1
|
Song H, Dong M, Xu W, Xie C, Zhang Y, Huang H, Zhang K, Han Y, Liu Y, Wei L, Wang X. Regulation of Biomineralization and Autophagy by the Stress-Sensing Transcription Factor CgRunx1 in Crassostrea gigas Under Daylight Ultraviolet B Radiation. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024:10.1007/s10126-024-10370-4. [PMID: 39235651 DOI: 10.1007/s10126-024-10370-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
As human activities increase and environmental changes persist, increased ultraviolet B (UVB) radiation in aquatic ecosystems poses significant threats to aquatic life. This study, through transcriptomic analysis of the mantle tissue of Crassostrea gigas following UVB radiation exposure, identified and validated two key transcription factors, CgRunx1 and CgCBFβ. The highest expression levels of CgRunx1 and CgCBFβ in the mantle suggest their pivotal roles in this tissue. Co-immunoprecipitation experiments revealed that CgRunx1 and CgCBFβ could form heterodimers and interact with each other. Furthermore, this study assessed the impact of UVB radiation on the levels of reactive oxygen species of the C. gigas, speculating that CgRunx1, as a potential redox-sensitive transcription factor, might be regulated by intracellular ROS. Through screening and binding site prediction analysis of target genes, coupled with dual-luciferase reporter assays, we verified that CgRunx1 might participate in regulating the biomineralization and autophagy processes in C. gigas by activating the transcriptional expression of target genes Transport and Golgi organization 1 and V-type proton ATPase catalytic subunit A. These findings provide new insights into the molecular response mechanisms of the C. gigas to UVB radiation and lay an important foundation for studying the adaptive evolution of bivalves to environmental stress.
Collapse
Affiliation(s)
- Hongce Song
- School of Fisheries, Ludong University, No.186 Hongqizhong Road, Zhifu District, Yantai, 264025, Shandong Province, China
| | - Meiyun Dong
- School of Fisheries, Ludong University, No.186 Hongqizhong Road, Zhifu District, Yantai, 264025, Shandong Province, China
| | - Wenwen Xu
- School of Fisheries, Ludong University, No.186 Hongqizhong Road, Zhifu District, Yantai, 264025, Shandong Province, China
- Rushan Marine Economy and Development Center, Rushan, 264599, China
| | - Chaoyi Xie
- School of Fisheries, Ludong University, No.186 Hongqizhong Road, Zhifu District, Yantai, 264025, Shandong Province, China
| | - Yuxuan Zhang
- School of Fisheries, Ludong University, No.186 Hongqizhong Road, Zhifu District, Yantai, 264025, Shandong Province, China
| | - Haifeng Huang
- School of Fisheries, Ludong University, No.186 Hongqizhong Road, Zhifu District, Yantai, 264025, Shandong Province, China
| | - Kai Zhang
- Binzhou Ocean Development Research Institute, Binzhou, 256600, China
| | - Yijing Han
- School of Fisheries, Ludong University, No.186 Hongqizhong Road, Zhifu District, Yantai, 264025, Shandong Province, China
| | - Yaqiong Liu
- School of Fisheries, Ludong University, No.186 Hongqizhong Road, Zhifu District, Yantai, 264025, Shandong Province, China
| | - Lei Wei
- School of Fisheries, Ludong University, No.186 Hongqizhong Road, Zhifu District, Yantai, 264025, Shandong Province, China.
| | - Xiaotong Wang
- School of Fisheries, Ludong University, No.186 Hongqizhong Road, Zhifu District, Yantai, 264025, Shandong Province, China.
| |
Collapse
|
2
|
Hu B, Yu H, Du S, Li Q. Protoporphyrin IX metabolism mediated via translocator protein (CgTspO) involved in orange shell coloration of pacific oyster (Crassostrea gigas). Int J Biol Macromol 2024; 276:134020. [PMID: 39038584 DOI: 10.1016/j.ijbiomac.2024.134020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/06/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024]
Abstract
Mollusc shell color polymorphism is influenced by various factors. Pigments secreted in vivo by animals play a critical role in shell coloration. Among the different shell-color hues, orange pigmentation has been partially attributed to porphyrins. However, the detailed causal relationship between porphyrins and orange-shell phenotype in molluscs remains largely unexplored. The various strains of Pacific oyster (Crassostrea gigas) with different shell color provide useful models to study the molecular regulation of mollusc coloration. Accordingly, oysters with orange and gold-shells, exhibiting distinct porphyrin distributions, were selected for analysis of total metabolites and gene expression profile through mantle metabolomic and transcriptomic studies. Translocator protein (TspO) and protoporphyrin IX (PPIX) were identified as potential factors influencing oyster shell-color. The concentration of PPIX was measured using HPLC, while expression profiling of CgTspO was analyzed by qPCR, in situ hybridization, Western blotting, and immunofluorescence techniques. Moreover, the roles of CgTspO in regulating PPIX metabolism and affecting the orange-shell-coloration were investigated in vitro and in vivo. These studies indicate that PPIX and its associated metabolic protein, CgTspO may serve as new regulators of orange-shell-coloration in C. gigas. Data of this study offer new insights into oyster shell coloration and enhancing understandings of mollusc shell color polymorphism.
Collapse
Affiliation(s)
- Biyang Hu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Hong Yu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Shaojun Du
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
3
|
Sun Y, Liu X, Shan X, Wang Y, Zhong C, Lu C, Guan B, Yao S, Huo Y, Sun R, Wei M, Dong Z. Comprehensive investigation of differentially expressed ncRNAs, mRNAs, and their ceRNA networks in the regulation of shell color formation in clam, Cyclina sinensis. Gene 2024; 911:148346. [PMID: 38452877 DOI: 10.1016/j.gene.2024.148346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
Noncoding RNAs (ncRNAs) have gained significant attention in recent years due to their crucial roles in various biological processes. However, our understanding of the expression and functions of ncRNAs in Cyclina sinensis, an economically important marine bivalve, remains limited. This study aimed to address this knowledge gap by systematically identifying ncRNAs in the mantles of C. sinensis with purple and white shells. Through our analysis, we identified a differential expression of 1244 mRNAs, 196 lncRNAs, 49 circRNAs, and 23 miRNAs between purple- and white-shell clams. Functional enrichment analysis revealed the involvement of these differentially expressed ncRNAs in biomineralization and pigmentation processes. To gain further insights into the regulatory mechanisms underlying shell color formation, we established competitive endogenous RNA (ceRNA) networks. These networks allowed us to identify targeted differentially expressed miRNAs (DEMis) and genes associated with shell color formation. Based on the ceRNA networks, we obtained an up-down-up lncRNA-miRNA-mRNA network consisting of 13 upregulated lncRNAs and a circRNA-miRNA-mRNA network comprising three upregulated circRNAs (novel_circ_0004787, novel_circ_0001165, novel_circ_0000245). Through these networks, we identified and selected an upregulated novel gene (evm.TU.Hic_asm_7.988) and a downregulated sponge miRNA (hru-miR-1985) as potential contributors to shell color regulation. In summary, the present investigation offers a comprehensive analysis of ncRNA catalogs expressed in the clam mantle of C. sinensis. The findings enhance our comprehension of the molecular mechanisms governing shell coloration and offer new perspectives for selective breeding of C. sinensis in the future.
Collapse
Affiliation(s)
- Yuyan Sun
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222000, China; Jiangsu Marine Resources Development Institute, Lianyungang 222000, China; Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222000, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222000, China
| | - Xuxiao Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222000, China; Jiangsu Marine Resources Development Institute, Lianyungang 222000, China; Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222000, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222000, China
| | - Xin Shan
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222000, China; Jiangsu Marine Resources Development Institute, Lianyungang 222000, China; Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222000, China
| | - Yiwo Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222000, China; Jiangsu Marine Resources Development Institute, Lianyungang 222000, China; Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222000, China
| | - Chongyu Zhong
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222000, China; Jiangsu Marine Resources Development Institute, Lianyungang 222000, China; Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222000, China
| | - Chaofa Lu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222000, China; Jiangsu Marine Resources Development Institute, Lianyungang 222000, China; Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222000, China
| | - Bin Guan
- Jiangsu Marine Resources Development Institute, Lianyungang 222000, China
| | - Shun Yao
- Jiangsu Marine Resources Development Institute, Lianyungang 222000, China
| | - Yujia Huo
- Jiangsu Marine Resources Development Institute, Lianyungang 222000, China
| | - Runkai Sun
- Jiangsu Marine Resources Development Institute, Lianyungang 222000, China
| | - Min Wei
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222000, China; Jiangsu Marine Resources Development Institute, Lianyungang 222000, China; Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222000, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222000, China.
| | - Zhiguo Dong
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222000, China; Jiangsu Marine Resources Development Institute, Lianyungang 222000, China; Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222000, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222000, China.
| |
Collapse
|
4
|
Li M, Tang J, Yuan M, Huang B, Liu Y, Wei L, Han Y, Zhang X, Wang X, Yu G, Sang X, Fan N, Cai S, Zheng Y, Zhang M, Wang X. Outer fold is sole effective tissue among three mantle folds with regard to oyster shell colour. Int J Biol Macromol 2023; 241:124655. [PMID: 37121412 DOI: 10.1016/j.ijbiomac.2023.124655] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/02/2023]
Abstract
Molluscs constitute the second largest phylum of animals in the world, and shell colour is one of their most important phenotypic characteristics. In this study, we found among three folds on the mantle edge of oyster, only the outer fold had the same colour as the shell. Transcriptome and mantle cutting experiment indicated that the outer fold may be mainly reflected in chitin framework formation and biomineralisation. There were obvious differences in SEM structure and protein composition between the black and white shell periostraca. The black shell periostraca had more proteins related to melanin biosynthesis and chitin binding. Additionally, we identified an uncharacterized protein gene (named as CgCBP) ultra-highly expressed only in the black outer fold and confirmed its function of chitin-binding and CaCO3 precipitation promoting. RNAi also indicated that CgCBP knockdown could change the structure of shell periostracum and reduce shell pigmentation. All these results suggest that the mantle outer fold plays multiple key roles in shell periostraca bioprocessing, and shell periostracum structure affected by chitin-binding protein is functionally correlated with shell pigmentation. The investigation of oyster shell periostracum structure and shell colour will provide a better understanding in pigmentation during biological mineralisation in molluscs.
Collapse
Affiliation(s)
- Mai Li
- School of Agriculture, Ludong University, Yantai, China
| | - Juyan Tang
- School of Agriculture, Ludong University, Yantai, China
| | | | - Baoyu Huang
- School of Agriculture, Ludong University, Yantai, China
| | - Yaqiong Liu
- School of Agriculture, Ludong University, Yantai, China
| | - Lei Wei
- School of Agriculture, Ludong University, Yantai, China
| | - Yijing Han
- School of Agriculture, Ludong University, Yantai, China
| | - Xuekai Zhang
- School of Agriculture, Ludong University, Yantai, China
| | - Xiaona Wang
- School of Agriculture, Ludong University, Yantai, China
| | - Guoxu Yu
- Changdao National Marine Park Management Center, Yantai, China
| | - Xiuxiu Sang
- School of Agriculture, Ludong University, Yantai, China
| | - Nini Fan
- Changdao Enhancement and Experiment Station, Chinese Academy of Fishery Sciences, Yantai, China
| | - Shuai Cai
- Changdao Enhancement and Experiment Station, Chinese Academy of Fishery Sciences, Yantai, China
| | - Yanxin Zheng
- Changdao Enhancement and Experiment Station, Chinese Academy of Fishery Sciences, Yantai, China
| | - Meiwei Zhang
- School of Agriculture, Ludong University, Yantai, China.
| | - Xiaotong Wang
- School of Agriculture, Ludong University, Yantai, China.
| |
Collapse
|
5
|
Identification of a coproporphyrinogen-III oxidase gene and its correlation with nacre color in Hyriopsis cumingii. PLoS One 2022; 17:e0265318. [PMID: 35312719 PMCID: PMC8936452 DOI: 10.1371/journal.pone.0265318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 02/28/2022] [Indexed: 11/19/2022] Open
Abstract
Pearl color is an important factor influencing pearl value, and is affected by the nacre color of the shell in Hyriopsis cumingii. Coproporphyrinogen-III oxidase (CPOX) is a key enzyme in porphyrin synthesis, and porphyrins are involved in color formation in different organisms, including in the nacre color of mussels. In this study, a CPOX gene (HcCPOX) was identified from H. cumingii, and its amino acid sequence was found to contain a coprogen-oxidase domain. HcCPOX mRNA was expressed widely in the tissues of white and purple mussels, and the highest expression was found in the gill, followed by the fringe mantle. The expression of HcCPOX in all tissues of purple mussels (except in the middle mantle) was higher than that of white mussels. Strong hybridization signals for HcCPOX were observed in the dorsal epithelial cells of the outer fold of the mantle. The activity of CPOX in the gill, fringe mantle, and foot of purple mussels was significantly higher than that in white mussels. Moreover, the expression of HcCPOX and CPOX activity were decreased in RNA interference experiments. The findings indicate that HcCPOX might contributes to nacre color formation in H. cumingii by being involved in porphyrin synthesis.
Collapse
|
6
|
Kapranova LL, Ryabushko VI, Kapranov SV, Lishaev VN, Nekhoroshev MV. Elemental Composition of Gonads, Gametes and Larvae in Black and Brown Morphs of the Bivalve Mollusk Mytilus galloprovincialis LAM. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021060090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Xu Q, Nie H, Yin Z, Zhang Y, Huo Z, Yan X. MiRNA-mRNA Integration Analysis Reveals the Regulatory Roles of MiRNAs in Shell Pigmentation of the Manila clam (Ruditapes philippinarum). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:976-993. [PMID: 34773538 DOI: 10.1007/s10126-021-10080-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
The shell color of the Manila clam (Ruditapes philippinarum) is an economically important trait. We used high-throughput sequencing and transcriptome analysis to study the molecular mechanisms that underlie shell color formation and regulation in this species. We constructed small RNA libraries from mantle tissues from four shell color strains of Manila clam, subjected them to high-throughput sequencing. Notably, the results suggested that a number of pigment-associated genes including Mitf, HERC2, were negatively regulated by nvi-miR-2a, tgu-miR-133-3p, respectively. They might be involved in melanin formation via the activation of the melanogenesis pathway. And aae-miR-71-5p and dme-miR-7-5p linked to shell formation-related genes such as Calmodulin and IMSP3 were considered to participate in the calcium signaling pathway. We then used quantitative PCR to verify the candidate miRNAs and target genes in different shell color groups. Our results indicated that miR-7, miR-71, and miR-133 may regulate target mRNAs to participate in shell color pigmentation. These results provide the foundation to further characterize miRNA effects on the regulation of shell color and have significant implications for the breeding of new varieties of clams.
Collapse
Affiliation(s)
- Qiaoyue Xu
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Hongtao Nie
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China.
| | - Zhihui Yin
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Yanming Zhang
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Zhongming Huo
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Xiwu Yan
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
8
|
Bonnard M, Boury B, Parrot I. Xanthurenic Acid in the Shell Purple Patterns of Crassostrea gigas: First Evidence of an Ommochrome Metabolite in a Mollusk Shell. Molecules 2021; 26:7263. [PMID: 34885845 PMCID: PMC8658808 DOI: 10.3390/molecules26237263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/11/2021] [Accepted: 11/26/2021] [Indexed: 11/16/2022] Open
Abstract
Ommochromes are one of the least studied groups of natural pigments, frequently confused with melanin and, so far, exclusively found in invertebrates such as cephalopods and butterflies. In this study focused on the purple color of the shells of a mollusk, Crassostrea gigas, the first evidence of a metabolite of ommochromes, xanthurenic acid (XA), was obtained by liquid chromatography combined with mass spectrometry (UPLC-MS). In addition to XA and various porphyrins previously identified, a second group of high molecular weight acid-soluble pigments (HMASP) has been identified with physicochemical and structural characteristics similar to those of ommochromes. In addition, fragmentation of HMASP by tandem mass spectrometry (MS/MS) has revealed a substructure common to XA and ommochromes of the ommatin type. Furthermore, the presence of melanins was excluded by the absence of characteristic by-products among the oxidation residues of HMASP. Altogether, these results show that the purple color of the shells of Crassostrea gigas is a complex association of porphyrins and ommochromes of potentially ommatin or ommin type.
Collapse
Affiliation(s)
- Michel Bonnard
- IBMM, University of Montpellier, CNRS, ENSCM, 34095 Montpellier, France;
- TARBOURIECH-MEDITHAU, 34340 Marseillan, France
| | - Bruno Boury
- ICGM, University of Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| | - Isabelle Parrot
- IBMM, University of Montpellier, CNRS, ENSCM, 34095 Montpellier, France;
| |
Collapse
|
9
|
Hu B, Li Q, Yu H. RNA Interference by Ingested Dsrna-Expressing Bacteria to Study Porphyrin Pigmentation in Crassostrea gigas. Int J Mol Sci 2021; 22:ijms22116120. [PMID: 34204154 PMCID: PMC8201132 DOI: 10.3390/ijms22116120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/24/2021] [Accepted: 06/03/2021] [Indexed: 11/16/2022] Open
Abstract
Porphyrins are a widespread group of pigments in nature which are believed to contribute to shell colors in mollusks. Previous studies have provided candidate genes for porphyrin shell coloration, however, the linkage analysis between functional genes and porphyrin pigmentation remains unclear in mollusks. RNA interference is a powerful molecular tool for analyzing the loss of functions of genes in vivo and alter gene expression. In this study, we used unicellular alga Platymonas subcordiformis and Nitzschia closterium f. minutissima as vectors to feed oysters with Escherichia coli strain HT115 engineered to express double-stranded RNAs targeting specific genes involved in porphyrin synthesis. A strain of Crassostrea gigas with orange shell was used to target key haem pathway genes expression using the aforementioned approach. We show here that feeding the oysters with E. coli, containing dsRNA targeting pigmentation genes, can cause changes in the color of the newly deposited shell. For example, the RNAi knockdown of CgALAS and CgPBGD resulted in the loss of uroporphyrin pigmentation from the shell due to the accumulation of the pigment in the oyster's mantle. The study probed the crucial role of ALAS and PBGD genes potential functions of uroporphyrin production and shell color pigmentation in C. gigas.
Collapse
Affiliation(s)
- Biyang Hu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; (B.H.); (H.Y.)
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; (B.H.); (H.Y.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Correspondence:
| | - Hong Yu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; (B.H.); (H.Y.)
| |
Collapse
|
10
|
Hu B, Li Q, Yu H, Du S. Identification and characterization of key haem pathway genes associated with the synthesis of porphyrin in Pacific oyster (Crassostrea gigas). Comp Biochem Physiol B Biochem Mol Biol 2021; 255:110595. [PMID: 33753220 DOI: 10.1016/j.cbpb.2021.110595] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 03/10/2021] [Accepted: 03/15/2021] [Indexed: 12/13/2022]
Abstract
Molluscs exhibit diverse shell colors. The molecular regulation of shell coloration is however not well understood. To investigate the connection of shell coloration with pigment synthesis, we analyzed the distribution of porphyrins, a widespread group of pigments in nature, in four Pacific oyster strains of different shell colors including black, orange, golden, and white. The porphyrin distribution was analyzed in oyster mantles and shells by fluorescence imaging and UV spectrophotometer. The results showed that red fluorescence emitted by porphyrins under the UV light was detected only on the nacre of the orange-shell strain and mantles of orange, black and white-shell strains. Extracts from newly deposit shell, nacre and mantle tissue from orange-shell specimens showed peaks in UV-vis spectra that are characteristic of porphyrins, but these were not observed for the other shell-color strains. In addition, genes of the haem synthetic pathway were isolated and characterized. Phylogenetic analysis of CgALAS, CgALAD, CgPBGD, CgUROS, and CgUROD provide further evidence for a conserved genetic pathway of haem synthesis during evolution. Differential expression of the haem genes expressed in mantle tissues support these findings and are consistent with porphyrins being produced by the orange strain only. Tissue in situ hybridization demonstrated the expression of these candidate genes at the outer fold of C. gigas mantles where shell is deposited. Our studies provide a better understanding of shell pigmentation in C. gigas and candidate genes for future mechanistic analysis of shell color formation in molluscs.
Collapse
Affiliation(s)
- Biyang Hu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Hong Yu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Shaojun Du
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
11
|
Saenko SV, Schilthuizen M. Evo-devo of shell colour in gastropods and bivalves. Curr Opin Genet Dev 2021; 69:1-5. [PMID: 33388521 DOI: 10.1016/j.gde.2020.11.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/17/2020] [Accepted: 11/23/2020] [Indexed: 11/30/2022]
Abstract
Recent technical innovations are revealing surprising patterns in mollusc shell pigmentation, such as an unexpectedly modest role for melanins and rapid divergences in the mix of pigments used to achieve similar colour patterns. The elucidation of the molecular genetic basis of shell pigmentation has been slow, probably because of the high genome complexity of gastropods and bivalves. Recent work within the old field of evolutionary ecology of shell pigmentation allows a greater role for the analysis of large-geographic-scale patterns (sometimes employing citizen-science data), as well as experimental field studies. However, the field remains dominated by land snails as model organisms, while colour pattern evolution in marine gastropods and bivalves, particularly those not exposed to visual predators, remains mysterious.
Collapse
Affiliation(s)
- Suzanne V Saenko
- Naturalis Biodiversity Center, Darwinweg 2, 2333CR Leiden, The Netherlands; Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333BE Leiden, The Netherlands
| | - Menno Schilthuizen
- Naturalis Biodiversity Center, Darwinweg 2, 2333CR Leiden, The Netherlands; Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333BE Leiden, The Netherlands.
| |
Collapse
|