1
|
Trimukhe AM, Melo JS, Chaturvedi D, Jain RD, Dandekar P, Deshmukh RR. RF pulsed plasma modified composite scaffold for enhanced anti-microbial activity and accelerated wound healing. Int J Pharm 2024:124864. [PMID: 39461682 DOI: 10.1016/j.ijpharm.2024.124864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/15/2024] [Accepted: 10/20/2024] [Indexed: 10/29/2024]
Abstract
Infected wounds present significant challenges pertaining to healing and often demand administration of strong antibiotics to patients. Also, drug resistant microbes may alter the physiology of wounds to create biofilms, frequently leading to high morbidity and mortality. In this investigation, a biodegradable, microporous composite agarose-chitosan scaffold was fabricated. Furthermore, its surface was modified with diphenyldiselenide deposition, using low pressure pulsed plasma technology. The optimized plasma parameters, viz. 5ON/15OFF (ms) of plasma pulse rate and 80 min of treatment time resulted in scaffolds having enhanced anti-bacterial activity against gram positive microbes like Staphylococcus (S.) aureus and S. epidermidis. The scaffolds were non-toxic to skin cells, as confirmed by the MTT assay. Cell proliferation through plasma treated and native scaffolds was assessed by culturing primary human dermal fibroblasts (HdaF) and human keratinocytes (HaCaT) and visualizing via confocal microscopy. Moreover, in-vivo rat model confirmed accelerated wound healing with plasma treated scaffold (100 % on day 14), as compared to the native scaffold (100 % on day 16) when compared with over-the-counter (OTC) ointment Betadine (100 % on day 12).
Collapse
Affiliation(s)
- A M Trimukhe
- Department of Physics, Institute of Chemical Technology, Mumbai 400019, India
| | - J S Melo
- Enzyme Microbial Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - D Chaturvedi
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, India
| | - R D Jain
- Department of Biological Sciences and Biotechnology, Institute of Chemical Technology, Mumbai 400019, India
| | - P Dandekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, India
| | - R R Deshmukh
- Department of Physics, Institute of Chemical Technology, Mumbai 400019, India.
| |
Collapse
|
2
|
Zhang B, Chen H, Shi L, Guo R, Wang Y, Zheng Y, Bai R, Gao Y, Liu B, Zhang X. Nitroreductase-Based "Turn-On" Fluorescent Probe for Bacterial Identification with Visible Features. ACS Sens 2024; 9:4560-4567. [PMID: 39231251 DOI: 10.1021/acssensors.3c02785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Among pathogenic bacteria, Escherichia coli, Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa were the six leading causes for the deaths associated with antibiotic resistance in 2019. Although new treatment options are urgently needed, the precise identification of the bacterial species remains pivotal for an accurate diagnosis and effective treatment. Clinically, mass spectrometry is used to distinguish these bacteria based on their protein mass pattern at the genus and species level. Herein, we report an alternative approach to identify these bacteria using the nitroreductase-based "turn-on" fluorescent probes (ETH1-NO2 and ETH2-NO2), with potential visual indicators for the six individual bacteria species. The limits of detection (LODs) of the probes for NTRs are 0.562 (ETH1-NO2) and 0.153 μg/mL (ETH2-NO2), respectively. They respond effectively to both Gram-positive and Gram-negative bacteria, with the lowest LOD at 1.2 × 106 CFU/mL for E. coli. In particular, different bacteria show noticeable difference in the apparent color of ETH1-NO2 samples, allowing possible identification of these bacteria visually. In addition, ETH1-NO2 also has potential applications in bacterial fluorescence imaging. Thus, our study provides an alternative approach for bacteria identification and new reagents for bacteria imaging.
Collapse
Affiliation(s)
- Buyue Zhang
- Hebei Key Laboratory of Medical-Industrial Integration Precision Medicine, College of Chemical Engineering, North China University of Science and Technology, Tangshan 063210, China
| | - Huan Chen
- BioBank, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Lei Shi
- Hebei Key Laboratory of Medical-Industrial Integration Precision Medicine, College of Chemical Engineering, North China University of Science and Technology, Tangshan 063210, China
| | - Ruirui Guo
- BioBank, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yan Wang
- BioBank, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yehuan Zheng
- BioBank, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Ruiyang Bai
- Hebei Key Laboratory of Medical-Industrial Integration Precision Medicine, College of Chemical Engineering, North China University of Science and Technology, Tangshan 063210, China
| | - Yuexing Gao
- Hebei Key Laboratory of Medical-Industrial Integration Precision Medicine, College of Chemical Engineering, North China University of Science and Technology, Tangshan 063210, China
| | - Bing Liu
- BioBank, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiufeng Zhang
- Hebei Key Laboratory of Medical-Industrial Integration Precision Medicine, College of Chemical Engineering, North China University of Science and Technology, Tangshan 063210, China
| |
Collapse
|
3
|
Babaei P, Farahpour MR, Tabatabaei ZG. Fabrication of geraniol nanophytosomes loaded into polyvinyl alcohol: A new product for the treatment of wounds infected with methicillin-resistant Staphylococcusaureus. J Tissue Viability 2024; 33:116-125. [PMID: 37977895 DOI: 10.1016/j.jtv.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
The current study was conducted to evaluate the effectiveness of geraniol nanophytosomes in accelerating the healing process of wounds infected with Methicillin-resistant Staphylococcus aureus (MRSA) in a mouse model. The physicochemical properties confirmed physical properties and successful synthesis of the nanophytosomes. Wounds were induced and mice (n = 90) were treated with a base ointment (negative control group) and/or mupirocin (positive control) and also formulations prepared from geraniol (GNL), geraniol nanophytosomes (NPhs-GNL), and PVA/NPhs-GNL. Wound contraction, total bacterial count, pathological parameters and the expressions of bFGF, CD31 and COL1A were also assessed. The results showed that topical administration of mupirocin and PVA/NPhs/GNL increased wound contraction, fibroblast and epithelization and also the expressions of bFGF, CD31 and COL1A while decreased the expression of total bacterial count and edema compared with negative control mice (P = 0.001). The results also showed that PVA/NPhs-GNL and mupirocin could compete and PVA/NPhs-GNL formulation was safe. In conclusion, the prepared formulations accelerated the wound healing process by modulation in proliferative genes. Geraniol nanophytosomes loaded into PVA could improve the healing in infected full-thickness wounds healing process and can be used for the treatment of infected wounds after future clinical studies.
Collapse
Affiliation(s)
- Pedram Babaei
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia Branch, Islamic Azad University, Urmia, Iran
| | - Mohammad Reza Farahpour
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Urmia Branch, Islamic Azad University, Urmia, Iran.
| | | |
Collapse
|
4
|
Martins APS, da Mata CPSM, dos Santos UR, de Araújo CA, Leite EMM, de Carvalho LD, Vidigal PG, Vieira CD, dos Santos-Key SG. Association between multidrug-resistant bacteria and outcomes in intensive care unit patients: a non-interventional study. Front Public Health 2024; 11:1297350. [PMID: 38259738 PMCID: PMC10801015 DOI: 10.3389/fpubh.2023.1297350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
Background In intensive care units (ICUs), infections by multidrug-resistant (MDR) microorganisms should be monitored to prevent healthcare-associated infections (HAIs). Methods From 2018 to 2020, we investigated all medical records of patients admitted to the ICU of a public university hospital. All patients colonized/infected by MDR microorganisms and submitted to active surveillance cultures (ASCs) were included. Results and discussion Male patients prevailed, and 9.5% were positive for MDR bacteria. In-hospital deaths were statistically significant (p < 0.05) for older patients, patients with orotracheal tube use during previous and current hospitalization, and patients with high blood pressure, cardiac and pulmonary diseases, and chronic kidney disease. Carbapenem resistant Enterobacteriaceae was the most frequently resistance profile, followed by extended-spectrum beta-lactamase. The diagnosis or evolution of HAIs was statistically significant (p < 0.0001) for patients treated with meropenem and vancomycin, and in-hospital deaths occurred in 29.5% of patients using polypeptides while the use of macrolides reduced the odds for mortality. The BRADEN Scale demonstrated that 50% of the patients were at high risk of dying. Conclusion Patients hospitalized in the ICU, colonized or infected by MDR bacteria, using invasive medical devices, and with underlying medical conditions presented increased mortality rates. The prescription of meropenem and vancomycin should be carefully monitored once patients using these antimicrobials already have or develop an HAI.
Collapse
Affiliation(s)
- Alessandro Pacheco Silveira Martins
- Hospital Risoleta Tolentino Neves, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | - César Augusto de Araújo
- Hospital Risoleta Tolentino Neves, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | - Pedro Guatimosim Vidigal
- Hospital Risoleta Tolentino Neves, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Escola de Medicina, Departmento de Patologia Clínica, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Cristina Dutra Vieira
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Simone Gonçalves dos Santos-Key
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
5
|
Rikken G, Meesters LD, Jansen PAM, Rodijk-Olthuis D, van Vlijmen-Willems IMJJ, Niehues H, Smits JPH, Oláh P, Homey B, Schalkwijk J, Zeeuwen PLJM, van den Bogaard EH. Novel methodologies for host-microbe interactions and microbiome-targeted therapeutics in 3D organotypic skin models. MICROBIOME 2023; 11:227. [PMID: 37849006 PMCID: PMC10580606 DOI: 10.1186/s40168-023-01668-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 09/08/2023] [Indexed: 10/19/2023]
Abstract
BACKGROUND Following descriptive studies on skin microbiota in health and disease, mechanistic studies on the interplay between skin and microbes are on the rise, for which experimental models are in great demand. Here, we present a novel methodology for microbial colonization of organotypic skin and analysis thereof. RESULTS An inoculation device ensured a standardized application area on the stratum corneum and a homogenous distribution of bacteria, while preventing infection of the basolateral culture medium even during prolonged culture periods for up to 2 weeks at a specific culture temperature and humidity. Hereby, host-microbe interactions and antibiotic interventions could be studied, revealing diverse host responses to various skin-related bacteria and pathogens. CONCLUSIONS Our methodology is easily transferable to a wide variety of organotypic skin or mucosal models and different microbes at every cell culture facility at low costs. We envision that this study will kick-start skin microbiome studies using human organotypic skin cultures, providing a powerful alternative to experimental animal models in pre-clinical research. Video Abstract.
Collapse
Affiliation(s)
- Gijs Rikken
- Department of Dermatology, Radboud University Medical Center (Radboudumc), Nijmegen, The Netherlands
| | - Luca D Meesters
- Department of Dermatology, Radboud University Medical Center (Radboudumc), Nijmegen, The Netherlands
| | - Patrick A M Jansen
- Department of Dermatology, Radboud University Medical Center (Radboudumc), Nijmegen, The Netherlands
| | - Diana Rodijk-Olthuis
- Department of Dermatology, Radboud University Medical Center (Radboudumc), Nijmegen, The Netherlands
| | | | - Hanna Niehues
- Department of Dermatology, Radboud University Medical Center (Radboudumc), Nijmegen, The Netherlands
| | - Jos P H Smits
- Department of Dermatology, Radboud University Medical Center (Radboudumc), Nijmegen, The Netherlands
- Department of Dermatology, University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Peter Oláh
- Department of Dermatology, University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Bernhard Homey
- Department of Dermatology, University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Joost Schalkwijk
- Department of Dermatology, Radboud University Medical Center (Radboudumc), Nijmegen, The Netherlands
| | - Patrick L J M Zeeuwen
- Department of Dermatology, Radboud University Medical Center (Radboudumc), Nijmegen, The Netherlands
| | - Ellen H van den Bogaard
- Department of Dermatology, Radboud University Medical Center (Radboudumc), Nijmegen, The Netherlands.
| |
Collapse
|
6
|
King ME, Lin M, Spradlin M, Eberlin LS. Advances and Emerging Medical Applications of Direct Mass Spectrometry Technologies for Tissue Analysis. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2023; 16:1-25. [PMID: 36944233 DOI: 10.1146/annurev-anchem-061020-015544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Offering superb speed, chemical specificity, and analytical sensitivity, direct mass spectrometry (MS) technologies are highly amenable for the molecular analysis of complex tissues to aid in disease characterization and help identify new diagnostic, prognostic, and predictive markers. By enabling detection of clinically actionable molecular profiles from tissues and cells, direct MS technologies have the potential to guide treatment decisions and transform sample analysis within clinical workflows. In this review, we highlight recent health-related developments and applications of direct MS technologies that exhibit tangible potential to accelerate clinical research and disease diagnosis, including oncological and neurodegenerative diseases and microbial infections. We focus primarily on applications that employ direct MS technologies for tissue analysis, including MS imaging technologies to map spatial distributions of molecules in situ as well as handheld devices for rapid in vivo and ex vivo tissue analysis.
Collapse
Affiliation(s)
- Mary E King
- Department of Chemistry, The University of Texas at Austin, Austin, Texas, USA;
- Department of Surgery, Baylor College of Medicine, Houston, Texas, USA;
| | - Monica Lin
- Department of Chemistry, The University of Texas at Austin, Austin, Texas, USA;
| | - Meredith Spradlin
- Department of Chemistry, The University of Texas at Austin, Austin, Texas, USA;
| | - Livia S Eberlin
- Department of Surgery, Baylor College of Medicine, Houston, Texas, USA;
| |
Collapse
|
7
|
Chaturvedi D, Paranjape S, Jain R, Dandekar P. Disease-related biomarkers as experimental endpoints in 3D skin culture models. Cytotechnology 2023; 75:165-193. [PMID: 37187945 PMCID: PMC10167092 DOI: 10.1007/s10616-023-00574-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 03/09/2023] [Indexed: 04/05/2023] Open
Abstract
The success of in vitro 3D models in either recapitulating the normal tissue physiology or altered physiology or disease condition depends upon the identification and/or quantification of relevant biomarkers that confirm the functionality of these models. Various skin disorders, such as psoriasis, photoaging, vitiligo, etc., and cancers like squamous cell carcinoma and melanoma, etc. have been replicated via organotypic models. The disease biomarkers expressed by such cell cultures are quantified and compared with the biomarkers expressed in cultures depicting the normal tissue physiology, to identify the most prominent variations in their expression. This may also indicate the stage or reversal of these conditions upon treatment with relevant therapeutics. This review article presents an overview of the important biomarkers that have been identified in in-vitro 3D models of skin diseases as endpoints for validating the functionality of these models. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-023-00574-2.
Collapse
Affiliation(s)
- Deepa Chaturvedi
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, 400019 India
| | - Swarali Paranjape
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, 400019 India
| | - Ratnesh Jain
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, 400019 India
| | - Prajakta Dandekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, 400019 India
| |
Collapse
|
8
|
Surface-sampling mass spectrometry to study proteins and protein complexes. Essays Biochem 2023; 67:229-241. [PMID: 36748325 PMCID: PMC10070487 DOI: 10.1042/ebc20220191] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 02/08/2023]
Abstract
This review aims to summarise the current capabilities of surface mass spectrometry (MS) approaches that offer intact protein analysis, and that of non-covalent complexes. Protein analysis is largely achieved via matrix-assisted laser desorption/ionisation (MALDI), which is in itself a surface analysis approach or solvent-based electrospray ionisation (ESI). Several surface sampling approaches have been developed based on ESI, and those that have been used for intact protein analysis will be discussed below. The extent of protein coverage, top-down elucidation, and probing of protein structure for native proteins and non-covalent complexes will be discussed for each approach. Strategies for improving protein analysis, ranging from sample preparation, and sampling methods to instrument modifications and the inclusion of ion mobility separation in the workflow will also be discussed. The relative benefits and drawbacks of each approach will be summarised, providing an overview of current capabilities.
Collapse
|
9
|
Lin M, Blevins MS, Sans M, Brodbelt JS, Eberlin LS. Deeper Understanding of Solvent-Based Ambient Ionization Mass Spectrometry: Are Molecular Profiles Primarily Dictated by Extraction Mechanisms? Anal Chem 2022; 94:14734-14744. [PMID: 36228313 DOI: 10.1021/acs.analchem.2c03360] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Solvent-based ambient ionization mass spectrometry (MS) techniques provide a powerful approach for direct chemical analysis and molecular profiling of biological tissues. While molecular profiling of tissues has been widely used for disease diagnosis, little is understood about how the interplay among solvent properties, matrix effects, and ion suppression can influence the detection of biological molecules. Here, we perform a systematic investigation of the extraction processes of lipids using an ambient ionization droplet microsampling platform to investigate how the physicochemical properties of the solvent systems and extraction time influence molecular extraction and detection. Direct molecular profiling and quantitative liquid chromatography-mass spectrometry (LC-MS) of discrete solvent droplets after surface sampling were investigated to provide insights into extraction and ionization mechanisms. The results of this study suggest that intermolecular interactions such as hydrogen bonding play a major role in extraction and detection of lipids using solvent-based ambient ionization techniques. In addition, extraction time was observed to impact the molecular profiles obtained, suggesting optimization of this parameter can be performed to favor detection of specific analytes.
Collapse
Affiliation(s)
- Monica Lin
- Department of Chemistry, The University of Texas at Austin, Austin, Texas78712, United States
| | - Molly S Blevins
- Department of Chemistry, The University of Texas at Austin, Austin, Texas78712, United States
| | - Marta Sans
- Department of Chemistry, The University of Texas at Austin, Austin, Texas78712, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, Texas78712, United States
| | - Livia S Eberlin
- Department of Chemistry, The University of Texas at Austin, Austin, Texas78712, United States.,Department of Surgery, Baylor College of Medicine, Houston, Texas77030, United States
| |
Collapse
|
10
|
Povilaitis SC, Chakraborty A, Kirkpatrick LM, Downey RD, Hauger SB, Eberlin LS. Identifying Clinically Relevant Bacteria Directly from Culture and Clinical Samples with a Handheld Mass Spectrometry Probe. Clin Chem 2022; 68:1459-1470. [DOI: 10.1093/clinchem/hvac147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 07/11/2022] [Indexed: 11/13/2022]
Abstract
Abstract
Background
Rapid identification of bacteria is critical to prevent antimicrobial resistance and ensure positive patient outcomes. We have developed the MasSpec Pen, a handheld mass spectrometry-based device that enables rapid analysis of biological samples. Here, we evaluated the MasSpec Pen for identification of bacteria from culture and clinical samples.
Methods
A total of 247 molecular profiles were obtained from 43 well-characterized strains of 8 bacteria species that are clinically relevant to osteoarticular infections, including Staphylococcus aureus, Group A and B Streptococcus, and Kingella kingae, using the MasSpec Pen coupled to a high-resolution mass spectrometer. The molecular profiles were used to generate statistical classifiers based on metabolites that were predictive of Gram stain category, genus, and species. Then, we directly analyzed samples from 4 patients, including surgical specimens and clinical isolates, and used the classifiers to predict the etiologic agent.
Results
High accuracies were achieved for all levels of classification with a mean accuracy of 93.3% considering training and validation sets. Several biomolecules were detected at varied abundances between classes, many of which were selected as predictive features in the classifiers including glycerophospholipids and quorum-sensing molecules. The classifiers also enabled correct identification of Gram stain type and genus of the etiologic agent from 3 surgical specimens and all classification levels for clinical specimen isolates.
Conclusions
The MasSpec Pen enables identification of several bacteria at different taxonomic levels in seconds from cultured samples and has potential for culture-independent identification of bacteria directly from clinical samples based on the detection of metabolic species.
Collapse
Affiliation(s)
- Sydney C Povilaitis
- Department of Chemistry, The University of Texas at Austin , Austin, TX 78712 , USA
| | - Ashish Chakraborty
- Department of Chemistry, The University of Texas at Austin , Austin, TX 78712 , USA
| | - Lindsey M Kirkpatrick
- Department of Pediatrics, Division of Pediatric Infectious Diseases, J.W. Riley Hospital for Children, Indiana University School of Medicine , Indianapolis, IN 46202 , USA
| | - Rachel D Downey
- Department of Pediatric Infectious Diseases, Dell Children's Medical Group , Austin, TX 78723 , USA
| | - Sarmistha B Hauger
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin , Austin, TX 78712 , USA
| | - Livia S Eberlin
- Department of Surgery, Baylor College of Medicine , Houston, TX 77030 , USA
| |
Collapse
|
11
|
Felgueiras HP. An Insight into Biomolecules for the Treatment of Skin Infectious Diseases. Pharmaceutics 2021; 13:pharmaceutics13071012. [PMID: 34371704 PMCID: PMC8309093 DOI: 10.3390/pharmaceutics13071012] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 12/31/2022] Open
Abstract
In assigning priorities, skin infectious diseases are frequently classified as minor when compared to infectious diseases of high mortality rates, such as tuberculosis or HIV. However, skin infections are amongst the most common and prevalent diseases worldwide. Elderly individuals present an increased susceptibility to skin infections, which may develop atypical signs and symptoms or even complicate pre-existing chronic disorders. When the skin fails to correct or inhibit the action of certain pathogenic microorganisms, biomolecules endowed with antimicrobial features are frequently administered topically or systemically to assist or treat such conditions. (1) Antibiotics, (2) antimicrobial peptides, or (3) natural extracts display important features that can actively inhibit the propagation of these pathogens and prevent the evolution of infectious diseases. This review highlights the properties and mechanisms of action of these biomolecules, emphasizing their effects on the most prevalent and difficult to treat skin infections caused by pathogenic bacteria, fungi, and viruses. The versatility of biomolecules’ actions, their symbiotic effects with skin cells and other inherent antimicrobial components, and their target-directed signatures are also explored here.
Collapse
Affiliation(s)
- Helena P Felgueiras
- Centre for Textile Science and Technology (2C2T), University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
| |
Collapse
|
12
|
Havlikova J, May RC, Styles IB, Cooper HJ. Liquid Extraction Surface Analysis Mass Spectrometry of ESKAPE Pathogens. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1345-1351. [PMID: 33647207 PMCID: PMC8176453 DOI: 10.1021/jasms.0c00466] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter cloacae) represent clinically important bacterial species that are responsible for most hospital-acquired drug-resistant infections; hence, the need for rapid identification is of high importance. Previous work has demonstrated the suitability of liquid extraction surface analysis mass spectrometry (LESA MS) for the direct analysis of colonies of two of the ESKAPE pathogens (Staphylococcus aureus and Pseudomonas aeruginosa) growing on agar. Here, we apply LESA MS to the remaining four ESKAPE species (E. faecium E745, K. pneumoniae KP257, A. baumannii AYE, and E. cloacae S11) as well as E. faecalis V583 (a close relative of E. faecium) and a clinical isolate of A. baumannii AC02 using an optimized solvent sampling system. In each case, top-down LESA MS/MS was employed for protein identification. In total, 24 proteins were identified from 37 MS/MS spectra by searching against protein databases for the individual species. The MS/MS spectra for the identified proteins were subsequently searched against multiple databases from multiple species in an automated data analysis workflow with a view to determining the accuracy of identification of unknowns. Out of 24 proteins, 19 were correctly assigned at the protein and species level, corresponding to an identification success rate of 79%.
Collapse
Affiliation(s)
- Jana Havlikova
- EPSRC
Centre for Doctoral Training in Physical Sciences for Health, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
- School
of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Robin C. May
- Institute
of Microbiology and Infection, University
of Birmingham, Edgbaston, Birmingham B15 2TT, United
Kingdom
| | - Iain B. Styles
- EPSRC
Centre for Doctoral Training in Physical Sciences for Health, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
- School
of Computer Science, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Helen J. Cooper
- School
of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
- Phone: +44 (0)121 414 7527; . (H.J.C.)
| |
Collapse
|
13
|
Rankin‐Turner S, Heaney LM. Applications of ambient ionization mass spectrometry in 2020: An annual review. ANALYTICAL SCIENCE ADVANCES 2021; 2:193-212. [PMID: 38716454 PMCID: PMC10989608 DOI: 10.1002/ansa.202000135] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 06/26/2024]
Abstract
Recent developments in mass spectrometry (MS) analyses have seen a concerted effort to reduce the complexity of analytical workflows through the simplification (or removal) of sample preparation and the shortening of run-to-run analysis times. Ambient ionization mass spectrometry (AIMS) is an exemplar MS-based technology that has swiftly developed into a popular and powerful tool in analytical science. This increase in interest and demonstrable applications is down to its capacity to enable the rapid analysis of a diverse range of samples, typically in their native state or following a minimalistic sample preparation approach. The field of AIMS is constantly improving and expanding, with developments of powerful and novel techniques, improvements to existing instrumentation, and exciting new applications added with each year that passes. This annual review provides an overview of applications of AIMS techniques over the past year (2020), with a particular focus on the application of AIMS in a number of key fields of research including biomedical sciences, forensics and security, food sciences, the environment, and chemical synthesis. Novel ambient ionization techniques are introduced, including picolitre pressure-probe electrospray ionization and fiber spray ionization, in addition to modifications and improvements to existing techniques such as hand-held devices for ease of use, and USB-powered ion sources for on-site analysis. In all, the information provided in this review supports the view that AIMS has become a leading approach in MS-based analyses and that improvements to existing methods, alongside the development of novel approaches, will continue across the foreseeable future.
Collapse
Affiliation(s)
- Stephanie Rankin‐Turner
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public HealthJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Liam M. Heaney
- School of Sport, Exercise and Health SciencesLoughborough UniversityLoughboroughLeicestershireUK
| |
Collapse
|
14
|
Iliopoulos F, Chapman A, Lane ME. A comparison of the in vitro permeation of 3-O-ethyl-l-ascorbic acid in human skin and in a living skin equivalent (LabSkin™). Int J Cosmet Sci 2020; 43:107-112. [PMID: 33238056 DOI: 10.1111/ics.12675] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVES The safety assessment of personal care products often entails determining dermal absorption of their ingredients. Such experiments are typically performed in human or animal skin in vitro; however, ethical and safety considerations are associated with obtaining these tissues. Several human skin equivalent models (HSEs) have been developed as alternatives to human tissue. The barrier function of such models however, is normally less developed than human skin. Here, we examine the permeability of the HSE LabSkinTM to a model compound, 3-O-ethyl-l-ascorbic acid (EA) compared with human skin. METHODS Skin uptake and permeation of EA was investigated in vitro using heat-separated human epidermis and LabSkinTM . Finite dose (5 μL cm-2 ) Franz-diffusion studies were conducted using 2 % (w/w) EA in a ternary solvent mixture comprising propylene glycol (PG), propylene glycol monolaurate (PGML), and isopropyl myristate (IPM). These excipients are commonly used in cosmetic products and they have been reported to promote permeation of EA in a different model, namely porcine skin. RESULTS Permeation of EA through LabSkinTM was evident from 2 h; however, EA permeation in human skin was not detected until 5 h. Similar amounts of EA permeated through the two membranes at time points 8, 10, 12 and 24 h (p > 0.05). The cumulative amounts of EA delivered through LabSkinTM at 24 h were 41.3 ± 2.0 µg cm-2 , corresponding to 55.1 ± 1.8 % of the applied dose. Similar amounts permeated across human skin, 49.4 ± 4.1 µg cm-2 , accounting for 58.0 ± 4.2 % of the dose applied (p > 0.05). CONCLUSION The permeation of EA in LabSkinTM compared well with results for human epidermis in terms of the permeation profiles and the cumulative amounts of EA that permeated. The data suggest that the skin barrier of the two models was similar with regard to their overall permeability to the hydrophilic active EA. The findings are promising for the use of LabSkinTM as a surrogate for human skin in permeability testing. Future studies will focus on exploring the reproducibility and robustness of LabSkinTM for delivery of other actives that span a range of physicochemical properties.
Collapse
|