsis and gut microbiota and analyzed by metabolomics that gut microbiota may improve CLP rats through metabolites, providing a scientific basis for BBR to improve sepsis and a new direction for the study of the biological mechanism.
Collapse
Affiliation(s)
- Huibin Pan
- Emergency Intensive Care Unit, The First Affiliated Hospital of Huzhou University, The First People's Hospital of Huzhou, Huzhou, Zhejiang, China
| | - Lixia Huo
- Huzhou Key Laboratory of Translational Medicine, The First Affiliated Hospital of Huzhou University, The First People's Hospital of Huzhou, Huzhou, Zhejiang, China
| | - Weiyun Shen
- Huzhou Key Laboratory of Translational Medicine, The First Affiliated Hospital of Huzhou University, The First People's Hospital of Huzhou, Huzhou, Zhejiang, China
| | - Zhuquan Dai
- Emergency Intensive Care Unit, The First Affiliated Hospital of Huzhou University, The First People's Hospital of Huzhou, Huzhou, Zhejiang, China
| | - Ying Bao
- Department of Surgery, The First Affiliated Hospital of Huzhou University, The First People's Hospital of Huzhou, Huzhou, Zhejiang, China
| | - Chaohui Ji
- Emergency Intensive Care Unit, The First Affiliated Hospital of Huzhou University, The First People's Hospital of Huzhou, Huzhou, Zhejiang, China,*Correspondence: Jie Zhang
| | - Jie Zhang
- Emergency Intensive Care Unit, The First Affiliated Hospital of Huzhou University, The First People's Hospital of Huzhou, Huzhou, Zhejiang, China,Chaohui Ji
| |
Collapse
|
8
|
Cheng B, Du M, He S, Yang L, Wang X, Gao H, Chang H, Gao W, Li Y, Wang Q, Li Y. Inhibition of platelet activation suppresses reactive enteric glia and mitigates intestinal barrier dysfunction during sepsis. Mol Med 2022; 28:137. [PMID: 36401163 PMCID: PMC9673322 DOI: 10.1186/s10020-022-00562-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 10/25/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Intestinal barrier dysfunction, which is associated with reactive enteric glia cells (EGCs), is not only a result of early sepsis but also a cause of multiple organ dysfunction syndrome. Inhibition of platelet activation has been proposed as a potential treatment for septic patients because of its efficacy in ameliorating the organ damage and barrier dysfunction. During platelet activation, CD40L is translocated from α granules to the platelet surface, serving as a biomarker of platelet activation a reliable predictor of sepsis prognosis. Given that more than 95% of the circulating CD40L originate from activated platelets, the present study aimed to investigate if inhibiting platelet activation mitigates intestinal barrier dysfunction is associated with suppressing reactive EGCs and its underlying mechanism. METHODS Cecal ligation and puncture (CLP) was performed to establish the sepsis model. 24 h after CLP, the proportion of activated platelets, the level of sCD40L, the expression of tight-junction proteins, the intestinal barrier function and histological damage of septic mice were analyzed. In vitro, primary cultured EGCs were stimulated by CD40L and LPS for 24 h and EGCs-conditioned medium were collected for Caco-2 cells treatment. The expression of tight-junction proteins and transepithelial electrical resistance of Caco-2 cell were evaluated. RESULTS In vivo, inhibiting platelet activation with cilostazol mitigated the intestinal barrier dysfunction, increased the expression of ZO-1 and occludin and improved the survival rate of septic mice. The efficacy was associated with reduced CD40L+ platelets proportion, decreased sCD40L concentration, and suppressed the activation of EGCs. Comparable results were observed upon treatment with compound 6877002, a blocker of CD40L-CD40-TRAF6 signaling pathway. Also, S-nitrosoglutathione supplement reduced intestinal damage both in vivo and in vitro. In addition, CD40L increased release of TNF-α and IL-1β while suppressed the release of S-nitrosoglutathione from EGCs. These EGCs-conditioned medium reduced the expression of ZO-1 and occludin on Caco-2 cells and their transepithelial electrical resistance, which could be reversed by CD40-siRNA and TRAF6-siRNA transfection on EGCs. CONCLUSIONS The inhibition of platelet activation is related to the suppression of CD40L-CD40-TRAF6 signaling pathway and the reduction of EGCs activation, which promotes intestinal barrier function and survival in sepsis mice. These results might provide a potential therapeutic strategy and a promising target for sepsis.
Collapse
Affiliation(s)
- Bo Cheng
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Mengyu Du
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Shuxuan He
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Lan Yang
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Xi Wang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang China
| | - Hui Gao
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Haiqing Chang
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Wei Gao
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Yan Li
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Qiang Wang
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Yansong Li
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| |
Collapse
|
9
|
Cheng B, Du M, He S, Yang L, Wang X, Gao H, Chang H, Gao W, Li Y, Wang Q, Li Y. Inhibition of platelet activation suppresses reactive enteric glia and mitigates intestinal barrier dysfunction during sepsis. Mol Med 2022; 28:127. [PMID: 36303116 PMCID: PMC9615156 DOI: 10.1186/s10020-022-00556-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 10/12/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Intestinal barrier dysfunction, which is associated with reactive enteric glia cells (EGCs), is not only a result of early sepsis but also a cause of multiple organ dysfunction syndrome. Inhibition of platelet activation has been proposed as a potential treatment for septic patients because of its efficacy in ameliorating the organ damage and barrier dysfunction. During platelet activation, CD40L is translocated from α granules to the platelet surface, serving as a biomarker of platelet activation a reliable predictor of sepsis prognosis. Given that more than 95% of the circulating CD40L originate from activated platelets, the present study aimed to investigate if inhibiting platelet activation mitigates intestinal barrier dysfunction is associated with suppressing reactive EGCs and its underlying mechanism. METHODS Cecal ligation and puncture (CLP) was performed to establish the sepsis model. 24 h after CLP, the proportion of activated platelets, the level of sCD40L, the expression of tight-junction proteins, the intestinal barrier function and histological damage of septic mice were analyzed. In vitro, primary cultured EGCs were stimulated by CD40L and LPS for 24 h and EGCs-conditioned medium were collected for Caco-2 cells treatment. The expression of tight-junction proteins and transepithelial electrical resistance of Caco-2 cell were evaluated. RESULTS In vivo, inhibiting platelet activation with cilostazol mitigated the intestinal barrier dysfunction, increased the expression of ZO-1 and occludin and improved the survival rate of septic mice. The efficacy was associated with reduced CD40L+ platelets proportion, decreased sCD40L concentration, and suppressed the activation of EGCs. Comparable results were observed upon treatment with compound 6,877,002, a blocker of CD40L-CD40-TRAF6 signaling pathway. Also, S-nitrosoglutathione supplement reduced intestinal damage both in vivo and in vitro. In addition, CD40L increased release of TNF-α and IL-1β while suppressed the release of S-nitrosoglutathione from EGCs. These EGCs-conditioned medium reduced the expression of ZO-1 and occludin on Caco-2 cells and their transepithelial electrical resistance, which could be reversed by CD40-siRNA and TRAF6-siRNA transfection on EGCs. CONCLUSIONS The inhibition of platelet activation is related to the suppression of CD40L-CD40-TRAF6 signaling pathway and the reduction of EGCs activation, which promotes intestinal barrier function and survival in sepsis mice. These results might provide a potential therapeutic strategy and a promising target for sepsis.
Collapse
Affiliation(s)
- Bo Cheng
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Mengyu Du
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Shuxuan He
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Lan Yang
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Xi Wang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang China
| | - Hui Gao
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Haiqing Chang
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Wei Gao
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Yan Li
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Qiang Wang
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Yansong Li
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| |
Collapse
|
10
|
Chang Z, Zhang Y, Lin M, Wen S, Lai H, Zhan Y, Zhu X, Huang Z, Zhang X, Liu Z. Improvement of gut-vascular barrier by terlipressin reduces bacterial translocation and remote organ injuries in gut-derived sepsis. Front Pharmacol 2022; 13:1019109. [PMID: 36278213 PMCID: PMC9585222 DOI: 10.3389/fphar.2022.1019109] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/22/2022] [Indexed: 11/21/2022] Open
Abstract
Gut-vascular barrier (GVB) serves as the last barrier to limit the migration of intestinal toxins into the blood circulation. The efficacy of terlipressin (a vasopressin V1 receptor agonist) in reducing GVB and multiple organ damage in gut-derived sepsis is unknown. In this study, we hypothesized that, besides other intestinal barriers, GVB play a key role in gut-derived sepsis and terlipressin improve GVB damage and then reduce bacterial translocation and organ injuries. In vivo, a cecal ligation and puncture mouse model was established. The mice were subjected to examine the damage of GVB determined by intestinal plasmalemma vesicle-associated protein-1(PV-1) and vascular endothelial-cadherin. And the intestinal permeability was assessed by translocation of intestinal bacteria and macromolecules. In vitro, transendothelial electrical resistance (TER) during interleukin (IL)-1β stimulation was measured on endothelial cells with or without small interfering RNA targeting β-catenin (si β-catenin). Terlipressin significantly improved GVB damage and reduced translocation of intestinal macromolecules and bacteria by activating PI3K signaling. Of note, intestinal PV-1 expression was significantly correlated with translocation of macromolecules, and dramatic increase of macromolecules was observed in intestinal tissues whereas fewer macromolecules and bacteria were observed in blood, liver and lung following terlipressin treatment. In vitro, terlipressin restored TER during IL-1β stimulation and si β-catenin transfection blocked the changes delivered by terlipressin. Collectively, terlipressin alleviated GVB damage and subsequent bacterial translocation via blood vessels after sepsis challenge, resulting in reduced distant organ injuries and the responsible mechanisms may involve the activation of PI3K/β-catenin pathway.
Collapse
Affiliation(s)
- Zenan Chang
- Guangdong Clinical Research Center for Critical Care Medicine, Department of Critical Care Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
| | - Yinan Zhang
- Department of Anaesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ming Lin
- Department of Anaesthesiology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
| | - Shihong Wen
- Department of Anaesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hanjin Lai
- Department of Anaesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yaqing Zhan
- Department of Anaesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiufen Zhu
- Guangdong Clinical Research Center for Critical Care Medicine, Department of Critical Care Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhikun Huang
- Guangdong Clinical Research Center for Critical Care Medicine, Department of Critical Care Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xuyu Zhang
- Department of Anaesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Xuyu Zhang, ; Zimeng Liu,
| | - Zimeng Liu
- Guangdong Clinical Research Center for Critical Care Medicine, Department of Critical Care Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Xuyu Zhang, ; Zimeng Liu,
| |
Collapse
|
11
|
Toll-like receptor 4-mediated endoplasmic reticulum stress induces intestinal paneth cell damage in mice following CLP-induced sepsis. Sci Rep 2022; 12:15256. [PMID: 36088483 PMCID: PMC9464222 DOI: 10.1038/s41598-022-19614-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 08/31/2022] [Indexed: 11/14/2022] Open
Abstract
A marked elevation of TLR4 was observed in various organs of septic mice. The mechanism of TLR4 in intestinal epithelial cell damage in sepsis remains unclear. CLP mice models were used to assess the role of TLR4 in intestinal Paneth cell damage by histological, polymerase chain reaction, western-blot analyses. The ileal expression of TLR4 was increased by more than five-fold after CLP. CLP significantly increased 7-day mortality and was associated with a higher murine sepsis score (MSS), closely related with increased TLR4 expression. Histological staining revealed that a reduced number of Paneth cells, accompanied by reduced lysozyme and defensin alpha 5(DEF-5) expression as detected by PCR. Of note, the expression levels of ATF6, XBP1 and CHOP increased in the ileal of the sepsis group. Meanwhile, the uncleaved p90 ATF6 was markedly reduced and cleaved p50 ATF6 was increased in the sepsis group. Intriguingly, The TAK-242 had improved intestinal mucosal injury, reduced the expression of ATF6, XBP1 and CHOP and relieved the cleavage of ATF6. We found that increased the expression level of TLR4 in the ileal of CLP mice promoted the depletion of Paneth cell and reduced LYZ and DEF-5 expression. Furthermore, our findings suggested that TLR4-mediated the hyperactivation of ER stress, via activating the ATF6/CHOP pathway, might be one of the mechanisms associated with Paneth cells loss and dysfunction during intestinal barrier impairment of sepsis.
Collapse
|
12
|
Rosendorf J, Klicova M, Herrmann I, Anthis A, Cervenkova L, Palek R, Treska V, Liska V. Intestinal Anastomotic Healing: What do We Know About Processes Behind Anastomotic Complications. Front Surg 2022; 9:904810. [PMID: 35747439 PMCID: PMC9209641 DOI: 10.3389/fsurg.2022.904810] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
Colorectal surgery has developed rapidly in the recent decades. Nevertheless, colorectal anastomotic leakage continues to appear postoperatively in unpleasant rates and leads to life-threatening conditions. The development of valid complication-preventing methods is inefficient in many aspects as we are still lacking knowledge about the basics of the process of anastomotic wound healing in the gastrointestinal tract. Without the proper understanding of the crucial mechanisms, research for prevention of anastomotic leakage is predestined to be unsuccessful. This review article discusses known pathophysiological mechanisms together with the most lately found processes to be further studied. The aim of the article is to facilitate the orientation in the topic, support the better understanding of known mechanisms and suggest promising possibilities and directions for further research.
Collapse
Affiliation(s)
- J. Rosendorf
- Department of Surgery, University Hospital in Pilsen, Pilsen, Czech Republic
- Laboratory of Cancer Treatment and Tissue Regeneration, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
- Correspondence: Jachym Rosendorf
| | - M. Klicova
- Department of Nonwovens and Nanofibrous Materials, Faculty of Textile Engineering, Technical University of Liberec, Liberec, Czech Republic
| | - I. Herrmann
- Department of Mechanical and Process Engineering, Nanoparticle Systems Engineering Laboratory, ETH Zurich, Switzerland
| | - A. Anthis
- Department of Mechanical and Process Engineering, Nanoparticle Systems Engineering Laboratory, ETH Zurich, Switzerland
| | - L. Cervenkova
- Laboratory of Cancer Treatment and Tissue Regeneration, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - R. Palek
- Department of Surgery, University Hospital in Pilsen, Pilsen, Czech Republic
- Laboratory of Cancer Treatment and Tissue Regeneration, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - V. Treska
- Laboratory of Cancer Treatment and Tissue Regeneration, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - V. Liska
- Department of Surgery, University Hospital in Pilsen, Pilsen, Czech Republic
- Laboratory of Cancer Treatment and Tissue Regeneration, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| |
Collapse
|
13
|
Cao YY, Wang ZH, Xu QC, Chen Q, Wang Z, Lu WH. Sepsis induces variation of intestinal barrier function in different phase through nuclear factor kappa B signaling. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2021; 25:375-383. [PMID: 34187954 PMCID: PMC8255122 DOI: 10.4196/kjpp.2021.25.4.375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 11/15/2022]
Abstract
The intestinal barrier function disrupted in sepsis, while little is known about the variation in different phases of sepsis. In this study, mouse models of sepsis were established by caecal ligation and puncture (CLP). The H&E staining of sections and serum diamine oxidase concentration were evaluated at different timepoint after CLP. TUNEL assay and EdU staining were performed to evaluate the apoptosis and proliferation of intestinal epithelium. Relative protein expression was assessed by Western blotting and serum concentrations of pro-inflammatory cytokines was measured by ELISA. The disruption of intestinal barrier worsened in the first 24 h after the onset of sepsis and gradually recovered over the next 24 h. The percentage of apoptotic cell increased in the first 24 h and dropped at 48 h, accompanied with the proliferative rate of intestinal epithelium inhibited in the first 6 h and regained in the later period. Furthermore, the activity of nuclear factor kappa B (NF-κB) presented similar trend with the intestinal barrier function, shared positive correction with apoptosis of intestinal epithelium. These findings reveal the conversion process of intestinal barrier function in sepsis and this process is closely correlated with the activity of NF-κB signaling.
Collapse
Affiliation(s)
- Ying-Ya Cao
- Department of Intensive Care Unit, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, China
| | - Zhong-Han Wang
- Department of Intensive Care Unit, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, China
| | - Qian-Cheng Xu
- Department of Intensive Care Unit, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, China
| | - Qun Chen
- Department of Intensive Care Unit, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, China
| | - Zhen Wang
- Department of Intensive Care Unit, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, China
| | - Wei-Hua Lu
- Department of Intensive Care Unit, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, China
| |
Collapse
|
14
|
Ma Z, Bao G, Li J. Multifaceted Design and Emerging Applications of Tissue Adhesives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007663. [PMID: 33956371 DOI: 10.1002/adma.202007663] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/04/2020] [Indexed: 05/24/2023]
Abstract
Tissue adhesives can form appreciable adhesion with tissues and have found clinical use in a variety of medical settings such as wound closure, surgical sealants, regenerative medicine, and device attachment. The advantages of tissue adhesives include ease of implementation, rapid application, mitigation of tissue damage, and compatibility with minimally invasive procedures. The field of tissue adhesives is rapidly evolving, leading to tissue adhesives with superior mechanical properties and advanced functionality. Such adhesives enable new applications ranging from mobile health to cancer treatment. To provide guidelines for the rational design of tissue adhesives, here, existing strategies for tissue adhesives are synthesized into a multifaceted design, which comprises three design elements: the tissue, the adhesive surface, and the adhesive matrix. The mechanical, chemical, and biological considerations associated with each design element are reviewed. Throughout the report, the limitations of existing tissue adhesives and immediate opportunities for improvement are discussed. The recent progress of tissue adhesives in topical and implantable applications is highlighted, and then future directions toward next-generation tissue adhesives are outlined. The development of tissue adhesives will fuse disciplines and make broad impacts in engineering and medicine.
Collapse
Affiliation(s)
- Zhenwei Ma
- Department of Mechanical Engineering, McGill University, Montréal, QC, H3A 0C3, Canada
| | - Guangyu Bao
- Department of Mechanical Engineering, McGill University, Montréal, QC, H3A 0C3, Canada
| | - Jianyu Li
- Department of Mechanical Engineering, McGill University, Montréal, QC, H3A 0C3, Canada
- Department of Biomedical Engineering, McGill University, Montréal, QC, H3A 2B4, Canada
| |
Collapse
|