1
|
Khatri K, Negi B, Bargali K, Bargali SS. Toxicological assessment of invasive Ageratina adenophora on germination and growth efficiency of native tree and crop species of Kumaun Himalaya. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:697-708. [PMID: 38886245 DOI: 10.1007/s10646-024-02768-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/07/2024] [Indexed: 06/20/2024]
Abstract
The present study was designed to assess the allelopathic potential of invasive weed Ageratina adenophora leaf extracts on seed germination and seedling development efficiency of native tree [viz. Quercus leucotrichophora A. Camus (Oak) and Pinus roxburghii Sarg. (Pine)] and crop [(Triticum aestivum L. (Wheat) and Lens culinaris Medik. (Lentil)] species of Kumaun Himalaya. Pot experiments were conducted in the glasshouse of the Botany Department, D.S.B. Campus, Kumaun University Nainital, following a Completely Randomized Block Design (CRBD) with three treatments (C1-25%, C2-50%, and C3-100% of aqueous leaf extract) and one control, each with five replicates. The experiment lasted one year for tree species and continued until the seed maturation phase for crop species. Parameters such as seed germination proportion, root and shoot measurements, biomass, and crop productivity traits were recorded accordingly. Our bioassay results indicated that the inhibitory effect of leaf extracts on the measured traits of the selected native species was proportional to the applied extract concentrations of A. adenophora. Overall, lentil among crops and oak among tree species exhibited more inhibition compared to wheat and pine, respectively. At the highest concentration, reductions of 44%, 34%, 36%, and 24% in biomass production capacity were recorded for wheat, lentil, pine, and oak, respectively, while wheat and lentil productivity decreased by up to 33% and 45%, respectively. These results suggest that water-soluble allelochemicals produced by A. adenophora may impede the establishment of selected crop and tree species in agroecosystems and forest ecosystems invaded by this weed species. However, further studies on the characterization of phytochemicals and their specific role in seed germination and growth are warranted. Furthermore, the allelopathic potential of A. adenophora can be explored for the preparation of biopesticides and nature-friendly option to improve soil health, crop productivity, and reduce environmental pollution and management of this invasive weed.
Collapse
Affiliation(s)
- Kavita Khatri
- Department of Botany, Kumaun University, Nainital, 263001, Uttarakhand, India
| | - Bhawna Negi
- Department of Botany, Kumaun University, Nainital, 263001, Uttarakhand, India
| | - Kiran Bargali
- Department of Botany, Kumaun University, Nainital, 263001, Uttarakhand, India
| | | |
Collapse
|
2
|
Wen H, Dan P, Liu T, Li Z, Chen X, Cao Y, Li Y, Yan W. Allelopathic Mechanisms in Camellia oleifera- Arachis hypogaea L. Intercropping. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19434-19444. [PMID: 38014643 DOI: 10.1021/acs.jafc.3c05788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Tree-crop intercropping is of great significance in food security, land protection, and sustainable agriculture. However, the mechanisms of allelopathy between plant species during intercropping are still limited. This study focuses on the allelopathic effects in the intercropping between Camellia oleifera and Arachis hypogaea L. in southern China. We use different parts of the C. oleifera extract to evaluate their impact on peanut seed germination. The results showed that it has inhibitory effects on peanut germination and growth, with the fruit shell having the strongest inhibitory effect. Three main allelopathic substances affecting A. hypogaea germination and growth were identified using gas chromatography-mass spectrometry (GC-MS) analysis, namely, 2,4-di-tert-butylphenol, hexanal, and benzaldehyde. Transcriptomics and metabolomics analyses revealed their effects on glutathione metabolism pathways and specific gene expression. In summary, this study reveals the allelopathic interaction mechanism between C. oleifera and A. hypogaea, which helps to better understand the role of allelopathy in intercropping practices between trees and crops.
Collapse
Affiliation(s)
- Hao Wen
- Life and Science Department, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
- Hunan Institute of Science and Technology Information, Changsha, Hunan 410004, China
| | - Peipei Dan
- Life and Science Department, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Changsha, Hunan 410004, China
| | - Ting Liu
- Life and Science Department, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Changsha, Hunan 410004, China
| | - Ziqian Li
- Life and Science Department, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Changsha, Hunan 410004, China
| | - Xiaoyong Chen
- College of Arts and Sciences, Governors State University, University Park, Illinois 60484, United States
| | - Yini Cao
- Life and Science Department, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Changsha, Hunan 410004, China
- Laboratory of Urban Forest Ecology of Hunan Province, Changsha, Hunan 410004, China
| | - Yong Li
- Life and Science Department, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Changsha, Hunan 410004, China
- Laboratory of Urban Forest Ecology of Hunan Province, Changsha, Hunan 410004, China
| | - Wende Yan
- Life and Science Department, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Changsha, Hunan 410004, China
- Laboratory of Urban Forest Ecology of Hunan Province, Changsha, Hunan 410004, China
| |
Collapse
|
3
|
Rob MM, Hossen K, Ozaki K, Teruya T, Kato-Noguchi H. Phytotoxicity and Phytotoxic Substances in Calamus tenuis Roxb. Toxins (Basel) 2023; 15:595. [PMID: 37888626 PMCID: PMC10611027 DOI: 10.3390/toxins15100595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023] Open
Abstract
Calamus tenuis is a shrub species distributed across South Asia. It grows well in diversified habitats and tends to dominate plants in the surrounding environment. The phytotoxicity of C. tenuis and the action of its phytochemicals against other plant species could explain its dominant behavior. Compounds with phytotoxic activity are in high demand as prospective sources of ecofriendly bioherbicides. Therefore, we investigated the phytotoxicity of C. tenuis. Aqueous methanol extracts of this plant species significantly limited the growth of four test plant species, two monocots (barnyard grass and timothy), and two dicots (alfalfa and cress), in a dose- and species-dependent manner. Bio-directed chromatographic isolation of the C. tenuis extracts yielded two major active substances: a novel compound, calamulactone {(S)-methyl 8-(5-oxo-2,5-dihydrofuran-2-yl) octanoate}, and 3-oxo-α-ionone. Both of the identified compounds exerted strong growth inhibitory effects on cress and timothy seedlings. The concentrations of 3-oxo-α-ionone and calamulactone required to limit the growth of the cress seedlings by 50% (I50) were 281.6-199.5 and 141.1-105.5 µM, respectively, indicating that the effect of calamulactone was stronger with lower I50 values. Similarly, the seedlings of timothy also showed a considerably higher sensitivity to calamulactone (I50: 40.5-84.4 µM) than to 3-oxo-α-ionone (I50: 107.8-144.7 µM). The findings indicated that the leaves of C. tenuis have marked growth-inhibitory potential, and could affect surrounding plants to exert dominance over the surrounding plant community. Moreover, the two identified phytotoxic substances might play a key role in the phytotoxicity of C. tenuis, and could be a template for bioherbicide development. This paper was the first to report calamulactone and its phytotoxicity.
Collapse
Affiliation(s)
- Md. Mahfuzur Rob
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki 761-0795, Japan;
- The United Graduate School of Agricultural Sciences, Ehime University, Matsuyama 790-8566, Japan
- Department of Horticulture, Faculty of Agriculture, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Kawsar Hossen
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki 761-0795, Japan;
- The United Graduate School of Agricultural Sciences, Ehime University, Matsuyama 790-8566, Japan
- Department of Agriculture, Faculty of Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Kaori Ozaki
- Graduate School of Engineering and Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan;
| | - Toshiaki Teruya
- Faculty of Education, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan;
| | - Hisashi Kato-Noguchi
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki 761-0795, Japan;
- The United Graduate School of Agricultural Sciences, Ehime University, Matsuyama 790-8566, Japan
| |
Collapse
|
4
|
Allelopathic inhibition effects and mechanism of phenolic acids to Microcystis aeruginosa. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:45388-45397. [PMID: 36705822 DOI: 10.1007/s11356-022-24992-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/22/2022] [Indexed: 01/28/2023]
Abstract
Allelochemicals are essential agents for the biological control of harmful blooms. It is crucial to identify efficient algal suppressors and understand their mechanisms. This study reports the inhibition of Microcystis aeruginosa growth by 6 phenolic acids derived from plants' secondary metabolites. The inhibitory effect of phenolic acids was significantly influenced by exposure dose and phenolic acid species. Caffeic acid has the most efficient algal inhibition ability (96 h-EC50 of 5.8 mg/L). In contrast, the other 5 analogs (cinnamic acid, p-coumaric acid, 3-hydroxycinnamic acid, ferulic acid, and isoferulic acid) showed a weak inhibition effect or promotion effect with the exposure dose of 5-100 mg/L. ROS and chlorophyll a content tests combined with metabolomics analysis revealed that caffeic acid could induce the ROS accumulation of M. aeruginosa. They mainly disturbed nucleotide, amino acid, and fatty acid metabolism, leading to the downregulation of most metabolites, including toxins of microcystin LR and cyanopeptolin A, and the precursors of some unpleasant terpenoids. It has been suggested that caffeic acid is an effective agent for controlling M. aeruginosa blooms.
Collapse
|
5
|
Soriano G, Siciliano A, Fernández-Aparicio M, Cala Peralta A, Masi M, Moreno-Robles A, Guida M, Cimmino A. Iridoid Glycosides Isolated from Bellardia trixago Identified as Inhibitors of Orobanche cumana Radicle Growth. Toxins (Basel) 2022; 14:toxins14080559. [PMID: 36006221 PMCID: PMC9414233 DOI: 10.3390/toxins14080559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/13/2022] [Accepted: 08/14/2022] [Indexed: 01/16/2023] Open
Abstract
Orobanche cumana is an obligate holoparasitic plant with noxious effects in sunflower crops. Bellardia trixago is a facultative hemiparasitic plant that infects ruderal plants without noxious significance in agriculture and is known to produce a wide spectrum of bioactive metabolites. The objective of this study was to evaluate the allelopathic effects of B. trixago on the growth of O. cumana seedlings. Three different extracts using solvents of increasing polarity (n-hexane, dichloromethane and ethyl acetate) were prepared from the flowers, aerial green organs and roots of two populations, a white-flowered and a yellow-flowered population of B. trixago, both collected in southern Spain. Each extract was studied using allelopathic screenings on O. cumana which resulted in the identification of allelopathic activity of the ethyl acetate extracts against Orobanche radicles. Five iridoid glycosides were isolated together with benzoic acid from the ethyl acetate extract of aerial green organs by bio-guided purification. These compounds were identified as bartsioside, melampyroside, mussaenoside, gardoside methyl ester and aucubin. Among them, melampyroside was found to be the most abundant constituent in the extract (44.3% w/w), as well as the most phytotoxic iridoid on O. cumana radicle, showing a 72.6% inhibition of radicle growth. This activity of melampyroside was significantly high when compared with the inhibitory activity of benzoic acid (25.9%), a phenolic acid with known allelopathic activity against weeds. The ecotoxicological profile of melampyroside was evaluated using organisms representing different trophic levels of the aquatic and terrestrial ecosystems, namely producers (green freshwater algae Raphidocelis subcapitata and macrophyte Lepidium sativum), consumers (water flea Daphnia magna and nematode Caenorhabditis elegans) and decomposers (bacterium Aliivibrio fischeri). The ecotoxicity of melampyroside differed significantly depending on the test organism showing the highest toxicity to daphnia, nematodes and bacteria, and a lower toxicity to algae and macrophytes. The findings of the present study may provide useful information for the generation of green alternatives to synthetic herbicides for the control of O. cumana.
Collapse
Affiliation(s)
- Gabriele Soriano
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy
| | - Antonietta Siciliano
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte Sant’Angelo, Via Cintia 4, 80126 Naples, Italy
| | - Mónica Fernández-Aparicio
- Department of Plant Breeding, Institute for Sustainable Agriculture (IAS), CSIC, Avenida Menéndez Pidal s/n, 14004 Córdoba, Spain
- Correspondence: (M.F.-A.); (M.M.)
| | - Antonio Cala Peralta
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy
- Allelopathy Group, Department of Organic Chemistry, School of Science, Institute of Biomolecules (INBIO), University of Cádiz, C/República Saharaui 7, 11510 Cádiz, Spain
| | - Marco Masi
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy
- Correspondence: (M.F.-A.); (M.M.)
| | - Antonio Moreno-Robles
- Department of Electronics and Computer Engineering, University of Córdoba, Campus de Rabanales, 14071 Córdoba, Spain
| | - Marco Guida
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte Sant’Angelo, Via Cintia 4, 80126 Naples, Italy
| | - Alessio Cimmino
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy
| |
Collapse
|
6
|
Shen S, Ma G, Xu G, Li D, Jin G, Yang S, Clements DR, Chen A, Wen L, Zhang F, Ye M. Allelochemicals Identified From Sweet Potato ( Ipomoea batatas) and Their Allelopathic Effects on Invasive Alien Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:823947. [PMID: 35498714 PMCID: PMC9040068 DOI: 10.3389/fpls.2022.823947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Sweet potato [Ipomoea batatas (L.) Lam] is grown as important cash and food crop worldwide and has been shown to exhibit allelopathic effects on other plants. However, its metabolome has not been studied extensively, particularly with respect to the production of phytotoxic bioactive secondary products. In this study, the chemical composition of petroleum ether extract of sweet potato was characterized, and the morphological and physiological effects of some individual components against four invasive alien weeds Bidens pilosa L., Galinsoga parviflora Cav., Lolium multiflorum Lam., and Phalaris minor Retz. were determined. Twenty-one components were identified by GS-MS, constituting 96.08% of petroleum ether extract in sweet potato. The major components were palmitic acid (PA) (17.48%), ethyl linoleate (EL) (13.19%), linoleic acid (LA) (12.55%), ethyl palmitate (EP) (11.77%), ethyl linolenate (ELL) (8.29%) oleic acid (5.82%), ethyl stearate (4.19%), and 3-methylphenol acetate (3.19%). The five most abundant compounds exhibited strong inhibition activity against the four invasive weeds tested. The highest inhibition rates were seen for LA, followed by PA and EP, respectively. Catalase (CAT), malondialdehyde (MDA), and peroxidase (POD) content of L. multiflorum were increased by the three allelochemicals, i.e., LA, PA and EP, but superoxide dismutase (SOD), chlorophyll-a and chlorophyll-b levels declined. Overall, the combined impact of all five compounds could be quite effective in suppressing the invasive weeds of concern.
Collapse
Affiliation(s)
- Shicai Shen
- Key Laboratory of Prevention and Control of Biological Invasions, Ministry of Agriculture and Rural Affairs of China, Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests of Yunnan Province, Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Guangzong Ma
- Key Laboratory of Prevention and Control of Biological Invasions, Ministry of Agriculture and Rural Affairs of China, Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests of Yunnan Province, Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Gaofeng Xu
- Key Laboratory of Prevention and Control of Biological Invasions, Ministry of Agriculture and Rural Affairs of China, Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests of Yunnan Province, Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Diyu Li
- Key Laboratory of Prevention and Control of Biological Invasions, Ministry of Agriculture and Rural Affairs of China, Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests of Yunnan Province, Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Guimei Jin
- Key Laboratory of Prevention and Control of Biological Invasions, Ministry of Agriculture and Rural Affairs of China, Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests of Yunnan Province, Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Shaosong Yang
- Key Laboratory of Prevention and Control of Biological Invasions, Ministry of Agriculture and Rural Affairs of China, Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests of Yunnan Province, Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | | | - Aidong Chen
- Key Laboratory of Prevention and Control of Biological Invasions, Ministry of Agriculture and Rural Affairs of China, Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests of Yunnan Province, Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Lina Wen
- Key Laboratory of Prevention and Control of Biological Invasions, Ministry of Agriculture and Rural Affairs of China, Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests of Yunnan Province, Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Fudou Zhang
- Key Laboratory of Prevention and Control of Biological Invasions, Ministry of Agriculture and Rural Affairs of China, Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests of Yunnan Province, Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Min Ye
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
7
|
Wang C, Liu Z, Wang Z, Pang W, Zhang L, Wen Z, Zhao Y, Sun J, Wang ZY, Yang C. Effects of autotoxicity and allelopathy on seed germination and seedling growth in Medicago truncatula. FRONTIERS IN PLANT SCIENCE 2022; 13:908426. [PMID: 35909791 PMCID: PMC9335049 DOI: 10.3389/fpls.2022.908426] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/24/2022] [Indexed: 05/13/2023]
Abstract
Autotoxicity is a form of intraspecific allelopathy, in which a plant species inhibits the establishment or growth of the same species through the release of toxic chemical compounds into the environment. The phenomenon of autotoxicity in crops is best traced in alfalfa (Medicago sativa). A close relative of alfalfa, M. truncatula, has been developed into an excellent model species for leguminous plants. However, it is not known whether M. truncatula has autotoxicity. In this study, M. truncatula root exudates showed a negative impact on the growth of M. truncatula seedlings, indicating autotoxicity. Detailed analyses with plant extracts from M. truncatula and alfalfa revealed varying degrees of suppression effects in the two species. The extracts negatively affected seed germination potential, germination rate, radicle length, hypocotyl length, synthetic allelopathic effect index, plant height, root growth, fresh weight, dry weight, net photosynthetic rate, transpiration rate, and stomatal conductance in both M. truncatula and alfalfa. The results demonstrated that autotoxicity and allelopathic effects exist in M. truncatula. This opens up a new way to use M. truncatula as a model species to carry out in-depth studies of autotoxicity and allelopathy to elucidate biochemical pathways of allelochemicals and molecular networks controlling biosynthesis of the chemicals.
Collapse
|
8
|
Staszek P, Krasuska U, Ciacka K, Gniazdowska A. ROS Metabolism Perturbation as an Element of Mode of Action of Allelochemicals. Antioxidants (Basel) 2021; 10:antiox10111648. [PMID: 34829519 PMCID: PMC8614981 DOI: 10.3390/antiox10111648] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/10/2021] [Accepted: 10/18/2021] [Indexed: 11/16/2022] Open
Abstract
The allelopathic interaction between plants is one of the elements that influences plant communities. It has been commonly studied by applying tissue extracts onto the acceptors or by treating them with isolated allelotoxins. Despite descriptive observations useful for agricultural practice, data describing the molecular mode of action of allelotoxins cannot be found. Due to the development of -omic techniques, we have an opportunity to investigate specific reactive oxygen species (ROS)-dependent changes in proteome or transcriptome that are induced by allelochemicals. The aim of our review is to summarize data on the ROS-induced modification in acceptor plants in response to allelopathic plants or isolated allelochemicals. We present the idea of how ROS are involved in the hormesis and plant autotoxicity phenomena. As an example of an -omic approach in studies of the mode of action of allelopatic compounds, we describe the influence of meta-tyrosine, an allelochemical exudated from roots of fescues, on nitration-one of nitro-oxidative posttranslational protein modification in the roots of tomato plants. We conclude that ROS overproduction and an induction of oxidative stress are general plants' responses to various allelochemicals, thus modification in ROS metabolisms is regarded as an indirect mode of action of allelochemicals.
Collapse
|
9
|
The Allelopathic Potential of Rosa blanda Aiton on Selected Wild-Growing Native and Cultivated Plants in Europe. PLANTS 2021; 10:plants10091806. [PMID: 34579339 PMCID: PMC8471273 DOI: 10.3390/plants10091806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 11/17/2022]
Abstract
Invasive plant species are responsible for changing colonized ecosystems by occupying new areas and creating a threat to the functioning of the native flora and fauna populations. Alien plants can produce allelochemicals, substances completely new to indigenous communities. This study investigated the germination seed reactions of Festuca rubra L. and Raphanus sativus L. var. radicula Pers. cv. Rowa on the extracts from the roots, stalks, leaves, and flowers of Rosa blanda. Aqueous extracts at concentrations of 1%, 2.5%, and 5% were used in order to determine the allelopathic potential of this alien rose for Europe. With the increase in the concentration of extracts, a decrease in the germination capacity of seeds of the tested species was observed. R. blanda extracts inhibited the growth of seedlings. Depending on the concentration and type of the extract, changes in biomass and water content in Red Fescue and Red Radish seedlings were also shown. The highest differences in the electrolyte leakages were noted in seedlings treated with 5% rose extracts. The study showed that the aqueous extracts of R. blanda leaves and flowers had the greatest allelopathic potential.
Collapse
|
10
|
Identification and comparison of allelopathic effects from leaf and flower volatiles of the invasive plants Mikania micrantha. CHEMOECOLOGY 2021. [DOI: 10.1007/s00049-021-00356-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
The Impacts of Woolly Cupgrass on the Antioxidative System and Growth of a Maize Hybrid. PLANTS 2021; 10:plants10050982. [PMID: 34069010 PMCID: PMC8156630 DOI: 10.3390/plants10050982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/04/2022]
Abstract
Woolly cupgrass (Eriochloa villosa (Thunb.) Kunth) is a new invasive weed in Hungary. This study was conducted to elucidate the effects of this weed on the biochemistry and growth of maize (Zea mays L. cv. Armagnac) under greenhouse conditions. Activities of the antioxidative enzymes (ascorbate peroxidase (APX), guaiacol peroxidase (POD), superoxide dismutase (SOD)), the contents of malondialdehyde (MDA), and protein were measured in the shoots and roots, whereas the content of the photosynthetic pigments was measured only in the shoots. The measured growth parameters included plant height, root length, root volume, root and shoot dry weight, and stem diameter. Results showed the allelopathic effects of woolly cupgrass on maize, with significant decreases in plant height, root length, root volume, and root dry weight. Woolly cupgrass infestation (WCI) induced significantly higher activities of APX and SOD in the shoots, whereas POD was only induced in the roots. The contents of chlorophyll-a, total chlorophyll (including relative chlorophyll), carotenoids, and root protein were substantially reduced by WCI, except for the leaf chlorophyll-b. The results suggest that high APX and SOD activities in the shoots could be involved in stabilizing the leaf chlorophyll-b, chlorophyll a/b, shoot protein, and shoot dry weight because all of these parameters were not inhibited when these two enzymes were induced. In contrast, high activity of POD in the roots is not effective in counteracting allelopathy. Therefore, it would be worthwhile to further investigate if an increase in the activities of APX and SOD in the shoots of WCI maize is responsible for stabilizing leaf chlorophyll-b, shoot protein, and shoot dry weight, which could contribute to improved maize yield under WCI.
Collapse
|
12
|
Lal R, Kaur A, Kaur S, Batish DR, Singh HP, Sharma M, Kohli RK. Nature of phytotoxic interference of alien weed 'Calyptocarpus vialis' against some crop plants. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:334. [PMID: 33973105 DOI: 10.1007/s10661-021-09092-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 04/19/2021] [Indexed: 06/12/2023]
Abstract
Calyptocarpus vialis (syn. Synedrella vialis; Asteraceae), a native of the tropical Americas, has acquired an invasive status in the eastern Asia and Africa and, of late, in India. It is an annual herbaceous weed that forms a dominant ground cover due to its prostrate expansion and interferes with the growth of other plant species. However, the reasons for this interference are largely unknown. Therefore, we examined the allelopathic interference of C. vialis via leachation and residue degradation on the emergence, growth, and development of three crop species (Brassica nigra, Triticum aestivum, and Avena sativa). In a laboratory bioassay, the leachates (0.5-4%) of C. vialis exhibited a dose-dependent inhibitory effect on various growth parameters of the test plants. Similarly, under screenhouse, C. vialis-amended soil (1-4%) affected the growth of test species in a dose-dependent manner. Further, the phytotoxicity of the residues of C. vialis was examined using rhizospheric soil (RS) and residue-amended soil (RAS). It was observed that RAS exerted the maximum allelopathic effect on the test species accompanied by significant changes in pH, electrical conductivity, and total water-soluble phenolic content, as compared with the control soil (CS) and RS. Liquid chromatography and mass spectroscopy analyses confirmed the presence of eleven allelochemicals as the major phytotoxins. The study demonstrated that C. vialis exerts strong phytotoxic effects on other plants through the release of potent allelochemicals, both via leachation and residue degradation.
Collapse
Affiliation(s)
- Roop Lal
- Department of Botany, Panjab University, Chandigarh, 160 014, India
| | - Amarpreet Kaur
- Department of Botany, Panjab University, Chandigarh, 160 014, India
| | - Shalinder Kaur
- Department of Botany, Panjab University, Chandigarh, 160 014, India.
| | - Daizy Rani Batish
- Department of Botany, Panjab University, Chandigarh, 160 014, India.
| | - Harminder Pal Singh
- Department of Environment Studies, Panjab University, Chandigarh, 160 014, India
| | - Mansi Sharma
- Department of Environment Studies, Panjab University, Chandigarh, 160 014, India
| | - Ravinder K Kohli
- Department of Botany, Panjab University, Chandigarh, 160 014, India
| |
Collapse
|
13
|
Hussain MI, El-Sheikh MA, Reigosa MJ. Allelopathic Potential of Aqueous Extract from Acacia melanoxylon R. Br. on Lactuca sativa. PLANTS 2020; 9:plants9091228. [PMID: 32961867 PMCID: PMC7570383 DOI: 10.3390/plants9091228] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/13/2020] [Accepted: 09/14/2020] [Indexed: 12/28/2022]
Abstract
We studied the polyphenol (phenolic compounds and flavonoids) composition and allelopathic effects of Acacia melanoxylon R. Br. aerial foliage aqueous extract (0%, 25%, 50%, 75% and 100%) on the seedling growth and plant biomass of the general biotest species, lettuce (Lactuca sativa). Mean leaf fresh weight, leaf dry weight, root fresh weight and root dry weight were decreased following exposure to Acacia aerial foliage, flowers aqueous extract (AFE) and phyllodes aqueous extract (APE) after 6 days. The reduction in plant dry biomass was more than 50% following treatment with AFE. The decrease in mean root length was approximately 37.7% and 29.20% following treatment with Acacia flowers extract (AFE) at 75% and 100% concentration, respectively. Root dry weight of L. sativa was reduced by both flowers and phyllodes extract. The reduction of protein contents in lettuce leaves following Acacia foliage extract proved that both AFE and APE exhibit polyphenols that causes the toxicity which led to decrease in leaf protein contents. High-Performance Liquid Chromatography (HPLC) was employed to analyze the A. melanoxylon flowers and phyllodes. A total of 13 compounds (accounting for most abundant compounds in flowers and phyllodes) include different flavonoids and phenolic compounds. The phytochemical compounds detected were: Gallic acid, protocatechuic acid, p-hydroxybenzoic acid, p-hydroxybenzaldehyde, vanillic acid, syringic acid, p-coumaric acid, and ferulic acid. The major flavonoid compounds identified include rutin, luteolin, apigenin, and catechin. Allelopathic effects of flower and phyllodes extracts from A. melanoxylon may be due to the presence of above compounds identified by HPLC analysis.
Collapse
Affiliation(s)
- M. Iftikhar Hussain
- Department of Plant Biology and Soil Science, Faculty of Biology, University of Vigo, Campus Lagoas-Marcosende, E-36310 Vigo, Spain;
- CITACA, Agri-Food Research and Transfer Cluster, Campus da Auga, University of Vigo, 32004 Ourense, Spain
- Correspondence:
| | - Mohamed A. El-Sheikh
- Botany & Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Manuel J. Reigosa
- Department of Plant Biology and Soil Science, Faculty of Biology, University of Vigo, Campus Lagoas-Marcosende, E-36310 Vigo, Spain;
| |
Collapse
|