1
|
Zhang K, Huang X, Wang C, Xu X, Xu X, Dong X, Xiao Q, Bai J, Zhou Y, Liu Z, Deng X, Tang Y, Li S, Hu E, Peng W, Xiong L, Qin Q, Liu S. Unveiling potential sex-determining genes and sex-specific markers in autotetraploid Carassius auratus. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2444-2458. [PMID: 39136860 DOI: 10.1007/s11427-023-2694-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/28/2024] [Indexed: 10/22/2024]
Abstract
Autotetraploid Carassius auratus is a stable hereditary autotetraploid fish resulting from the hybridization of Carassius auratus red var. (RCC, ♀) × Megalobrama amblycephala (BSB, ♂), containing four sets of RCC chromosomes. However, the molecular mechanism underlying the determination of sex in this species remains largely unknown. Currently, there lacks a full understanding of the molecular mechanisms governing sex determination and specific molecular markers to differentiate sex in this species. In this study, 25,801,677 SNPs (Single-nucleotide polymorphism) and 6,210,306 Indels (insertion-deletion) were obtained from whole-genome resequencing of 100 individuals (including 50 female and 50 male). Further identification confirmed the candidate chromosomes as Chr46B, with the sex-determining region located at Chr46B: 22,500,000-22,800,000 bp. Based on the male-specific insertion (26 bp) within the candidate sex-determining region, a pair of sex-specific molecular markers has been identified. In addition, based on the screening of candidate sex-determining region genes and RT-qPCR validation analysis, ADAM10, AQP9 and tc1a were identified as candidate sex-determining genes. These findings provide a robust foundation for investigating sex determination mechanisms in fish, the evolution of sex chromosomes, and the development of monosex populations.
Collapse
Affiliation(s)
- Kun Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Xu Huang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Chongqing Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Xidan Xu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Xiaowei Xu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Xiaoping Dong
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Qingwen Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Jinhai Bai
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Yue Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Zhengkun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Xinyi Deng
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Yan Tang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Siyang Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Enkui Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Wanjing Peng
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Ling Xiong
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Qinbo Qin
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China.
- Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511457, China.
- Hunan Yuelu Mountain Science and Technology Co., Ltd., for Aquatic Breeding, Changsha, 410081, China.
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
2
|
Shi C, Chen SX. Structural and ultrastructural aspects of the skin of large yellow croaker Larimichthys crocea. JOURNAL OF FISH BIOLOGY 2024; 104:1836-1847. [PMID: 38488309 DOI: 10.1111/jfb.15718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/17/2024] [Accepted: 02/22/2024] [Indexed: 06/27/2024]
Abstract
The skin color of the large yellow croaker (Larimichthys crocea) is a crucial indicator to determine its economic value. However, the location of pigment cells in the skin structure is uncertain. To determine the pigment cell type in the skin, the vertical order and ultrastructure of pigment cells were examined using light microscopy and transmission electron microscopy. Both dorsal and ventral skins comprise the epidermis, dermis, and hypodermis. Xanthophores, melanophores, and iridophores were observed in the dermis of the dorsal skin, whereas the latter two were in the dermis of the ventral skin. Interestingly, the size of xanthophores in the dorsal skin was significantly smaller than that of xanthophores in the ventral skin; however, the density of dorsal xanthophores was significantly higher than that of ventral xanthophores. The type L-iridophores with large crystalline structures were observed in the uppermost area of the upper pigment layer, which contributed to the strikingly metallic luster shown by the ventral skin. The melanophores were exclusively found in the dorsal skin, offering the purpose of camouflage. Taken together, our results indicated that the pigment cells display different arrangement patterns between dorsal and ventral skin, and the golden color in the ventral skin results from the coexistence of light-reflecting iridophores and light-absorbing xanthophores.
Collapse
Affiliation(s)
- Chenchen Shi
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Shi Xi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
3
|
Clark B, Hickey A, Marconi A, Fischer B, Elkin J, Mateus R, Santos ME. Developmental plasticity and variability in the formation of egg-spots, a pigmentation ornament in the cichlid Astatotilapia calliptera. Evol Dev 2024; 26:e12475. [PMID: 38555511 DOI: 10.1111/ede.12475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 04/02/2024]
Abstract
Vertebrate pigmentation patterns are highly diverse, yet we have a limited understanding of how evolutionary changes to genetic, cellular, and developmental mechanisms generate variation. To address this, we examine the formation of a sexually-selected male ornament exhibiting inter- and intraspecific variation, the egg-spot pattern, consisting of circular yellow-orange markings on the male anal fins of haplochromine cichlid fishes. We focus on Astatotilapia calliptera, the ancestor-type species of the Malawi cichlid adaptive radiation of over 850 species. We identify a key role for iridophores in initializing egg-spot aggregations composed of iridophore-xanthophore associations. Despite adult sexual dimorphism, aggregations initially form in both males and females, with development only diverging between the sexes at later stages. Unexpectedly, we found that the timing of egg-spot initialization is plastic. The earlier individuals are socially isolated, the earlier the aggregations form, with iridophores being the cell type that responds to changes to the social environment. Furthermore, we observe apparent competitive interactions between adjacent egg-spot aggregations, which strongly suggests that egg-spot patterning results mostly from cell-autonomous cellular interactions. Together, these results demonstrate that A. calliptera egg-spot development is an exciting model for investigating pigment pattern formation at the cellular level in a system with developmental plasticity, sexual dimorphism, and intraspecific variation. As A. calliptera represents the ancestral bauplan for egg-spots, these findings provide a baseline for informed comparisons across the incredibly diverse Malawi cichlid radiation.
Collapse
Affiliation(s)
- Bethan Clark
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Aaron Hickey
- Department of Zoology, University of Cambridge, Cambridge, UK
| | | | - Bettina Fischer
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Joel Elkin
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Rita Mateus
- Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany
- Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany
| | - M Emília Santos
- Department of Zoology, University of Cambridge, Cambridge, UK
| |
Collapse
|
4
|
Abstract
Vertebrates exhibit a wide range of color patterns, which play critical roles in mediating intra- and interspecific communication. Because of their diversity and visual accessibility, color patterns offer a unique and fascinating window into the processes underlying biological organization. In this review, we focus on describing many of the general principles governing the formation and evolution of color patterns in different vertebrate groups. We characterize the types of patterns, review the molecular and developmental mechanisms by which they originate, and discuss their role in constraining or facilitating evolutionary change. Lastly, we outline outstanding questions in the field and discuss different approaches that can be used to address them. Overall, we provide a unifying conceptual framework among vertebrate systems that may guide research into naturally evolved mechanisms underlying color pattern formation and evolution.
Collapse
Affiliation(s)
| | - Ricardo Mallarino
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA;
| |
Collapse
|
5
|
Santos ME, Lopes JF, Kratochwil CF. East African cichlid fishes. EvoDevo 2023; 14:1. [PMID: 36604760 PMCID: PMC9814215 DOI: 10.1186/s13227-022-00205-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/29/2022] [Indexed: 01/06/2023] Open
Abstract
Cichlid fishes are a very diverse and species-rich family of teleost fishes that inhabit lakes and rivers of India, Africa, and South and Central America. Research has largely focused on East African cichlids of the Rift Lakes Tanganyika, Malawi, and Victoria that constitute the biodiversity hotspots of cichlid fishes. Here, we give an overview of the study system, research questions, and methodologies. Research on cichlid fishes spans many disciplines including ecology, evolution, physiology, genetics, development, and behavioral biology. In this review, we focus on a range of organismal traits, including coloration phenotypes, trophic adaptations, appendages like fins and scales, sensory systems, sex, brains, and behaviors. Moreover, we discuss studies on cichlid phylogenies, plasticity, and general evolutionary patterns, ranging from convergence to speciation rates and the proximate and ultimate mechanisms underlying these processes. From a methodological viewpoint, the last decade has brought great advances in cichlid fish research, particularly through the advent of affordable deep sequencing and advances in genetic manipulations. The ability to integrate across traits and research disciplines, ranging from developmental biology to ecology and evolution, makes cichlid fishes a fascinating research system.
Collapse
Affiliation(s)
- M Emília Santos
- Department of Zoology, University of Cambridge, Cambridge, UK.
| | - João F Lopes
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
6
|
Gisselquist RM, Vaccaro A. COVID-19 and the state: Exploring a puzzling relationship in the early stages of the pandemic. JOURNAL OF INTERNATIONAL DEVELOPMENT 2022; 35:JID3702. [PMID: 36714218 PMCID: PMC9874542 DOI: 10.1002/jid.3702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 08/09/2022] [Accepted: 08/20/2022] [Indexed: 06/18/2023]
Abstract
During the first year of the Covid-19 pandemic, it was wealthier countries with stronger institutions that suffered the highest numbers of cases and fatalities. Many weaker countries were instead praised for more effective pandemic response. What explains this seeming puzzle? We re-consider these relationships in the cross-country data, drawing on measures of the state, Covid's health impact and pandemic response. In brief, our analysis suggests that, when appropriate additional factors are taken into account, the expected relationship between state effectiveness and pandemic health outcomes in fact is clear. We also offer insight into how different dimensions of the state influence policy and outcomes and how particular countries compare with others.
Collapse
Affiliation(s)
- Rachel M. Gisselquist
- World Institute for Development Economics Research (UNU‐WIDER)United Nations UniversityHelsinkiFinland
| | - Andrea Vaccaro
- World Institute for Development Economics Research (UNU‐WIDER)United Nations UniversityHelsinkiFinland
- Department of EconomicsUniversity of InsubriaVareseItaly
| |
Collapse
|
7
|
Lee J, Kim YH, Kim K, Kim D, Lee SH, Kim S. Selection of stable reference genes for quantitative real-time PCR in the Varroa mite, Varroa destructor. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 110:e21905. [PMID: 35393698 DOI: 10.1002/arch.21905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
To investigate the acaricide toxicity and resistance mechanisms in the Varroa mite, it is essential to understand the genetic responses of Varroa mites to acaricides, which are usually evaluated by transcriptional profiling based on quantitative real-time polymerase chain reaction (qPCR). In this study, to select reference genes showing consistent expression patterns regardless of the acaricide treatment or the type of tissue, Varroa mites treated with each of the three representative acaricides (coumaphos, fluvalinate, and amitraz) were processed for transcriptomic analysis, from which eight genes (NADH dehydrogenase [NADHD], glyceraldehyde-3-phosphate dehydrogenase [GAPDH], eukaryotic translation elongation factor 1 α 1 [eEF1A1], eukaryotic translation elongation factor 2 [eEF2], ribosomal protein L5 [RpL5], Actin, tubulin α-1D chain [α-tubulin], and Rab1) were selected as candidates. The transcription profiles of these genes, depending on the treatment of the three acaricides or across different tissues (cuticle, legs, gut/fat bodies, and synganglion), were analyzed using qPCR with four validation programs, BestKeeper, geNorm, NormFinder, and RefFinder. Following acaricide treatment, eEF1A1 and NADHD showed the least variation in their expression levels, whereas the expression levels of α-tubulin and RpL5 were the most stable across different tissue groups. Rab1/GAPDH and Actin/eEF2 showed the least stable expression patterns following acaricide treatments and across different tissues, respectively, requiring precautions for use. When vitellogenin gene expression was analyzed by different reference genes, its expression profiles varied significantly depending on the reference genes, highlighting the importance of proper reference gene use. Thus, it is recommended using eEF1A1 and NADHD as reference genes for the comparison of the effects of acaricide on the whole body, whereas α-tubulin and RpL5 are recommended for investigating the tissue-specific expression profiles of target genes.
Collapse
Affiliation(s)
- Joonhee Lee
- Entomology Program, Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Young Ho Kim
- Department of Applied Biology, Kyungpook National University, Sangju, Gyeongbuk, Republic of Korea
- Department of Ecological Science, Kyungpook National University, Sangju, Gyeongbuk, Republic of Korea
| | - Kyungmun Kim
- Division of Apiculture, Department of Agricultural Biology, National Institute of Agricultural Science, RDA, Wanju, Republic of Korea
| | - Dongwon Kim
- Division of Apiculture, Department of Agricultural Biology, National Institute of Agricultural Science, RDA, Wanju, Republic of Korea
| | - Si Hyeock Lee
- Entomology Program, Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sanghyeon Kim
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
8
|
Jain R, Chatterjee T. Effect of testing and social distancing measures on COVID-19 deaths in India: Role of pre-existing socio-economic factors. JOURNAL OF PUBLIC AFFAIRS 2022; 23:e2828. [PMID: 35942246 PMCID: PMC9350391 DOI: 10.1002/pa.2828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 06/06/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
We examine the effect of testing and social distancing measures on the severity of COVID19 across Indian states during the 68th day nationwide lockdown period. We also explore whether pre-existing socio-economic factors such as quality of health care and the ability to practice social distancing influences the effect of these policy measures across states. Using daily level data between April 1 and May 31 for 18 of the major states, we find that both testing and social distancing have a negative effect on COVID-19 fatalities in India. Further, testing is more helpful in reducing CFR for states with lower per capita health expenditure and weaker medical infrastructure. This highlights how ramping up testing can aid states that have a weak health care system through the detection of infection, contact tracing and isolation. In contrast, social distancing measures are more effective in states that are less populous and have lesser people dwelling in single-room houses. Our results confirm the role of pre-existing institutional factors in shaping the effect of policy actions on health outcomes.
Collapse
Affiliation(s)
- Ritika Jain
- Center for Development StudiesTrivandrumKeralaIndia
| | | |
Collapse
|
9
|
An BY, Porcher S, Tang S, Kim EE. Policy Design for COVID-19: Worldwide Evidence on the Efficacies of Early Mask Mandates and Other Policy Interventions. PUBLIC ADMINISTRATION REVIEW 2021; 81:1157-1182. [PMID: 34908595 PMCID: PMC8662156 DOI: 10.1111/puar.13426] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 08/11/2021] [Accepted: 08/18/2021] [Indexed: 05/07/2023]
Abstract
To understand the extent to which a policy instrument's early adoption is crucial in crisis management, we leverage unique worldwide data that record the daily evolution of policy mandate adoptions and COVID-19 infection and mortality rates. The analysis shows that the mask mandate is consistently associated with lower infection rates in the short term, and its early adoption boosts the long-term efficacy. By contrast, the other five policy instruments-domestic lockdowns, international travel bans, mass gathering bans, and restaurant and school closures-show weaker efficacy. Governments prepared for a public health crisis with stronger resilience or capacity and those with stronger collectivist cultures were quicker to adopt nationwide mask mandates. From a policy design perspective, policymakers must avoid overreacting with less effective instruments and underreacting with more effective ones during uncertain times, especially when interventions differ in efficacy and cost.
Collapse
|
10
|
Rodríguez‐Pose A, Burlina C. Institutions and the uneven geography of the first wave of the COVID-19 pandemic. JOURNAL OF REGIONAL SCIENCE 2021; 61:728-752. [PMID: 34226760 PMCID: PMC8242880 DOI: 10.1111/jors.12541] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/21/2021] [Indexed: 05/03/2023]
Abstract
This paper examines the uneven geography of COVID-19-related excess mortality during the first wave of the pandemic in Europe, before assessing the factors behind the geographical differences in impact. The analysis of 206 regions across 23 European countries reveals a distinct COVID-19 geography. Excess deaths were concentrated in a limited number of regions-expected deaths exceeded 20% in just 16 regions-with more than 40% of the regions considered experiencing no excess mortality during the first 6 months of 2020. Highly connected regions, in colder and dryer climates, with high air pollution levels, and relatively poorly endowed health systems witnessed the highest incidence of excess mortality. Institutional factors also played an important role. The first wave hit regions with a combination of weak and declining formal institutional quality and fragile informal institutions hardest. Low and declining national government effectiveness, together with a limited capacity to reach out across societal divides, and a frequent tendency to meet with friends and family were powerful drivers of regional excess mortality.
Collapse
Affiliation(s)
- Andrés Rodríguez‐Pose
- Cañada Blanch Centre, Department of Geography and EnvironmentLondon School of EconomicsLondonUK
| | - Chiara Burlina
- Social SciencesGran Sasso Science InstituteL'AquilaItaly
| |
Collapse
|
11
|
Gerwin J, Urban S, Meyer A, Kratochwil CF. Of bars and stripes: A Malawi cichlid hybrid cross provides insights into genetic modularity and evolution of modifier loci underlying colour pattern diversification. Mol Ecol 2021; 30:4789-4803. [PMID: 34322938 DOI: 10.1111/mec.16097] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/13/2021] [Accepted: 07/23/2021] [Indexed: 11/25/2022]
Abstract
Understanding the origins of phenotypic diversity among closely related species remains an important largely unsolved question in evolutionary biology. With over 800 species, Lake Malawi haplochromine cichlid fishes are a prominent example of extremely fast evolution of diversity including variation in colouration. Previously, a single major effect gene, agrp2 (asip2b), has been linked to evolutionary losses and gains of horizontal stripe patterns in cichlids, but it remains unknown what causes more fine-scale variation in the number and continuity of the stripes. Also, the genetic basis of the most common colour pattern in African cichlids, vertical bars, and potential interactions between the two colour patterns remain unknown. Based on a hybrid cross of the horizontally striped Lake Malawi cichlid Pseudotropheus cyaneorhabdos and the vertically barred species Chindongo demasoni we investigated the genetic basis of both colour patterns. The distribution of phenotypes in the F2 generation of the cross indicates that horizontal stripes and vertical bars are independently inherited patterns that are caused by two sets of genetic modules. While horizontal stripes are largely controlled by few major effect loci, vertical bars are a highly polygenic trait. Horizontal stripes show substantial variation in the F2 generation that, interestingly, resemble naturally occurring phenotypes found in other Lake Malawi cichlid species. Quantitative trait loci (QTL) mapping of this cross reveals known (agrp2) and unknown loci underlying horizontal stripe patterns. These findings provide novel insights into the incremental fine-tuning of an adaptive trait that diversified through the evolution of additional modifier loci.
Collapse
Affiliation(s)
- Jan Gerwin
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Sabine Urban
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Axel Meyer
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Claudius F Kratochwil
- Department of Biology, University of Konstanz, Konstanz, Germany.,Institute of Biotechnology, HiLIFE, Helsinki, Finland
| |
Collapse
|
12
|
Sorensen PW, Levesque HM. Hormonal Prostaglandin F2α Mediates Behavioral Responsiveness to a Species-Specific Multi-component Male Hormonal Sex Pheromone in a Female Fish. Integr Comp Biol 2021; 61:193-204. [PMID: 33956973 DOI: 10.1093/icb/icab061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Although hormonally-derived female sex pheromones have been well described in approximately a dozen species of teleost fish, only a few male sex pheromones have been characterized and the neuroendocrine underpinnings of behavioral responsiveness to them is not understood. Herein, we describe a study that addresses this question using the goldfish, Carassius auratus, an important model species of how hormones drive behavior in egg-laying teleost fishes. Our study had four components. First, we examined behavioral responsiveness of female goldfish and found that when injected with prostaglandin F2α (PGF2α), a treatment that drives female sexual receptivity, and found that they became strongly and uniquely attracted to the odor of conspecific mature males, while non-PGF2α-treated goldfish did not discern males from females. Next, we characterized the complexity and specificity of the male pheromone by examining the responsiveness of PGF2α-treated females to the odor of either mature male conspecifics or male common carp odor, as well as their nonpolar and polar fractions. We found that the odor of male goldfish was more attractive than that of male common carp, and that its activity was attributable to both its nonpolar and polar fractions with the later conveying information on species-identity. Third, we hypothesized that androstenedione (AD), a 19-carbon sex steroid produced by all male fish might be the nonpolar fraction and tested whether PGF2α-treated goldfish were attracted to either AD alone or as part of a mixture in conspecific water. We found that while AD was inactive on its own, it became highly attractive when added to previously unattractive female conspecific water. Lastly, in a test of whether nonhormonal conspecific odor might determine species-specificity, we added AD to water of three species of fish and found that while AD made goldfish water strongly attractive, its effects on other species holding water were small. We conclude that circulating PGF2α produced at the time of ovulation induces behavioral sensitivity to a male sex pheromone in female goldfish and that this male pheromone is comprised of AD and a mixture of body metabolites. Because PGF2α commonly mediates ovulation and female sexual behavior in egg-laying fishes, and AD is universally produced by male fishes as a precursor to testosterone, we suggest that these two hormones may have similar roles mediating male-female behavior and communication in many species of fish.
Collapse
Affiliation(s)
- Peter W Sorensen
- Department of Fisheries, Wildlife and Conservation Biology, University of Minnesota, St. Paul, MN 55108, USA
| | - Haude M Levesque
- Department of Fisheries, Wildlife and Conservation Biology, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
13
|
Nicolaï MPJ, D'Alba L, Goldenberg J, Gansemans Y, Van Nieuwerburgh F, Clusella-Trullas S, Shawkey MD. Untangling the structural and molecular mechanisms underlying colour and rapid colour change in a lizard, Agama atra. Mol Ecol 2021; 30:2262-2284. [PMID: 33772941 DOI: 10.1111/mec.15901] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/10/2021] [Accepted: 03/18/2021] [Indexed: 12/13/2022]
Abstract
With functions as diverse as communication, protection and thermoregulation, coloration is one of the most important traits in lizards. The ability to change colour as a function of varying social and environmental conditions is thus an important innovation. While colour change is present in animals ranging from squids, to fish and reptiles, not much is known about the mechanisms behind it. Traditionally, colour change was attributed to migration of pigments, in particular melanin. More recent work has shown that the changes in nanostructural configuration inside iridophores are able to produce a wide palette of colours. However, the genetic mechanisms underlying colour, and colour change in particular, remain unstudied. Here we use a combination of transcriptomic and microscopic data to show that melanin, iridophores and pteridines are the main colour-producing mechanisms in Agama atra, and provide molecular and structural data suggesting that rapid colour change is achieved via melanin dispersal in combination with iridophore organization. This work demonstrates the power of combining genotypic (gene expression) and phenotypic (microscopy) information for addressing physiological questions, providing a basis for future studies of colour change.
Collapse
Affiliation(s)
- Michaël P J Nicolaï
- Evolution and Optics of Nanostructures Group, Department of Biology, University of Ghent, Ghent, Belgium
| | - Liliana D'Alba
- Evolution and Optics of Nanostructures Group, Department of Biology, University of Ghent, Ghent, Belgium
| | - Jonathan Goldenberg
- Evolution and Optics of Nanostructures Group, Department of Biology, University of Ghent, Ghent, Belgium
| | - Yannick Gansemans
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Filip Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Susana Clusella-Trullas
- Department of Botany and Zoology & Centre for Invasion Biology, Stellenbosch University, Stellenbosch, South Africa
| | - Matthew D Shawkey
- Evolution and Optics of Nanostructures Group, Department of Biology, University of Ghent, Ghent, Belgium
| |
Collapse
|
14
|
Ahi EP, Lecaudey LA, Ziegelbecker A, Steiner O, Goessler W, Sefc KM. Expression levels of the tetratricopeptide repeat protein gene ttc39b covary with carotenoid-based skin colour in cichlid fish. Biol Lett 2020; 16:20200629. [PMID: 33236977 PMCID: PMC7728679 DOI: 10.1098/rsbl.2020.0629] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Carotenoid pigments play a major role in animal body colouration, generating strong interest in the genes involved in the metabolic processes that lead from their dietary uptake to their storage in the integument. Here, we used RNA sequencing (RNA-Seq) to test for differentially expressed genes in a taxonomically replicated design using three pairs of related cichlid fish taxa from the genera Tropheus and Aulonocara. Within each pair, taxa differed in terms of red and yellow body colouration, and high‐performance liquid chromatography (HPLC) analyses of skin extracts revealed different carotenoid profiles and concentrations across the studied taxa. Five genes were differentially expressed in all three yellow–red skin contrasts (dhrsx, nlrc3, tcaf2, urah and ttc39b), but only the tetratricopeptide repeat protein-coding gene ttc39b, whose gene product is linked to mammalian lipid metabolism, was consistently expressed more highly in the red skin samples. The RNA-Seq results were confirmed by quantitative PCR. We propose ttc39b as a compelling candidate gene for variation in animal carotenoid colouration. Since differential expression of ttc39b was correlated with the presence/absence of yellow carotenoids in a previous study, we suggest that ttc39b is more likely associated with the concentration of total carotenoids than with the metabolic formation of red carotenoids.
Collapse
Affiliation(s)
- Ehsan Pashay Ahi
- Institute of Biology, University of Graz, Universitätsplatz 2, A-8010 Graz, Austria.,Department of Comparative Physiology, Uppsala University, Norbyvägen 18A, SE-75 236 Uppsala, Sweden
| | - Laurène A Lecaudey
- Institute of Biology, University of Graz, Universitätsplatz 2, A-8010 Graz, Austria.,Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | | | - Oliver Steiner
- Institute of Chemistry, University of Graz, Universitätsplatz 1, A-8010 Graz, Austria
| | - Walter Goessler
- Institute of Chemistry, University of Graz, Universitätsplatz 1, A-8010 Graz, Austria
| | - Kristina M Sefc
- Institute of Biology, University of Graz, Universitätsplatz 2, A-8010 Graz, Austria
| |
Collapse
|
15
|
Molecular Plasticity in Animal Pigmentation: Emerging Processes Underlying Color Changes. Integr Comp Biol 2020; 60:1531-1543. [DOI: 10.1093/icb/icaa142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Synopsis
Animal coloration has been rigorously studied and has provided morphological implications for fitness with influences over social behavior, predator–prey interactions, and sexual selection. In vertebrates, its study has developed our understanding across diverse fields ranging from behavior to molecular biology. In the search for underlying molecular mechanisms, many have taken advantage of pedigree-based and genome-wide association screens to reveal the genetic architecture responsible for pattern variation that occurs in early development. However, genetic differences do not provide a full picture of the dynamic changes in coloration that are most prevalent across vertebrates at the molecular level. Changes in coloration that occur in adulthood via phenotypic plasticity rely on various social, visual, and dietary cues independent of genetic variation. Here, I will review the contributions of pigment cell biology to animal color changes and recent studies describing their molecular underpinnings and function. In this regard, conserved epigenetic processes such as DNA methylation play a role in lending plasticity to gene regulation as it relates to chromatophore function. Lastly, I will present African cichlids as emerging models for the study of pigmentation and molecular plasticity for animal color changes. I posit that these processes, in a dialog with environmental stimuli, are important regulators of variation and the selective advantages that accompany a change in coloration for vertebrate animals.
Collapse
|