1
|
Kajdanek A, Kluska M, Matusiak R, Kazimierczak J, Dastych J. A Rapid and Inexpensive PCR Test for Mastitis Diagnosis Based on NGS Data. Pathogens 2024; 13:423. [PMID: 38787275 PMCID: PMC11487460 DOI: 10.3390/pathogens13050423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/02/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
Mastitis is a common mammary gland disease of dairy cattle caused by a wide range of organisms including bacteria, fungi and algae. Mastitis contributes to economic losses of dairy farms due to reduced yield and poor quality of milk. Since the correct identification of pathogens responsible for the development of mastitis is crucial to the success of treatment, it is necessary to develop a quick and accurate test to distinguish the main pathogens causing this disease. In this paper, we describe the development of a test based on the multiplex polymerase chain reaction (PCR) method allowing for the identification of Streptococcus agalactiae, Streptococcus dysgalactiae, Streptococcus uberis and Staphylococcus aureus. When creating our test, we relied on the results from new generation sequencing (NGS) for accurate determination of species affiliation. The multiplex PCR test was verified on 100 strains including veterinary samples, ATCC and Polish Collection of Microorganisms (PCM) reference strains. The obtained results indicate that this test is accurate and displays high specificity. It may serve as a valuable molecular tool for the detection of major mastitis pathogens.
Collapse
Affiliation(s)
- Agnieszka Kajdanek
- Proteon Pharmaceuticals, Tylna 3a, 90-364 Łódź, Poland; (M.K.); (R.M.); (J.K.); (J.D.)
| | | | | | | | | |
Collapse
|
2
|
Ahmad Najib M, Selvam K, Khalid MF, Ozsoz M, Aziah I. Quantum Dot-Based Lateral Flow Immunoassay as Point-of-Care Testing for Infectious Diseases: A Narrative Review of Its Principle and Performance. Diagnostics (Basel) 2022; 12:diagnostics12092158. [PMID: 36140559 PMCID: PMC9497919 DOI: 10.3390/diagnostics12092158] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/25/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Infectious diseases are the world’s greatest killers, accounting for millions of deaths worldwide annually, especially in low-income countries. As the risk of emerging infectious diseases is increasing, it is critical to rapidly diagnose infections in the early stages and prevent further transmission. However, current detection strategies are time-consuming and have exhibited low sensitivity. Numerous studies revealed the advantages of point-of-care testing, such as those which are rapid, user-friendly and have high sensitivity and specificity, and can be performed at a patient’s bedside. The Lateral Flow Immunoassay (LFIA) is the most popular diagnostic assay that fulfills the POCT standards. However, conventional AuNPs-LFIAs are moderately sensitive, meaning that rapid detection remains a challenge. Here, we review quantum dot (QDs)-based LFIA for highly sensitive rapid diagnosis of infectious diseases. We briefly describe the principles of LFIA, strategies for applying QDs to enhance sensitivity, and the published performance of the QD-LFIA tested against several infectious diseases.
Collapse
Affiliation(s)
- Mohamad Ahmad Najib
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Kasturi Selvam
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Muhammad Fazli Khalid
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Mehmet Ozsoz
- Department of Biomedical Engineering, Near East University, via Mersin 10, Nicosia 99138, Turkey
| | - Ismail Aziah
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
- Correspondence:
| |
Collapse
|
3
|
Deb R, Pal P, Chaudhary P, Bhadsavle S, Behera M, Parmanand, Gautam D, Roshan M, Vats A, Ludri A, Gupta VK, De S. Development of gold nanoparticle-based visual assay for rapid detection of Escherichia coli specific DNA in milk of cows affected with mastitis. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
4
|
Kaur M, Eltzov E. Optimizing Effective Parameters to Enhance the Sensitivity of Vertical Flow Assay for Detection of Escherichia coli. BIOSENSORS 2022; 12:63. [PMID: 35200324 PMCID: PMC8869093 DOI: 10.3390/bios12020063] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 06/01/2023]
Abstract
Vertical flow immunoassays (VFIAs) are considered potential point-of-care testing (POCT) devices compared to lateral flow assays due to their ability to analyze a comparatively large sample volume and ease of multiplexing. However, VFIA devices are limited by low analytical sensitivity when coupled with a visual colorimetric signal. Herein, we carefully analyzed key parameters that accounted for the proper functionality of VFIA that can be modified to enhance the overall sensitivity of VFIA. In particular, we focused on improving the stability of conjugate pads impregnated with capture antibodies, maintaining a controlled flow rate to ensure higher analyte reactivity with capture antibodies, and enhancing the absorption efficiency. The results showed that air-drying of conjugate pads in the presence of 5% (w/v) lactose significantly improved the stability of antibodies during long-term storage. Integration of dissolvable polyvinyl alcohol (PVA) membrane of optimal concentration as a time-barrier film into the sensor delayed the flow of samples, thereby increasing the biorecognition interaction time between immunoreagents for the formation of immuno-complexes, which in turn led to higher sensitivity of the assay. Furthermore, the employment of an absorbent pad with higher water holding capacity significantly reduced the non-specific binding of immunocomplexes, thereby reducing the possibility of false-negative results.
Collapse
Affiliation(s)
- Manpreet Kaur
- Department of Postharvest Science, Institute of Postharvest and Food Sciences, The Volcani Institute, Agricultural Research Organization, Bet Dagan 50250, Israel;
- Institute of Biochemistry, Food Science and Nutrition, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Evgeni Eltzov
- Department of Postharvest Science, Institute of Postharvest and Food Sciences, The Volcani Institute, Agricultural Research Organization, Bet Dagan 50250, Israel;
- Agro-Nanotechnology and Advanced Materials Research Center, Institute of Postharvest and Food Science, Department of Postharvest Science, Agricultural Research Organization, The Volcani Institute, Rishon LeZion 7505101, Israel
| |
Collapse
|
5
|
Di Nardo F, Chiarello M, Cavalera S, Baggiani C, Anfossi L. Ten Years of Lateral Flow Immunoassay Technique Applications: Trends, Challenges and Future Perspectives. SENSORS (BASEL, SWITZERLAND) 2021; 21:5185. [PMID: 34372422 PMCID: PMC8348896 DOI: 10.3390/s21155185] [Citation(s) in RCA: 179] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 12/22/2022]
Abstract
The Lateral Flow Immunoassay (LFIA) is by far one of the most successful analytical platforms to perform the on-site detection of target substances. LFIA can be considered as a sort of lab-in-a-hand and, together with other point-of-need tests, has represented a paradigm shift from sample-to-lab to lab-to-sample aiming to improve decision making and turnaround time. The features of LFIAs made them a very attractive tool in clinical diagnostic where they can improve patient care by enabling more prompt diagnosis and treatment decisions. The rapidity, simplicity, relative cost-effectiveness, and the possibility to be used by nonskilled personnel contributed to the wide acceptance of LFIAs. As a consequence, from the detection of molecules, organisms, and (bio)markers for clinical purposes, the LFIA application has been rapidly extended to other fields, including food and feed safety, veterinary medicine, environmental control, and many others. This review aims to provide readers with a 10-years overview of applications, outlining the trends for the main application fields and the relative compounded annual growth rates. Moreover, future perspectives and challenges are discussed.
Collapse
Affiliation(s)
- Fabio Di Nardo
- Department of Chemistry, University of Torino, 10125 Torino, Italy; (M.C.); (S.C.); (C.B.); (L.A.)
| | | | | | | | | |
Collapse
|
6
|
Neutrophil and CD4 + milk cell count related to natural incidence of mastitis in Jersey cattle. J DAIRY RES 2021; 88:334-336. [PMID: 34233770 DOI: 10.1017/s0022029921000510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This Research Communication describes the relation between somatic cells and microbial content in milk from Jersey cattle. Milk samples were classified in groups: healthy, dirty and mastitic (from Staphylococcus spp., Escherichia coli, Coliforms). The somatic cells in each of those groups were analysed by two methods - flow cytometric and automatic fluorescent cell counting. Those methods were compared. Total somatic cell count (SCC), neutrophil count, and lymphocytes with cluster of differentiation 4 (CD4+cells) were determined. There was a positive relationship between microbes and somatic cells. It was noticed that the neutrophil count was generally increased together with SCC, whilst the CD4+ cell count was higher in healthy milk samples (about 8%) compared to mastitic ones (about 3%). Lower number of CD4+ cells (from 1 to 4%) was determined in samples positive for Staphylococcus spp. but with lower SCC (from 2.7 to 4.0 × 105 cells/ml). Also, the number of CD4+ cells in Staphylococcus spp.-positive samples increased (to 4.8%) together with higher SCC, something that was not observed in the other mastitic samples. Knowledge of those relations could be useful for veterinary medical tests in the initial phase of inflammation.
Collapse
|
7
|
Alhussien MN, Panda BSK, Dang AK. A Comparative Study on Changes in Total and Differential Milk Cell Counts, Activity, and Expression of Milk Phagocytes of Healthy and Mastitic Indigenous Sahiwal Cows. Front Vet Sci 2021; 8:670811. [PMID: 34235202 PMCID: PMC8255372 DOI: 10.3389/fvets.2021.670811] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/21/2021] [Indexed: 12/29/2022] Open
Abstract
Milk somatic cell counts (SCCs) have been used as a gold standard to monitor mammary health as well as an indicator of raw milk quality. The present work was undertaken to compare the changes in the milk SCC, milk differential leukocyte counts (DLCs), phagocytic activity (PA) of milk neutrophils and macrophages (by nitroblue tetrazolium assay), extracellular trap formation (PicoGreen assay) and mRNA expression of various genes in milk neutrophils and macrophages (reverse transcription–polymerase chain reaction), and milk plasma cortisol concentration (enzyme-linked immunosorbent assay) in healthy, subclinical mastitis (SCM), and clinical mastitis (CM) cows. Milk was collected from healthy, SCM, and CM cows grouped based on their SCCs and California mastitis test with eight cows in each group. Milk SCC was estimated by SCC counter, and DLC was done after staining the milk slide under a microscope at 100×. Total SCCs in healthy, SCM, and CM cows were on an average of 128.30, 300.3, and 694.40 × 103 cells/mL, respectively. Milk DLCs indicated a lower percentage of macrophage and lymphocytes and a higher (p < 0.05) percentage of neutrophils in SCM and CM compared to healthy milk. The percentage of mature segmented neutrophils was lower, whereas immature band neutrophils were higher (p < 0.05) in the SCM and CM groups as compared to healthy cows. The viability, in vitro PA, and extracellular trap formation of neutrophils were lower (p < 0.05) in SCM and CM milk samples as compared to healthy samples. However, the PA of macrophage remained unchanged in all the studied groups. The relative mRNA expression of Toll-like receptors (TLR2, TLR4), myeloperoxidase, and interleukin 2α (IL-2α) receptor (CD25) were minimum in healthy samples and increased (p < 0.05) with the progress of mammary inflammation. However, CD44 decreased (p < 0.05), and CD62L remained unchanged in mastitis as compared to healthy cows. Plasma cortisol concentrations were higher (p < 0.05) in mastitis as compared to healthy cows and were negatively correlated with the number of milk macrophages and the functions of milk phagocytes. Estimation of total SCC, milk DLC, and activity of milk phagocytes is essential for effective control and prevention of incidence of mastitis in dairy cows.
Collapse
Affiliation(s)
- Mohanned Naif Alhussien
- Lactation and Immuno-Physiology Laboratory ICAR-National Dairy Research Institute, Karnal, India
| | - Bibhudatta S K Panda
- Lactation and Immuno-Physiology Laboratory ICAR-National Dairy Research Institute, Karnal, India
| | - Ajay Kumar Dang
- Lactation and Immuno-Physiology Laboratory ICAR-National Dairy Research Institute, Karnal, India
| |
Collapse
|
8
|
Alhussien MN, Dang AK. JAK3 and PI3K mediates the suppressive effects of interferon tau on neutrophil extracellular traps formation during peri-implantation period. J Reprod Immunol 2021; 145:103321. [PMID: 33862433 DOI: 10.1016/j.jri.2021.103321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/29/2021] [Accepted: 04/06/2021] [Indexed: 02/06/2023]
Abstract
Interferon tau (IFNτ) is the main maternal signal for pregnancy in ruminants and modulates the functions of various immune cells, including neutrophils. Neutrophil extracellular traps (NETs) are one of the main defence mechanisms of neutrophils. In this study, we observed higher (p < 0.01) ex-vivo NETs extrusion by blood neutrophils from day 16-18 post artificial insemination (AI) in non-inseminated and inseminated non-pregnant cows compared to pregnant cows. In vitro study also showed that IFNτ hampers NETs formation in dose and time dependent manner. The lowest (p < 0.01) NETs formation and the highest (p < 0.01) mRNA expression (RT-PCR) of IFNτ stimulated genes (ISG15, OAS1, MX1) were observed when neutrophil incubated with 9 ng/mL IFNτ for 3.5 h. Signalling cascades mediating IFNτ impairment of NETs formation were identified using inhibitors of JAK2, JAK3, p38, PI3K/Akt and MAPK/Erk. IFNτ reduced (p < 0.01) the mRNA expression (RT-PCR) and concentration (ELISA) of genes and proteins that mediate NETs formation in blood neutrophils including histones (H1, H2), neutrophil elastase (NE) and myeloperoxidase (MPO). However, the effects of IFNτ on these genes and proteins were eliminated in the presence of JAK3 or PI3K inhibitors. Immunocytochemistry study also showed strong MPO signal in the presence of JAK3 or PI3K inhibitors as compared to positive control (PC, IFNτ alone). The results indicate that IFNτ impairs NETs formation using JAK3 and PI3K and thus essential for successful implantation and establishment of pregnancy in cows.
Collapse
Affiliation(s)
- Mohanned Naif Alhussien
- Lactation and Immuno-Physiology Laboratory, ICAR-National Dairy Research Institute, Karnal, Haryana, 132 001, India.
| | - Ajay Kumar Dang
- Lactation and Immuno-Physiology Laboratory, ICAR-National Dairy Research Institute, Karnal, Haryana, 132 001, India.
| |
Collapse
|
9
|
Kawai Y, Shirai A, Kakuta M, Idegami K, Sueyoshi K, Endo T, Hisamoto H. Inkjet Printing-Based Immobilization Method for a Single-Step and Homogeneous Competitive Immunoassay in Microchannel Arrays. Front Chem 2021; 8:612132. [PMID: 33409267 PMCID: PMC7779625 DOI: 10.3389/fchem.2020.612132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/30/2020] [Indexed: 11/29/2022] Open
Abstract
In this study, we report an inkjet printing-based method for the immobilization of different reactive analytical reagents on a single microchannel for a single-step and homogeneous solution-based competitive immunoassay. The immunoassay microdevice is composed of a poly(dimethylsiloxane) microchannel that is patterned using inkjet printing by two types of reactive reagents as dissolvable spots, namely, antibody-immobilized graphene oxide and a fluorescently labeled antigen. Since nanoliter-sized droplets of the reagents could be accurately and position-selectively spotted on the microchannel, different reactive reagents were simultaneously immobilized onto the same microchannel, which was difficult to achieve in previously reported capillary-based single-step bioassay devices. In the present study, the positions of the reagent spots and amount of reagent matrix were investigated to demonstrate the stable and reproducible immobilization and a uniform dissolution. Finally, a preliminary application to a single-step immunoassay of C-reactive protein was demonstrated as a proof of concept.
Collapse
Affiliation(s)
- Yuko Kawai
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Osaka, Japan
| | - Akihiro Shirai
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Osaka, Japan
| | | | | | - Kenji Sueyoshi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Osaka, Japan
| | - Tatsuro Endo
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Osaka, Japan
| | - Hideaki Hisamoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Osaka, Japan
| |
Collapse
|
10
|
Alhussien MN, Dang AK. Interaction between stress hormones and phagocytic cells and its effect on the health status of dairy cows: A review. Vet World 2020; 13:1837-1848. [PMID: 33132594 PMCID: PMC7566244 DOI: 10.14202/vetworld.2020.1837-1848] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 07/22/2020] [Indexed: 12/14/2022] Open
Abstract
Dairy cows are exposed to various stressors during their production cycle that makes them more susceptible to various diseases. Phagocytes (neutrophils and macrophages) are important soldiers of the innate immune system. Neutrophils are the first responders to an inflammatory response and stress and kill pathogens by generating reactive oxygen species and by the release of various antimicrobial peptides, enzymes, neutrophil extracellular trap formation, etc. Macrophages, the other phagocytes, are also the cleanup crew for the innate immune system that removes debris, pathogens, and dead neutrophils later on after an inflammatory response. The neuroendocrine system along with phagocytes exhibits an immunomodulatory potential during stressful conditions. Neuroendocrine system directly affects the activity of phagocytes by communicating bidirectionally through shared receptors and messenger molecules such as hormones, neurotransmitters, or cytokines. Different immune cells may show variable responses to each hormone. Short time exposure to stress can be beneficial, but repeated or extended exposure to stress may be detrimental to the overall health and well-being of an animal. Although some stresses associated with farming practices in dairy cows are unavoidable, better understanding of the interactions occurring between various stress hormones and phagocytic cells can help to reduce stress, improve productivity and animal welfare. This review highlights the role played by various stress hormones in modulating phagocytic cell performance of dairy cattle under inflammatory conditions.
Collapse
Affiliation(s)
- Mohanned Naif Alhussien
- Lactation and Immuno-Physiology Laboratory, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Ajay Kumar Dang
- Lactation and Immuno-Physiology Laboratory, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| |
Collapse
|